Exploring the Structure of Paramagnetic Centers in SBA-15 Supported Vanadia Catalysts With Pulsed One- and Two-dimensional Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR)

A. Dinse^{a,b)}, T. Wolfram^{c)}, C. Carrero^{a)}, R. Schlögl^{c)}, R. Schomäcker^{a)}, and K.-P. Dinse^{d)}*

- Department of Chemistry, TU Berlin, Strasse des 17. Juni 124, D-10623 Berlin, a) Germany
- present address: BP Products North America, Naperville, IL 60503, USA, 150, West b) Warrenfield Rd.
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, c) Faradaystrasse 4-6, D-14195 Berlin, Germany
- Department of Physics, FU Berlin, Arnimallee 14, D-14195 Berlin, Germany d) Fax: (+)49-30-8385-6046

E-mail: dinse@physik.fu-berlin.de

Supporting information

Simulation frequencies were chosen according to the observed positions of vanadium signals in the 2D plot. Experimental intensities were determined by projecting the 2D plot onto the T_1 related axis. Experimental data shown were obtained using the H_2 reduced sample with 1.8 wt. % V (2V/SBA-15).

mw pulse delay τ between first two pulsed of a HYSCORE sequence (ns)

Fig. S1: Simulated and experimental HYSCORE response as function of the delay time τ of the first pulses of a HYSCORE sequence.

For comparing the relative signal intensities of "free" and "coupled" peaks in samples of different vanadia loading as shown in Fig. 10, a pulse delay $\tau = 200$ ns was chosen. Although the center peak is depressed significantly under this condition, the difference in relative intensities can be observed for all three samples.

In order to obtain a qualitative measure of the relative contribution of "local" and "distant" vanadium atoms, the intensity of projected 2D peaks is summed for the 4 delay values shown in Fig. S2. Because the range of τ values covers the conditions from "full" sensitivity to total suppression, a rough guess of the undistorted relative intensities can be obtained. For the H_2 reduced sample with 1.8 wt. % vanadium loading the intensity values are 8.1/13/7.7 (with increasing frequency), thus indicating that oligomeric and monomeric sites are visible in similar amounts.

Fig. S2: 34 GHz projected HYSCORE data of SBA-15 supported VO_x catalysts with 1.8 wt. % vanadium loading (2V/SBA-15, H_2 reduced, sealed), T=10 K, showing the effect of variation of time delay of the first two mw pulses in a 4-pulse HYSCORE sequence.

Sample properties are compiled in Table S1.

sample name	FHI serial number	V [wt%] XRF	V [mmol/g]	S(BET) [m²/g]	V surface density [nm ⁻²]	V surface density [nm ⁻²]
SBA-15	7724	0	0	987	0	0
1V/SBA-15	7779	0.99	0.19	939	0.125	0.119
2V/SBA-15	7802	1.77	0.35	926	0.226	0.212
3.5V/SBA-15	7815	3.45	0.68	807	0.505	0.413
6.5V/SBA-15	7817	6.34	1.24	679	1.103	0.759
9V/SBA-15	7827	9.15	1.80	529	2.045	1.096

Table S1: Vanadium surface densities are calculated using either specific surface area of the parent SBA-15 support (outmost column) or using the surface area of samples (5th column) after grafting, respectively.

Fig. S3: C. w. EPR spectrum of sample with 6.3 wt % V (6.5V/SBA-15, as prepared) measured at 80 K. Dashed line is a best fit using the following parameters: $g = (1.9859 \ 1.9895 \ 1.0415)$, $A = (197.0 \ 217.6 \ 548.7)$ MHz, line width 2.4 mT.