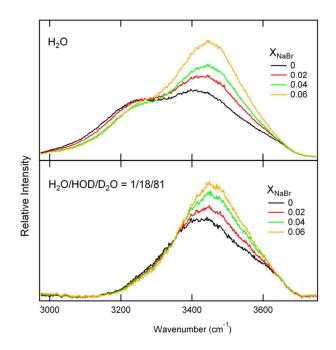
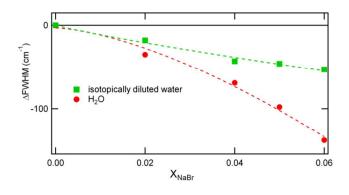
Water in the Hydration Shell of Halide Ions Has Significantly Reduced Fermi Resonance and Moderately Enhanced Raman Cross-Section in the OH Stretch Regions

Mohammed Ahmed, Ajay K. Singh, Jahur A. Mondal*, and Sisir K. Sarkar

Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-


400085, India.

Email: mondal@barc.gov.in


Supporting Informations:

1. Effect of NaBr on the OH stretch bands of H₂O and isotopically diluted water

Figure S1 shows the Raman Spectra of H₂O (top) and isotopically diluted water, D₂O/HOD/H₂O = 81/18/1, (bottom) with different mole fractions of NaBr. With increasing concentration of NaBr, the intensity in the blue region (weakly H-bonded) increases and that in the red regions (strongly H-bonded) decreases, which are quite similar to the spectral changes in the OD stretch regions (for D₂O and isotopically diluted water D₂O/HOD/H₂O = 1/18/81) as discussed in the main text. The Δ FWHM of the OH stretch band decreases with increasing concentration of NaBr (Figure S2) and the decrease in H₂O is more than that in the isotopically diluted water for the same concentration of NaBr. This indicates that the effect of NaBr on D₂O, H₂O, and isotopically diluted water are quite similar, and does not depend on the spectral regions (OH or OD stretch bands) monitored.

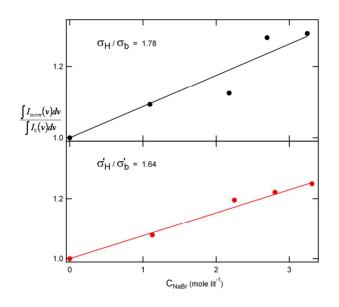

Figure S1. Raman Spectra of H_2O (top) and isotopically diluted water, $D_2O/HOD/H_2O = 81/18/1$, (bottom) with different mole fractions of NaBr. The spectra are normalized according to equation 1 and 2 in the main text.

Figure S2. Change in FWHM of the OH stretch band with increasing concentration of NaBr in H_2O (red circle) and in isotopically diluted water, $D_2O/HOD/H_2O = 81/18/1$ (green square). The dashed lines are guides for the eye.

Figure S3 shows a Plot of relative integrated intensity vs. the concentration of NaBr in H₂O (top) and isotopically diluted water (bottom). The relative Raman cross-section, σ_H/σ_b in H₂O (1.78) is

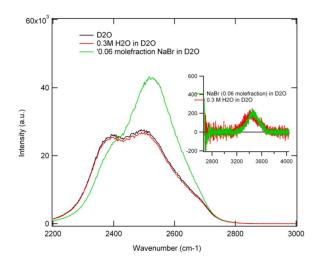

close to that of D_2O (1.81). However, in the isotopically diluted water ($D_2O/HOD/H_2O = 81/18/1$), while measuring in the OH stretch regions, the relative Raman cross-section (1.64) is little higher than that in the corresponding OD stretch regions (1.46, as shown in the main text). The higher value of the relative Raman cross-section in the OH stretch region is due to the presence of H_2O impurity in NaBr.

Figure S3. Plot of relative integrated intensity vs. the concentration of NaBr in H_2O (top) and isotopically diluted water (bottom). The solid lines are the fitted functions as mentioned in the main text.

Presence of H_2O impurity in NaBr has been confirmed by the appearance of Raman signal in the OH stretch region for the NaBr in D₂O. The Raman spectrum of NaBr (0.06 mole fraction; the highest concentration of NaBr used in the present study) in D₂O shows a weak band in the OH stretch regions (green spectrum in the inset of Figure S4) that indicates the presence of H₂O as an impurity in the hygroscopic NaBr. From the comparative measurements of Raman intensity in the OH stretch regions, it is found that the concentration of H₂O impurity corresponds to the presence of 0.3 M H₂O in D₂O (red line in the inset of Figure S4). Thus, the concentration of H₂O in 0.06 mole fraction of NaBr in D₂O is ~ 180 times less that of D₂O. Naturally, the H₂O impurity added with NaBr will have negligible effect on the OD stretch band region. Figure S4 compares the

Raman spectra neat D_2O (black line) and 0.3 M H₂O in D_2O (red line), which shows H₂O impurity does not significantly affect the OD stretch band of D_2O or the isotopically diluted water ($D_2O/HOD/H_2O = 1/18/81$). However, the OH stretch band of the corresponding isotopically diluted water ($D_2O/HOD/H_2O = 81/18/1$), is expected to attain significant intensity from the H₂O impurity. This is why the relative Raman cross-section of isotopically diluted water in the OH stretch region (1.64) is higher than that of the corresponding OD stretch regions (1.46).

Figure S4. Raman spectra in the OD stretch regions for neat D_2O (black), 0.3M H₂O in D_2O (red), and 0.06 mole fraction NaBr in D_2O (green). **Inset:** Raman spectrum in the OH stretch regions for 0.06 mole fraction NaBr in D_2O (green) and 0.3M H₂O in D_2O (red).