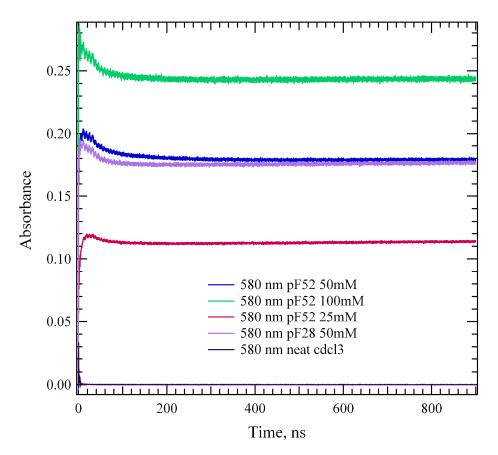
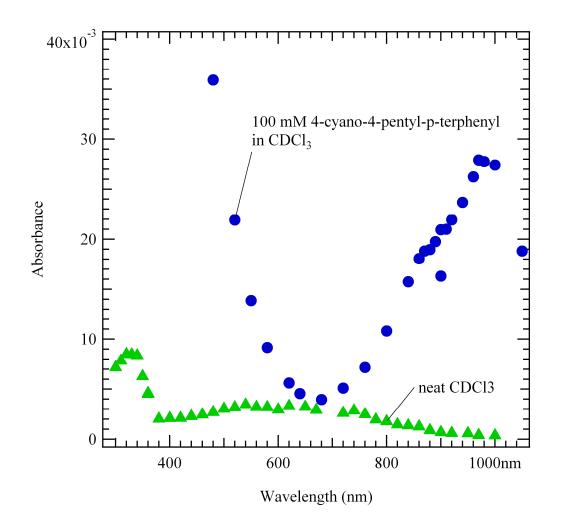
Supporting Information for:

Rapid, "Step Capture" of Holes in Chloroform During Pulse Radiolysis

Andrew R. Cook,^{*,†} Matthew J. Bird,[†] Sadayuki Asaoka,^{§,#} John R. Miller^{*,†}


Chemistry Department, Brookhaven National Laboratory, Upton, New York 11793–5000 and Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, 226–8503, Japan

* To whom correspondence should be addressed. acook@bnl.gov


† Chemistry Department, Brookhaven National Laboratory.

§ Chemical Resources Laboratory, Tokyo Institute of Technology.

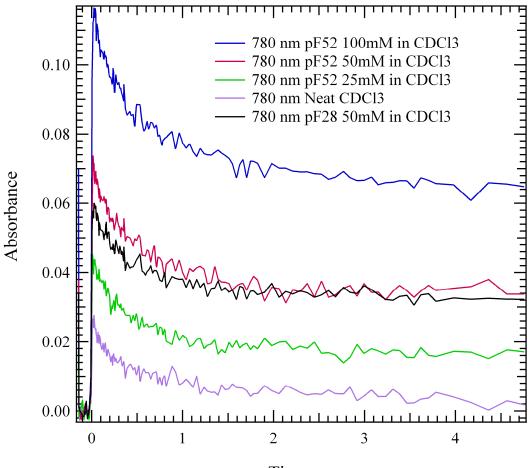

Present address: Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Figure S1. Absorptions at 580 nm produced in the first few ns with samples containing pFs do not decay appreciably at times as long as $\sim 1 \ \mu$ s. The species responsible is primarily the [pF+,Cl-] ion pair, formed following recombination. The initial decay may be due to an absorption spectral shift or molar extinction coefficient change upon ion-pairing; a fraction may also be due to decay of triplets observed at 780 nm that still weakly absorb at 580 nm.

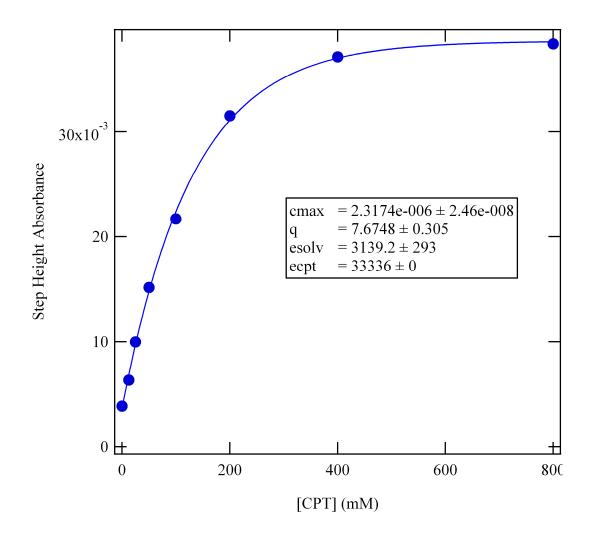


Figure S2. Absorption spectrum of 4-pentyl-4"-cyano-p-terphenyl measured in CDCl₃ at 1 ns after radiolysis. The strong and broad absorption is nearly identical to that of p-terphenyl radical; cation, which has a maximum near 965 nm.^{42,43}

Time, ns

Figure S3. Transient absorption at 780 nm, near the peaks of the ${}^{1}pF^{*}$ and ${}^{3}pF^{*}$ spectra. Polymer concentrations are in repeat units. Excited states can be produced by Cerenkov absorption, excitation by high energy electrons, and recombination of charges. Observed ~0.4 ns decays are consistent with ${}^{1}pF^{*}$ decay; the increased non-decaying component with [pF] on this timescale is reasonably due to ${}^{3}pF^{*}$.

Figure S4. Fit to raw step heights measured in varying concentrations of CPT at 900 nm. Fit function explicitly includes contribution of the solvent species:

Step height =
$$c_{max} \left[\varepsilon_{CPT} (1 - e^{-qc}) + \varepsilon_{solv} e^{-qc} \right]$$

Where cmax is the maximum concentration of $CPT^{+\bullet}$ that can be formed and is equal to the initial concentration of $CDCl_3^{+\bullet}$; $\varepsilon_{CPT} = 39,650 \text{ M}^{-1}\text{ cm}^{-1}$ for $CPT^{+\bullet}$ at 965 nm, scaled to 900 nm where the data was collected; ε_{solv} is the extinction coefficient of the solvent species at 900 nm, q is the quencher coefficient, and c = [CPT].