Toxoflavins and deazaflavins as the first reported

selective small molecule inhibitors of tyrosyl-

DNA phosphodiesterase II

Ali Raoof, ${ }^{*}{ }^{\dagger}$ Paul Depledge, ${ }^{\dagger}$ Niall M. Hamilton, ${ }^{\dagger}$ Nicola S. Hamilton, ${ }^{\dagger}$ James R. Hitchin, ${ }^{\dagger}$ Gemma V. Hopkins, ${ }^{\dagger}$ Allan M. Jordan, ${ }^{\dagger}$ Laura A. Maguire, ${ }^{\dagger}$ Alison E. McGonagle, ${ }^{\dagger}$ Daniel P. Mould, ${ }^{\dagger}$ Mathew Rushbrooke, ${ }^{\S}$ Helen F. Small, ${ }^{\dagger}$ Kate M. Smith, ${ }^{\dagger}$ Graeme J. Thomson, ${ }^{\dagger}$ Fabrice Turlais, ${ }^{\S}$ Ian D. Waddell, ${ }^{\dagger}$ Bohdan Waszkowycz, ${ }^{\dagger}$ Amanda J. Watson, ${ }^{\dagger}$ and Donald J. Ogilvie ${ }^{\dagger}$

Supporting Information

Table of Contents

LC-MS methods and solvent gradients: S3
Preparative HPLC instrument and solvent gradients: S4-S5
Preparative methods and spectroscopic data for intermediates
$2-24,34-36,45-49,72,75,76,79,84,85,89,90-92,107-127:$ S6-S11
Summary of purity data for intermediates 2-23, 72, 84, 85, 91 and 107-127: S12-S16
Summary of purity data for final compounds $\mathbf{2 4 - 3 1}, \mathbf{5 4 - 7 0}, \mathbf{7 3}, \mathbf{8 6}, \mathbf{9 3}, 94,97-104,130$, and
134-163:S17-S29
Dose response curves for active deazaflavins and select toxoflavins in the TDP2 chromogenic
assayS30-S38
Computational docking method S39
References for supporting information: S40-S41

LC-MS methods and solvent gradients

LC-MS analyses were performed on a Waters Acquity UPLC system fitted with BEH C18 1.7 uM columns $(2.1 \times 50 \mathrm{~mm})$ and with a UV detector. Positive and negative mass ion detection was performed using a Waters SQD detector. Analyses were performed with either buffered acidic or basic solvents and gradients as detailed below:

Low pH:
Solvent A - Water +10 mM ammonium formate $+0.1 \%$ formic acid
Solvent B - Acetonitrile $+5 \%$ water $+0.1 \%$ formic acid
High pH :
Solvent A - Water +10 mM ammonium hydrogen carbonate $+0.1 \%$ ammonia solution
Solvent B - Acetonitrile $+0.1 \%$ ammonia solution
Gradient:

Time	Flow rate $(\mathrm{mL} \mathrm{min}$		
-1$)$	\% Solvent A	\% Solvent B	
0	0.6	95	5
1.2	0.6	5	95
1.7	0.6	5	95
1.8	0.6	95	5

Preparative HPLC instrument and solvent gradients

Several compounds were purified by preparative HPLC on a Waters FractionLynx MS autopurification system, with a Waters XBridge $5 \mathrm{DM} \mathrm{C18} ,100 \mathrm{~mm} \times 19 \mathrm{~mm}$ i.d. column, running at a flow rate of $20 \mathrm{~mL} \mathrm{~min}^{-1}$ with UV diode array detection ($210-400 \mathrm{~nm}$) and massdirected collection using both positive and negative mass ion detection. Purifications were performed using acidic or basic solvent systems as appropriate. Compound retention times on the system were routinely assessed using a 30-50 uL test injection and a standard gradient, and then purified using an appropriately selected focussed gradient as detailed below, based upon observed retention time.

Low pH:
Solvent A - Water +10 mM ammonium formate $+0.1 \%$ formic acid
Solvent B - Acetonitrile $+5 \%$ water $+0.1 \%$ formic acid
High pH :
Solvent A - Water +10 mM ammonium formate $+0.1 \%$ ammonia solution
Solvent B - Acetonitrile $+5 \%$ water $+0.1 \%$ ammonia solution
Standard Gradient:

Time	Flow rate $(\mathrm{mL} \mathrm{min}$ -1 $)$	\% Solvent A	\% Solvent B
0	20	90	10
0.3	20	90	10
8.5	20	2	98
12	20	2	98
12.5	0	2	98

Focussed Gradients:

		\% Solvent B					
		Retention time on standard gradient (min.)					
Time	Flow rate $(\mathrm{mL} \mathrm{min}$						
		$0-5.2$	$4.9-6.6$	$6.3-7.5$	$7.3-9.5$	$9.3-12$	
0	20	10	10	10	10	10	
0.25	20	10	10	10	10	10	
0.35	20	10	20	35	45	60	
10	20	45	55	65	75	98	
12	20	98	98	98	98	98	
12.5	0	98	98	98	98	98	

Preparative methods and spectroscopic data for intermediates 2-24, 34-36, 45-49, 72, 75, 76, 79, 84, 85, 89, 90-92, 107-127

6-[[(E)-(4-Chlorophenyl)methyleneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-

 dione 2. Adapting the procedure from the literature, ${ }^{\text {Error: Bookmark not defined. }}$ a suspension of 6-chloro-3-methyluracil 1 ($308 \mathrm{mg}, 1.92 \mathrm{mmol}$) in EtOH (5 mL) was treated with methylhydrazine ($0.22 \mathrm{~mL}, 4.22 \mathrm{mmol}$) and heated to $100^{\circ} \mathrm{C}$ for 10 min under microwave irradiation. The clear solution was treated whilst still warm with 4-chlorobenzaldehyde (404 $\mathrm{mg}, 2.87 \mathrm{mmol})$. This was heated for a further 10 min at $50^{\circ} \mathrm{C}$ under microwave irradiation. The resultant thick yellow precipitate was diluted with EtOH (2 mL) and filtered. The solid was washed with $\mathrm{EtOH}(2 \times 5 \mathrm{ml})$ and dried to afford $\mathbf{2}$ (white solid, $480 \mathrm{mg}, 85 \%$).3-Methyl-1H-pyrimidine-2,4-diones 3-23 were prepared in a manner analogous to that of $\mathbf{2}$. Table 1 details a list of yields and LC-MS data (high pH).

6-[Ethyl-[(E)-(4-ethylphenyl)methyleneamino]amino]-3-methyl-1H-pyrimidine-2,4-

dione 24. A mixture of 6-chloro-3-methyluracil ($2.0 \mathrm{~g}, 12.5 \mathrm{mmol}$), ethylhydrazine ethanedioate (1:1) ($2.8 \mathrm{~g}, 18.7 \mathrm{mmol}$) and N, N-diisopropylethylamine ($4.8 \mathrm{~g}, 37.4 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ was stirred and heated at reflux for 16 h . The reaction mixture was allowed to cool to ambient temperature, concentrated and triturated with EtOH to give a white solid (1.8 $\mathrm{g}, 78 \%$). A portion of this ($300 \mathrm{mg}, 1.63 \mathrm{mmol}$) and p-ethylbenzaldehyde ($328 \mathrm{mg}, 2.44$ mmol) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ under microwave irradiation for 10 min . The reaction mixture was concentrated to afford a white paste. The crude material was purified by trituration (EtOH) and filtered to yield 24 (white solid, $270 \mathrm{mg}, 55 \%$); LC-MS m/z 301.5 [M $+\mathrm{H}]^{+}, 74 \%$ purity.

6-[Cyclopropylmethyl-[(E)-(4-ethylphenyl)methyleneamino]amino]-3-methyl-1H-

 pyrimidine-2,4-dione 35. A solution of cyclopropylmethylhydrazine dihydrochloride (1.5 g ,$9.34 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(3.9 \mathrm{~mL}, 28.0 \mathrm{mmol})$ and 6-chloro-3-methyluracil $\mathbf{1}(1.5 \mathrm{~g}, 9.34 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{~mL})$ was agitated at reflux for $16 \mathrm{~h} . p$-Ethylbenzaldehyde ($1.3 \mathrm{~mL}, 9.34 \mathrm{mmol}$) was added sub-surface to the mixture at reflux, and the resulting mixture was stirred at reflux for a further 16 h , after which a precipitate had formed. The mixture was cooled to ambient temperature and filtered, and the filter cake was washed with $\mathrm{EtOH}(2 \times 20 \mathrm{~mL})$ and dried to afford 35 (pale yellow solid, $1.2 \mathrm{~g}, 39 \%$). LC-MS $m / z 327.6[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$ purity.

6-[[(E)-(4-Ethylphenyl)methyleneamino]-propyl-amino]-3-methyl-1H-pyrimidine-2,4-

dione 34. The title compound was prepared in a manner analogous to that of $\mathbf{3 5}$, using propylhydrazine oxalate; (pale yellow solid, $750 \mathrm{mg}, 27 \%$). LC-MS $1.10 \mathrm{~min}, \mathrm{~m} / \mathrm{z} 315.6$ [M $+\mathrm{H}]^{+}, 100 \%$ purity .

6-(N-[(E)-(4-Ethylphenyl)methyleneamino]anilino)-3-methyl-1H-pyrimidine-2,4-dione

 36. The title compound was prepared in a manner analogous to that of $\mathbf{3 5}$ (orange oil, 504 $\mathrm{mg}, 22 \%)$. The product was unstable and therefore used in the subsequent step without further purification; LC-MS $m / z 347.4[\mathrm{M}-\mathrm{H}]^{+},<20 \%$ purity.
3-Benzyl-6-chloro-1H-pyrimidine-2,4-dione 46 and 6-chloro-3-phenyl-1H-pyrimidine-

 2,4-dione 45 were prepared following literature conditions. Error! Bookmark not defined.
3-Benzyl-6-[[(E)-(4-ethylphenyl)methyleneamino]-methyl-amino]-1H-pyrimidine-2,4-

 dione 49. Adapting the procedure from the literature, ${ }^{\text {Error! Bookmark not defined. }}$ a mixture of 46 $(150 \mathrm{mg}, 0.63 \mathrm{mmol})$ and methylhydrazine $(64 \mathrm{mg}, 1.39 \mathrm{mmol})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ was heated under microwave irradiation at $100^{\circ} \mathrm{C}$ for 10 min . 4-Ethylbenzaldehyde ($136 \mathrm{mg}, 1.01$ mmol) was added to the clear solution, and the resulting mixture was heated under microwave irradiation at $50^{\circ} \mathrm{C}$ for a further 10 min . The resulting precipitate was collected by filtration, washed with EtOH $(2 \times 5 \mathrm{~mL})$ and dried to afford 49 (off-white solid, 180 mg , 78%); LC-MS m/z $363.6[\mathrm{M}+\mathrm{H}]^{+}$, 100\% purity.6-[[(E)-(4-Ethylphenyl)methyleneamino]-methyl-amino]-3-phenyl-1H-pyrimidine-2,4dione 48. The title compound was prepared in a manner analogous to that of 49; (white solid, $185 \mathrm{mg}, 69 \%) ;$ LC-MS m/z $349.6[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$ purity.

6-[[(E)-(4-Ethylphenyl)methyleneamino]-methyl-amino]-1H-pyrimidine-2,4-dione 47. The title compound was prepared in a manner analogous to that of 49; (white solid, 240 mg , 86\%); LC-MS $m / z 273.5[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$ purity.

6-amino-5-[(E)-(4-ethylphenyl)methyleneamino]-1,3-dimethyl-pyrimidine-2,4-dione 72. Compound was prepared according to the literature, ${ }^{3}$ (yellow solid, $1.1 \mathrm{~g}, 63 \%$ yield); LC-MS $m / z 285.6[\mathrm{M}+\mathrm{H}]^{+}, 98 \%$ purity.

2-Amino-6-[amino(methyl)amino]-1H-pyrimidin-4-one 75. ${ }^{4}$ A suspension of 2-amino-6-chloro-1H-pyrimidin-4-one $74(6.0 \mathrm{~g}, 41.2 \mathrm{mmol})$ in $\mathrm{EtOH}(120 \mathrm{~mL})$ was treated with methylhydrazine ($5.8 \mathrm{~mL}, 110 \mathrm{mmol}$), and the mixture was heated to reflux for 4 h and then cooled to ambient temperature (stood overnight). The solid was collected by filtration, washed with $\mathrm{EtOH}(2 \times 30 \mathrm{~mL})$ and dried to afford 75 (off-white solid, $5.1 \mathrm{~g}, 80 \%$); ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 9.71$ (br. s, 1H), 6.17 (br. s, 2H), 4.99 (s, 1H), 4.45 (br. s, 2H), 3.11 (s, 3H).

2-Amino-6-[methyl-[(E)-(4-methyl-2-thienyl)methyleneamino]amino]pyrimidin-4-ol 76.

A suspension of $\mathbf{7 5}(300 \mathrm{mg}, 1.93 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was treated with 4-
methylthiophene-2-carbaldehyde ($0.24 \mathrm{~mL}, 1.93 \mathrm{mmol}$) and heated to $50^{\circ} \mathrm{C}$ for 10 min under microwave irradiation. After cooling to ambient temperature, the solid was collected by filtration, washed with $\mathrm{EtOH}(2 \times 5 \mathrm{~mL})$ and dried to afford 76 (yellow solid, $384 \mathrm{mg}, 75 \%)$; LC-MS $m / z 264.5[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$ purity.

5-Benzyloxy-1-methyl-6-oxo-pyrimidine-4-carboxylic acid 79. The title compound was prepared according to the patent procedure. ${ }^{5}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 13.6$ (br. $\mathrm{s}, 1 \mathrm{H}$), 8.32 (s ,
$1 \mathrm{H}), 7.30-7.47(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$; LC-MS no mass ion observed, 94% purity.

1-[4-(3,4-dimethoxyphenyl)thiophene-2-carbonyl]piperidine-3-carbonyl chloride 85.

Lithium hydroxide ($39.2 \mathrm{mg}, 1.64 \mathrm{mmol}$) was added to a solution of ethyl 1-[4-(3,4-dimethoxyphenyl)thiophene-2-carbonyl]piperidine-3-carboxylate $\mathbf{8 4}$ ($300 \mathrm{mg}, 0.74 \mathrm{mmol}$) in THF (5 mL) and water (5 mL), and the resultant solution was allowed to stir at ambient temperature for 2 h . The reaction mixture was concentrated under reduced pressure to remove the THF before diluting with water $(10 \mathrm{~mL})$ and washing with EtOAc $(5 \mathrm{~mL})$. The aqueous layer was acidified with $1 \mathrm{~N} \mathrm{HCl}(\mathrm{aq})(5 \mathrm{~mL})$ and extracted in $\mathrm{EtOAc}(10 \mathrm{~mL})$, dried and concentrated to afford the intermediate carboxylic acid ((yellow oil, $278 \mathrm{mg}, 100 \%$ yield); (LC-MS $m / z 376.6[M+H]^{+}, 89 \%$ purity $)$), which was treated with oxalyl chloride (0.14 mL , $1.64 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ under an atmosphere of nitrogen followed by a drop of DMF, and the resultant solution was allowed to stir at ambient temperature for 16 h . This mixture was concentrated to furnish product $\mathbf{8 5}$ (cream oil, $443 \mathrm{mg}, 96 \%$ yield), which was used in the subsequent step without further purification; LC-MS inconclusive.

Ethyl 1-[4-(3,4-dimethoxyphenyl)thiophene-2-carbonyl]piperidine-3-carboxylate 84.

 1,1'-Carbonyldiimidazole ($279.2 \mathrm{mg}, 1.72 \mathrm{mmol}$) was added to a solution of the commercially available 4-(3,4-dimethoxyphenyl)thiophene-2-carboxylic acid $\mathbf{8 3}$ (350 mg , $1.32 \mathrm{mmol})$ in DMF (10 mL) under an atmosphere of nitrogen, and the reaction mixture was allowed to stir at ambient temperature for 2 h . Ethyl piperidine-3-carboxylate ($270.6 \mathrm{mg}, 1.72$ mmol) was added, and the mixture was stirred for 16 h before heating at $100^{\circ} \mathrm{C}$ for 16 h . The product mixture was cooled to ambient temperature, diluted with EtOAc (20 mL), washed with water ($3 \times 10 \mathrm{~mL}$) followed by brine $(10 \mathrm{~mL})$. The organic layer was dried and concentrated to afford product $\mathbf{8 4}$ (red oil, $532 \mathrm{mg}, 100 \%$ yield); LC-MS $m / z 404.5[\mathrm{M}+\mathrm{H}]^{+}$, 87% purity. The product was used in the subsequent step without further purification.3-[4-(3,4-dimethoxyphenyl)-2-thienyl]benzoic acid 91. Lithium hydroxide ($23.5 \mathrm{mg}, 0.98$ mmol) was added to a suspension of methyl 3-[4-(3,4-dimethoxyphenyl)-2-thienyl]benzoate $(290 \mathrm{mg}, 0.82 \mathrm{mmol})$ in methanol (4 mL) and water (4 mL). The reaction was heated to reflux and stirred for 5 h before cooling to ambient temperature, then was diluted with EtOAc $(5 \mathrm{~mL})$ and extracted into saturated sodium carbonate (10 mL). The aqueous layer was acidified to pH 1 with $2 \mathrm{~N} \mathrm{HCl}(\mathrm{aq})(10 \mathrm{~mL})$ and extracted into $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried and concentrated to furnish 91 (white solid, $203.1 \mathrm{mg}, 69 \%$). The product was used in the subsequent step without further purification; LC-MS $m / z 341.5[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$ purity.

Methyl 3-[4-(3,4-dimethoxyphenyl)-2-thienyl]benzoate 89. Prepared according to the literature ${ }^{6}$ (yellow solid, $340 \mathrm{mg}, 22 \%$ yield); LC-MS $m / z 355.5[\mathrm{M}+\mathrm{H}]^{+}, 96 \%$ purity.

4-[4-(3,4-dimethoxyphenyl)-2-thienyl]benzoic acid 92. The title compound was prepared in a manner analogous to that of $\mathbf{9 1}$ (white solid, $93.2 \mathrm{mg}, 77 \%$). The product was used in the subsequent step without further purification; LC-MS $m / z 341.5[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$ purity.

Methyl 4-[4-(3,4-dimethoxyphenyl)-2-thienyl]benzoate 90. Prepared according to the literature ${ }^{6}$ (white solid, $90 \mathrm{mg}, 19 \%$ yield); LC-MS $m / z 355.5[\mathrm{M}+\mathrm{H}]^{+}$, 97% purity.

Intermediates 72, 84, 85 and 91: Table 2 details a list of yields and LC-MS data (high pH).
6-Chlorouracil 47. ${ }^{7}$ 2,4,6-Trichloropyrimidine $\mathbf{1 0 5}(15.7 \mathrm{~mL}, 136 \mathrm{mmol})$ was added to a solution of sodium hydroxide ($27.3 \mathrm{~g}, 682 \mathrm{mmol}$) and water (20 mL). The reaction mixture was heated at reflux for 2 h . The solution was cooled, and the pH was adjusted to approximately pH 2 using concentrated $\mathrm{HCl}(50 \mathrm{~mL})$ while cooling in an ice bath. The resulting precipitate was isolated by filtration, washed with hot water and dried to give the product 47 as a white powder ($19.5 \mathrm{~g}, 133 \mathrm{mmol}, 98 \%$). LC-MS $m / z 147.5[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$ purity.

6-(Cyclopropylamino)-1H-pyrimidine-2,4-dione 109. The procedure was adapted from the literature. ${ }^{7}$ A suspension of 6 -chlorouracil $1(500 \mathrm{mg}, 3.41 \mathrm{mmol})$ and cyclopropylamine $(0.28 \mathrm{~mL}, 4.09 \mathrm{mmol})$ in 1-propanol (5 mL) was heated by microwave irradiation at $150^{\circ} \mathrm{C}$ for 30 min . iso-Hexane (5 mL) was added to the reaction mixture, and the resulting precipitate was obtained by filtration and dried under vacuum to yield the product 109 as a beige solid ($258.4 \mathrm{mg}, 45 \%$). The product was used in the next step without further purification.

6-(Amino)-1H-pyrimidine-2,4-diones $\mathbf{1 0 7 - 1 2 7}$ were prepared in a manner analogous to that of 109. Table 3 details a list of yields and LC-MS data (high pH).

Summary of purity data for intermediates 2-23, 72, 84, 85, 91 and 107-127

Table 1. Yields and LC-MS data (high pH) for 3-methyl-1H-pyrimidine-2,4-diones 2-23.

Number	Name	Yield (\%)	Purity (\%)	Mass ion	Adduct	Retention time (min)
	6-[[(E)-(4-Chlorophenyl)methyleneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	85	100	293.4	$[\mathrm{M}+\mathrm{H}]^{+}$	0.89
3^{8}	6-[[(E)-Benzylideneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	84	100	259.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.78
4	6-[[(E)-Butylideneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	92	100	225.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.73
5	6-[[(E)-(4-Ethylphenyl)methyleneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	81	100	287.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.98
	3-Methyl-6-[methyl-[(E)-p-tolylmethyleneamino]amino]-1H-pyrimidine-2,4dione	100	100	273.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.91
7	3-Methyl-6-[methyl-[(E)-[4-(trifluoromethoxy)phenyl]methyleneamino]amino]-1H-pyrimidine-2,4-dione	75	100	343.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.98
8	3-Methyl-6-[methyl-[(E)-[4-(trifluoromethyl)phenyl]methyleneamino]amino]-1H-pyrimidine-2,4-dione	79	100	327.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.89
9^{9}	6-[[(E)-(3,4-Dimethoxyphenyl)methyleneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	62	100	319.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.71

Number	Name	Yield (\%)	Purity (\%)	Mass ion	Adduct	Retention time (min)
10	3-Methyl-6-[methyl-[(E)-o- tolylmethyleneamino]amino]-1H-pyrimidine-2,4dione	78	100	273.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.83
11	3-Methyl-6-[methyl-[(E)-m-tolylmethyleneamino]amino]-1H-pyrimidine-2,4dione	77	100	273.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.86
12^{4}	3-Methyl-6-[methyl-[(E)-phenethylideneamino]amino]-1H-pyrimidine-2,4dione	50	98	273.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.83
$\mathbf{1 3}^{\text {Error! }}$ Bookmark not defined.	6-[[(E)-Cyclohexylmethyleneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	46	97	265.6	$[\mathrm{M}+\mathrm{H}]^{+}$	0.97
$\mathbf{1 4}^{\text {Error! }}$ Bookmark not defined.	3-Methyl-6-[methyl-[(E)-3-phenylpropylideneamino]amino]-1H-pyrimidine-2,4-dione	65	100	287.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.92
15	3-Methyl-6-[methyl-[(E)-thiazol-4-ylmethyleneamino]amino]-1H-pyrimidine-2,4dione	81	94	266.4	$[\mathrm{M}+\mathrm{H}]^{+}$	0.56
16	6-[[(E)-(4-Bromo-2-thienyl)methyleneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	89	93	$\begin{gathered} 343.4, \\ 345.4 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.83
17	3-Methyl-6-[methyl-[(E)-2-naphthylmethyleneamino]amino]-1H-pyrimidine-2,4-dione	92	100	309.6	$[\mathrm{M}+\mathrm{H}]^{+}$	0.94
18	3-Methyl-6-[methyl-[(E)-(4-methyl-2-thienyl)methyleneamino]amino]-1H-pyrimidine-2,4-dione	83	100	279.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.80
19	3-Methyl-6-[methyl-[(E)-(4-phenyl-2-thienyl)methyleneamino]amino]-1H-pyrimidine-2,4-dione	60	100	341.6	$[\mathrm{M}+\mathrm{H}]^{+}$	0.96

Number	Name	Yield (\%)	Purity (\%)	Mass ion	Adduct	Retention time (min)
20	3-Methyl-6-[methyl-[(E)-tetrahydropyran-4-ylmethyleneamino]amino]-1H-pyrimidine-2,4dione	61	100	267.6	$[\mathrm{M}+\mathrm{H}]^{+}$	0.57
21	6-[[(E)-Cyclopentylmethyleneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	43	64	249.6	$[\mathrm{M}-\mathrm{H}]^{-}$	0.92
$\mathbf{2 2}^{\text {Error! }}$ Bookmark not defined.	Not isolated, taken through to next stage	-	93	221.5	[$\mathrm{M}-\mathrm{H}]^{-}$	0.65
23	6-[[(E)-[4-(3,4-Dimethoxyphenyl)-2- thienyl]methyleneamino]-methyl-amino]-3-methyl-1H-pyrimidine-2,4-dione	32	100	401.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.88

Table 2. Yields and LC-MS data (high pH) for intermediates 72, 84, 85 and 91.

| Number | Name | Yield
 $(\%)$ | Purity
 $(\%)$ | Mass ion | AdductRetention
 time
 (min) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{7 2}$ | 6-amino-5-[(E)-(4-
 ethylphenyl)methyleneamino]-1,3-
 dimethyl-pyrimidine-2,4-dione | 63 | 98 | 285.6 | $[\mathrm{M}+\mathrm{H}]^{+}$ | 1.11 |
| $\mathbf{8 4}$ | Ethyl 1-[4-(3,4-
 dimethoxyphenyl)thiophene-2-
 carbonyl]piperidine-3-carboxylate | 100 | 87 | 404.5 | $[\mathrm{M}+\mathrm{H}]^{+}$ | 1.13 |
| $\mathbf{8 5}$ | 1-[4-(3,4-
 dimethoxyphenyl)thiophene-2-
 carbonyl]piperidine-3-carbonyl
 chloride | 96 | Inconclusive, used in subsequent step | | | |
| $\mathbf{9 1}$ | 3-[4-(3,4-dimethoxyphenyl)-2-
 thienyl]benzoic acid | 69 | 100 | 341.5 | $[\mathrm{M}+\mathrm{H}]^{+}$ | 0.81 |

Table 3. Yields and LC-MS data (high pH) for $\mathbf{6 - (A m i n o)}$-1H-pyrimidine-2,4-diones 107127.

Number	Name	Yield (\%)	Purity (\%)	Mass ion	Adduct	Retention time (min)
$107{ }^{7}$	6-Anilino-1H-pyrimidine-2,4-dione	90	93	202.5	$[\mathrm{M}-\mathrm{H}]^{-}$	0.48
$108{ }^{10}$	$\begin{aligned} & \text { 6-(Methylamino)-1H-pyrimidine-2,4- } \\ & \text { dione } \end{aligned}$	96	100	142.5	${ }^{(M+H]^{+}}$	0.27
109	$\begin{aligned} & \text { 6-(Cyclopropylamino)-1H- } \\ & \text { pyrimidine-2,4-dione } \end{aligned}$	45	100	168.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.26
110^{11}	6-(Cyclohexylamino)-1H-pyrimidine-2,4-dione	quant.	100	208.5	$[\mathrm{M}-\mathrm{H}]^{-}$	0.64
111	t-Butyl 4-[(2,4-dioxo-1H-pyrimidin-6-yl)amino]piperidine-1-carboxylate	quant.	96	309.5	$[\mathrm{M}-\mathrm{H}]^{-}$	0.64
112^{12}	6-(4-Hydroxyanilino)-1H-pyrimidine-2,4-dione	quant.	100	220.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.23
$113{ }^{13}$	6-(4-Methoxyanilino)-1H-pyrimidine-2,4-dione	71	100	234.5	${ }^{(M+H]^{+}}$	0.24
$\mathbf{1 1 4}^{\text {Error! }}$ Bookmark not defined.	6-(3-Hydroxyanilino)-1H-pyrimidine-2,4-dione	25	100	220.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.25
$115{ }^{14,15}$	6-(2-Hydroxyanilino)-1H-pyrimidine-	88	100	220.5	${ }^{(M+H]^{+}}$	0.24

Number	Name	Yield (\%)	Purity (\%)	Mass ion	Adduct	Retention time (min)
$116{ }^{12,16}$	6-[3-(Hydroxymethyl)anilino]-1H-pyrimidine-2,4-dione	78	Compound was not analyzed and was taken directly into the next step			
117	$\begin{aligned} & \text { 6-(3-Methoxyanilino)-1H-pyrimidine- } \\ & \text { 2,4-dione } \end{aligned}$	81	Compound was not analyzed and was taken directly into the next step			
118	6-(3-Hydroxy-4-methoxy-anilino)-1H-pyrimidine-2,4-dione	86	Compound was not analyzed and was taken directly into the next step			
119^{7}	6-(3-Fluoroanilino)-1H-pyrimidine- 2,4-dione	83	100	222.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.23
$120{ }^{7}$	6-(4-Bromoanilino)-1H-pyrimidine- 2,4-dione	65	95	$\begin{aligned} & 282.4 \\ & 284.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.55
121	$\begin{aligned} & t \text {-Butyl } \mathrm{N} \text {-[3-[(2,4-dioxo-1H- } \\ & \text { pyrimidin-6- } \\ & \text { yl)amino]phenyl]carbamate } \end{aligned}$	64	90	263.4	$[\mathrm{M}-t-\mathrm{Bu}]^{+}$	0.64
122	N-[3-[(2,4-Dioxo-1H-pyrimidin-6yl)amino]phenyl]acetamide	83	93	261.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.41
123	N-[3-[(2,4-Dioxo-1H-pyrimidin-6yl)amino]phenyl]methanesulfonamide	68	95	297.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.29
124	3-[(2,4-Dioxo-1H-pyrimidin-6- yl)amino]benzenesulfonamide	76	89	283.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.21
125	6-(1H-Indazol-6-ylamino)-1H-pyrimidine-2,4-dione	91	85	244.6	$[\mathrm{M}+\mathrm{H}]^{+}$	0.31
126	6-(1H-Indazol-4-ylamino)-1H-pyrimidine-2,4-dione	63	83	244.7	$[\mathrm{M}+\mathrm{H}]^{+}$	0.30

Number	Name	Yield $(\%)$	Purity $(\%)$	Mass ion	Adduct	Retention time $(\mathbf{m i n})$
$\mathbf{1 2 7}$	6-[3-(1H-Tetrazol-5-yl)anilino]-1H- pyrimidine-2,4-dione	75	84	272.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.49

Summary of purity data for final compounds 24-31, 54-70, 73, 86, 93, 94, 97-104, 130, and 134-163.

Table 4. LC-MS data (high pH) for final compounds.

Number	Name	Purity $(\%)$	Mass ion	Adduct	Retention time (min)
$\mathbf{2 4}$	3-(4-Chlorophenyl)-1,6-dimethyl- pyrimido[5,4-e][1,2,4]triazine-5,7-dione	100	304.5	$[\mathrm{M}+\mathrm{H}]+$	0.97
$\mathbf{2 5}$	1,6-Dimethyl-3-phenyl-pyrimido[5,4- e][1,2,4]triazine-5,7-dione	>95	270.5	$[\mathrm{M}+\mathrm{H}]+$	0.87
$\mathbf{2 6}$	3-(4-Ethylphenyl)-1,6-dimethyl- pyrimido[5,4-e][1,2,4]triazine-5,7-dione	100	298.5	$[\mathrm{M}+\mathrm{H}]+$	1.04
$\mathbf{2 8}$	(trifluoromethyl)phenyl]pyrimido[5,4- e][1,2,4]triazine-5,7-dione	100	338.5	$[\mathrm{M}+\mathrm{H}]+$	1.03
1,6-Dimethyl-3-[4- (trifluoromethoxy)phenyl]pyrimido[5,4- e][1,2,4]triazine-5,7-dione	100	354.5	$[\mathrm{M}+\mathrm{H}]+$	1.05	
$\mathbf{2 9}$	1,6-Dimethyl-3-[4-	$[\mathrm{M}+\mathrm{H}]+$	0.96		
1,6-Dimethyl-3-(p-tolyl)pyrimido[5,4-	100	284.5			

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
30	1,6-Dimethyl-3-(m-tolyl)pyrimido[5,4-e][1,2,4]triazine-5,7-dione	100	284.5	[M+H]+	0.94
31	1,6-Dimethyl-3-(o-tolyl)pyrimido[5,4-e][1,2,4]triazine-5,7-dione	100	284.5	[M+H]+	0.91
54	1,6-Dimethyl-3-propyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	236.5	[M+H]+	0.74
55	3-Cyclopropyl-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	234.5	[M+H]+	0.64
56	3-Cyclopentyl-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	262.2	[M+H]+	0.85
57	3-Cyclohexyl-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	276.5	[M+H]+	0.96
58	1,6-Dimethyl-3-tetrahydropyran-4-yl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	278.5	[M+H]+	0.59
59	3-Benzyl-1,6-dimethyl-pyrimido[5,4- e][1,2,4]triazine-5,7-dione	>95	284.5	[M+H]+	0.87
60	1,6-Dimethyl-3-phenethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	298.5	[M+H]+	0.92
61	1,6-Dimethyl-3-(2-naphthyl)pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	320.6	[M+H]+	1.02
62	3-(3,4-Dimethoxyphenyl)-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	90-95	330.5	[M+H]+	0.79

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
63	1,6-Dimethyl-3-thiazol-4-yl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	277.5	[M+H]+	0.58
64	1,6-Dimethyl-3-(4-methyl-2-thienyl)pyrimido[5,4-e][1,2,4]triazine-5,7dione	>95	290.5	[M+H]+	0.89
65	3-(4-Bromo-2-thienyl)-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	356.4	[M+H]+	0.94
66	1,6-Dimethyl-3-(4-phenyl-2- thienyl)pyrimido[5,4-e][1,2,4]triazine-5,7dione	>95	352.5	[M+H]+	1.07
67	3-[4-(3,4-Dimethoxyphenyl)-2-thienyl]-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	85-90	412.5	[M+H]+	0.97
70	1-Ethyl-3-(4-ethylpheny)-6-methyl-pyrimido[4,5-c]pyridazine-5,7-dione	100	312.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.14-1.16
73	6-(4-Ethylphenyl)-3,8-dimethyl-pteridine-2,4-dione	100	297.6	$[\mathrm{M}+\mathrm{H}]^{+}$	1.17
86	[4-(3,4-Dimethoxyphenyl)-2-thienyl]-(3-dimethoxyphosphorylcarbonyl-1piperidyl)methanone	97	468.5	$[\mathrm{M}+\mathrm{H}]^{+}$	$0.70-0.72$
93	3-[4-(3,4-Dimethoxyphenyl)-2-thienyl]-N-methylsulfonyl-benzamide	100	418.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.85
94	4-[4-(3,4-dimethoxyphenyl)-2-thienyl]-N-methylsulfonyl-benzamide	94	418.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.84
96	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-3,5-dimethyl-isoxazole-4-carboxamide	100	359.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.02

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
97	N -[4-(3,4-dimethoxyphenyl)-2- thienyl]benzamide	100	340.4	$[\mathrm{M}+\mathrm{H}]^{+}$	1.11
98	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]- 1H-imidazole-2-carboxamide	100	330.6	$[\mathrm{M}+\mathrm{H}]^{+}$	0.91
99	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-1-methyl-imidazole-2-carboxamide	100	344.6	$[\mathrm{M}+\mathrm{H}]^{+}$	1.02
100	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-3-methyl-isoxazole-5-carboxamide	92	345.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.97
101	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-1-methyl-pyrazole-3-carboxamide	100	344.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.94
102	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-4-methyl-thiadiazole-5-carboxamide	100	362.6	$[\mathrm{M}+\mathrm{H}]^{+}$	0.94
103	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-2,4-dimethyl-6-oxo-pyran-3-carboxamide	98	386.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.78
104	1-[4-(3,4-dimethoxyphenyl)-2-thienyl]-3-phenyl-urea	100	355.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.14
130	10-Methylpyrimido[4,5-b]quinoline-2,4dione	>95	228.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.61
134	9-Chloro-10-phenyl-pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & 324.5, \\ & 326.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.88
135	7-Chloro-10-phenyl-pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & \hline 324.5, \\ & 326.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.93

Number	Name	Purity (\%)	$\begin{aligned} & \text { Mass } \\ & \text { ion } \end{aligned}$	Adduct	Retention time (min)
136	6-Chloro-10-phenyl-pyrimido[4,5-b]quinoline-2,4-dione	85-90	$\begin{gathered} 324.5, \\ 326.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.87
137	8-Chloro-10-methyl-pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & 262.5, \\ & 264.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.72
138	8-Chloro-10-cyclopropyl-pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & 288.5, \\ & 290.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.77
139	8-Chloro-10-cyclohexyl-pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & 248.4, \\ & 250.5 \end{aligned}$	$\begin{gathered} {[\mathrm{M}-} \\ \mathrm{CyHx}^{+} \end{gathered}$	1.02
140	8-Chloro-10-(4-piperidyl)pyrimido[4,5-b]quinoline-2,4-dione	90-95	$\begin{gathered} \hline 331.5, \\ 333.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	1.02
141	8-Chloro-10-(4-hydroxyphenyl)pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & \hline 340.2, \\ & 342.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.77
142	8-Chloro-10-(4-methoxyphenyl)pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{gathered} 354.5, \\ 356.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.94
143	8-Chloro-10-(3- hydroxyphenyl)pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & \hline 340.5, \\ & 342.4 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.78
144	8-Chloro-10-(2- hydroxyphenyl)pyrimido[4,5-b]quinoline-2,4-dione	90-95	$\begin{aligned} & \hline 340.5, \\ & 342.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.73
145	10-Phenyl-8-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4-dione	- >95	356.5	$[\mathrm{M}-\mathrm{H}]^{-}$	1.00
146	2,4-Dioxo-10-phenyl-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	315.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.77

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
147	10-(3-Hydroxyphenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	331.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.66
148	10-(4-Hydroxyphenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	331.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.65
149	10-[3-(Hydroxymethyl)phenyl]-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	100	343.5	$[\mathrm{M}-\mathrm{H}]^{-}$	0.69
150	10-(3-Methoxyphenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	90-95	343.5	$[\mathrm{M}-\mathrm{H}]^{-}$	0.85
151	10-(4-Methoxyphenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	345.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.81
152	10-(3-Hydroxy-4-methoxy-phenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8carbonitrile	>95	361.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.66
153	10-(3-Fluorophenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	100	333.4	$[\mathrm{M}+\mathrm{H}]^{+}$	0.8
154	10-(4-Bromophenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	90-95	393.4	$[\mathrm{M}+\mathrm{H}]^{+}$	0.87
155	10-(3-Aminophenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	330.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.69
156	N-[3-(8-Cyano-2,4-dioxo-pyrimido[4,5-b]quinolin-10-yl)phenyl]acetamide	100	370.5	$[\mathrm{M}-\mathrm{H}]^{-}$	0.68
157	N-[3-(8-Cyano-2,4-dioxo-pyrimido[4,5- b]quinolin-10- yl)phenyl]methanesulfonamide	100	408.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.55

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
158	N -[3-(2,4-Dioxopyrimido[4,5-b]quinolin-10- yl)phenyl]methanesulfonamide	- 90-95	383.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.66
159	N-[3-(7-Chloro-2,4-dioxo-pyrimido[4,5- b]quinolin-10- yl)phenyl]methanesulfonamide	90-95	417.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.77
160	3-(8-Cyano-2,4-dioxo-pyrimido[4,5-b]quinolin-10-yl)benzenesulfonamide	100	394.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.62
161	10-(1H-Indazol-6-yl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	100	355.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.68
162	10-(1H-Indazol-4-yl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	100	355.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.70
163	2,4-Dioxo-10-[3-(1H-tetrazol-5-yl)phenyl]pyrimido[4,5-b]quinoline-8carbonitrile	90-95	381.5	[M-H]	0.58

Table 5. LC-MS data (low pH) for final compounds.

Number	Name	Purity $\mathbf{(\%)}$	Mass ion	Adduct	Retention time (min)
$\mathbf{2 4}$	3-(4-Chlorophenyl)-1,6-dimethyl- pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	304.5	$[\mathrm{M}+\mathrm{H}]+$	0.97
$\mathbf{2 5}$	1,6-Dimethyl-3-phenyl-pyrimido[5,4- e][1,2,4]triazine-5,7-dione	>95	270.5	$[\mathrm{M}+\mathrm{H}]+$	0.91

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
26	3-(4-Ethylphenyl)-1,6-dimethylpyrimido $[5,4-\mathrm{e}][1,2,4]$ triazine-5,7-dione	100	298.5	[M+H]+	1.06
27	1,6-Dimethyl-3-[4-(trifluoromethyl)phenyl]pyrimido[5,4-e][1,2,4]triazine-5,7-dione	100	338.4	[M+H]+	1.07
28	1,6-Dimethyl-3-[4-(trifluoromethoxy)phenyl]pyrimido[5,4-e][1,2,4]triazine-5,7-dione	100	354.5	[M+H]+	1.06
29	1,6-Dimethyl-3-(p-tolyl)pyrimido[5,4-e][1,2,4]triazine-5,7-dione	100	284.4	[M+H]+	0.96
30	1,6-Dimethyl-3-(m-tolyl)pyrimido[5,4-e][1,2,4]triazine-5,7-dione	100	284.5	[M+H]+	0.98
31	1,6-Dimethyl-3-(o-tolyl)pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	284.5	[M+H]+	0.95
54	1,6-Dimethyl-3-propyl-pyrimido[5,4- e][1,2,4]triazine-5,7-dione	>95	236.5	[M+H]+	0.71
55	3-Cyclopropyl-1,6-dimethyl-pyrimido [5,4-e][1,2,4]triazine-5,7-dione	90-95	234.5	[M+H]+	0.65
56	3-Cyclopentyl-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	262.2	[M+H]+	0.86
57	3-Cyclohexyl-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	276.5	[M+H]+	1.00
58	1,6-Dimethyl-3-tetrahydropyran-4-yl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	278.5	[M+H]+	0.59

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
59	3-Benzyl-1,6-dimethyl-pyrimido[5,4- e][1,2,4]triazine-5,7-dione	>95	284.5	[M+H]+	0.88
60	1,6-Dimethyl-3-phenethyl-pyrimido[5,4- e][1,2,4]triazine-5,7-dione	>95	298.5	[M+H]+	0.94
61	1,6-Dimethyl-3-(2-naphthyl)pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	320.6	[M+H]+	1.04
62	3-(3,4-Dimethoxyphenyl)-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	90-95	330.5	[M+H]+	0.82
63	1,6-Dimethyl-3-thiazol-4-yl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	277.5	[M+H]+	0.57
64	1,6-Dimethyl-3-(4-methyl-2- thienyl)pyrimido[5,4-e][1,2,4]triazine-5,7- dione	>95	290.5	[M+H]+	0.9
65	3-(4-Bromo-2-thienyl)-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7-dione	>95	356.4	[M+H]+	0.96
66	1,6-Dimethyl-3-(4-phenyl-2-thienyl)pyrimido[5,4-e][1,2,4]triazine-5,7dione	>95	352.5	[M+H]+	1.10
67	3-[4-(3,4-Dimethoxyphenyl)-2-thienyl]-1,6-dimethyl-pyrimido[5,4-e][1,2,4]triazine-5,7dione	95	412.5	[M+H]+	0.99
70	1-Ethyl-3-(4-ethylphenyl)-6-methyl-pyrimido[4,5-c]pyridazine-5,7-dione	100	312.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.16, 1.21
73	6-(4-Ethylphenyl)-3,8-dimethyl-pteridine-2,4-dione	100	297.5	${ }^{(M+H]^{+}}$	1.21

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
86	[4-(3,4-Dimethoxyphenyl)-2-thienyl]-(3-dimethoxyphosphorylcarbonyl-1piperidyl)methanone	94	468.6	$[\mathrm{M}+\mathrm{H}]^{+}$	0.92-0.98
93	3-[4-(3,4-Dimethoxyphenyl)-2-thienyl]-N-methylsulfonyl-benzamide	100	418.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.15
94	4-[4-(3,4-dimethoxyphenyl)-2-thienyl]-N-methylsulfonyl-benzamide	91	418.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.14
96	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-3,5-dimethyl-isoxazole-4-carboxamide	100	359.9	$[\mathrm{M}+\mathrm{H}]^{+}$	1.11
97	N-[4-(3,4-dimethoxyphenyl)-2thienyl]benzamide	100	340.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.19
98	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-1H-imidazole-2-carboxamide	100	330.6	${ }^{(M+H]^{+}}$	0.99
99	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-1-methyl-imidazole-2-carboxamide	100	344.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.10
100	N -[4-(3,4-dimethoxyphenyl)-2-thienyl]-3-methyl-isoxazole-5-carboxamide	92	345.6	$[\mathrm{M}+\mathrm{H}]^{+}$	1.10
101	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-1-methyl-pyrazole-3-carboxamide	100	344.6	$[\mathrm{M}+\mathrm{H}]^{+}$	1.05
102	N-[4-(3,4-dimethoxyphenyl)-2-thienyl]-4-methyl-thiadiazole-5-carboxamide	100	360.4	[$\mathrm{M}-\mathrm{H}]^{-}$	1.14
103	N -[4-(3,4-dimethoxyphenyl)-2-thienyl]-2,4-dimethyl-6-oxo-pyran-3-carboxamide	100	386.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.14

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
104	1-[4-(3,4-dimethoxyphenyl)-2-thienyl]-3-phenyl-urea	100	353.5	[$\mathrm{M}-\mathrm{H}]^{-}$	1.16
130	10-Methylpyrimido[4,5-b]quinoline-2,4dione	>95	228.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.62
134	9-Chloro-10-phenyl-pyrimido[4,5- b]quinoline-2,4-dione	>95	$\begin{gathered} 324.5 \\ 326.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.93
135	7-Chloro-10-phenyl-pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{gathered} 324.5 \\ 326.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.95
136	6-Chloro-10-phenyl-pyrimido[4,5- b]quinoline-2,4-dione	>95	$\begin{gathered} 324.5 \\ 326.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.92
137	8-Chloro-10-methyl-pyrimido[4,5-b]quinoline-2,4-dione	85-90	$\begin{gathered} 262.5 \\ 264.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.74
138	8-Chloro-10-cyclopropyl-pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & 288.5 \\ & 290.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.81
139	8-Chloro-10-cyclohexyl-pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & 248.4 \\ & 250.4 \end{aligned}$	$\begin{gathered} {[\mathrm{M}-} \\ \mathrm{CyHx}]^{+} \end{gathered}$	1.08
140	8-Chloro-10-(4-piperidyl)pyrimido[4,5-b]quinoline-2,4-dione	90-95	$\begin{gathered} 331.5 \\ 333.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.62
141	8-Chloro-10-(4-hydroxyphenyl)pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{gathered} 340.5 \\ 342.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.84
142	8-Chloro-10-(4-methoxyphenyl)pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{gathered} 354.5 \\ 356.5 \end{gathered}$	$[\mathrm{M}+\mathrm{H}]^{+}$	1.00

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
143	8-Chloro-10-(3-hydroxyphenyl)pyrimido[4,5-b]quinoline-2,4-dione	>95	$\begin{aligned} & 340.5 \\ & 342.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.86
144	8-Chloro-10-(2-hydroxyphenyl)pyrimido[4,5-b]quinoline-2,4-dione	90-95	$\begin{aligned} & 340.5 \\ & 342.5 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.88
145	10-Phenyl-8-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4-dione	>95	358.5	$[\mathrm{M}+\mathrm{H}]^{+}$	1.02
146	2,4-Dioxo-10-phenyl-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	315.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.81
147	10-(3-Hydroxyphenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	331.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.74
148	10-(4-Hydroxyphenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	331.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.73
149	10-[3-(Hydroxymethyl)phenyl]-2,4-dioxopyrimido $[4,5-b] q u i n o l i n e-8-c a r b o n i t r i l e ~$	100	343.5	[$\mathrm{M}-\mathrm{H}]^{-}$	0.68
150	10-(3-Methoxyphenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	90-95	343.5	[$\mathrm{M}-\mathrm{H}]^{-}$	0.84
151	10-(4-Methoxyphenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	90-95	345.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.85
152	10-(3-Hydroxy-4-methoxy-phenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8carbonitrile	>95	361.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.75
153	10-(3-Fluorophenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	100	333.4	$[\mathrm{M}+\mathrm{H}]^{+}$	0.84

Number	Name	Purity (\%)	Mass ion	Adduct	Retention time (min)
154	10-(4-Bromophenyl)-2,4-dioxopyrimido $[4,5-b] q u i n o l i n e-8$-carbonitrile	>95	$\begin{aligned} & 393.4, \\ & 395.4 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.94
155	10-(3-Aminophenyl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	>95	330.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.73
156	N-[3-(8-Cyano-2,4-dioxo-pyrimido[4,5-b]quinolin-10-yl)phenyl]acetamide	100	370.5	[M-H] ${ }^{-}$	0.71
157	N-[3-(8-Cyano-2,4-dioxo-pyrimido[4,5- b]quinolin-10- yl)phenyl]methanesulfonamide	>95	408.2	$[\mathrm{M}+\mathrm{H}]^{+}$	0.76
158	N -[3-(2,4-Dioxopyrimido[4,5-b]quinolin-10yl)phenyl]methanesulfonamide	>95	383.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.74
159	N-[3-(7-Chloro-2,4-dioxo-pyrimido[4,5- b]quinolin-10- yl)phenyl]methanesulfonamide	>95	417.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.84
160	3-(8-Cyano-2,4-dioxo-pyrimido[4,5- b]quinolin-10-yl)benzenesulfonamide	>95	394.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.70
161	10-(1H-Indazol-6-yl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	100	355.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.75
162	10-(1H-Indazol-4-yl)-2,4-dioxo-pyrimido[4,5-b]quinoline-8-carbonitrile	100	355.5	$[\mathrm{M}+\mathrm{H}]^{+}$	0.71
163	2,4-Dioxo-10-[3-(1H-tetrazol-5- yl)phenyl]pyrimido[4,5-b]quinoline-8carbonitrile	>95	381.5	[M-H] ${ }^{-}$	0.67

Dose response curves for active deazaflavins and select toxoflavins in the TDP2 chromogenic assay

Figure 1. Deazaflavins
Compound $128\left(\mathrm{EC}_{50} 7.36 \mu \mathrm{M}\right)$

Compound $141\left(\mathrm{EC}_{50} 1.66 \mu \mathrm{M}\right)$

Compound 143 ($\left.\mathrm{EC}_{50} 0.48 \mu \mathrm{M}\right)$

Compound $145\left(\mathrm{EC}_{50} 2.87 \mu \mathrm{M}\right)$

Compound 146 ($\left.\mathrm{EC}_{50} 0.50 \mu \mathrm{M}\right)$

Compound 148 ($\mathrm{EC}_{50} 0.09 \mu \mathrm{M}$)

Compound 149 ($\left.\mathrm{EC}_{50} 0.25 \mu \mathrm{M}\right)$

Compound 150 ($\left.\mathrm{EC}_{50} 0.47 \mu \mathrm{M}\right)$

Compound 151 ($\left.\mathrm{EC}_{50} 1.04 \mu \mathrm{M}\right)$

Compound $152\left(\mathrm{EC}_{50} 0.32 \mu \mathrm{M}\right)$

conc

Compound 153 ($\left.\mathrm{EC}_{50} 3.39 \mu \mathrm{M}\right)$

Compound $154\left(\mathrm{EC}_{50} 2.74 \mu \mathrm{M}\right)$

Compound $155\left(\mathrm{EC}_{50} 0.09 \mu \mathrm{M}\right)$

Compound $156\left(\mathrm{EC}_{50} 0.72 \mu \mathrm{M}\right)$

Compound $157\left(\mathrm{EC}_{50} 0.03 \mu \mathrm{M}\right)$

Compound $158\left(\mathrm{EC}_{50} 4.66 \mu \mathrm{M}\right)$

Compound $159\left(\mathrm{EC}_{50} 1.37 \mu \mathrm{M}\right)$

Compound $160\left(\mathrm{EC}_{50} 0.29 \mu \mathrm{M}\right)$

Compound $161\left(\mathrm{EC}_{50} 0.64 \mu \mathrm{M}\right)$

The y-axis response is percent inhibition and the x-axis conc is concentration in micromolar.

Figure 2. Toxoflavins
Compound $26\left(\mathrm{EC}_{50} 0.28 \mu \mathrm{M}\right)$

Compound $67\left(\mathrm{EC}_{50} 0.05 \mu \mathrm{M}\right)$

The y -axis response is percent inhibition and the x -axis conc is concentration in micromolar.

Computational docking

TDP2 protein structure (PDB 4GZ1, chains A, C and D) was prepared using the Protein Preparation Wizard within Maestro version 9.3.5 (Schrödinger Suite 2012). Following deletion of the DNA chains and solvent, a grid box was generated using Glide (version 5.8) centred on the magnesium ion, extending the inner grid box length to the maximum value of 14 Å. Deazaflavin ligands were prepared for docking using LigPrep, generating ionization states at pH 7 (Epik) and including the Add metal binding states option to generate both neutral and anionic (deprotonated) species. Ligand docking was performed using Glide SP (standard precision), XP (extra precision) and Induced Fit Docking protocols, using default docking parameters. Selected docked poses were refined using molecular mechanics and dynamics protocols within MacroModel in order to evaluate the robustness of the binding modes while allowing localised relaxation of the protein structure.

References

(1) Todorovic, N.; Giacomelli, A.; Hassell, J. A.; Frampton, C. S.; Capretta, A. Microwaveassisted synthesis of 3-aryl-pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione libraries: derivatives of toxoflavin. Tet Lett. 2010, 51, 6037-6040.
(2) Chen, Y.; Barber, J. R.; Ng, S. C.; Zhou, Y. Parallel synthesis of novel 3-substituted 1-ethyl-6-methylpyrimido[4,5-c]pyridazine-5,7(1H,6H)-dione Analogs Synth. Comm. 2010, 40, 821-832.
(3) Prins, L. H. A.; Petzer, J. P.; Malan, S. F. Synthesis and in vitro evaluation of pteridine analogues as monoamine oxidase B and nitric oxide synthase inhibitors. Bioorg. \& Med. Chem. 2009, 17 (21), 7523-7530.
(4) Blehaut, H.; Bellamy, F.; Matt, C.; Giraud, S.; Charre, D. Inhibitors of cystathionine beta synthase to reduce the neurotoxic overproduction of endogenous hydrogen sulfide. 2010, WO2010072807 (A2).
(5) Danter, W.; Threlfall, C.; Guizzetti, S.; Marin, J. Compounds and method for treatment of HIV. 2011, WO 2011120153 (A1).
(6) Bey, E.; Marchais-Oberwinkler, S.; Werth, R.; Negri, M.; Al-Soud, Y. A.; Kruchten, P.; Oster, A.; Frotscher, M.; Birk, B.; Hartmann, R. W. Design, synthesis, biological evaluation and pharmacokinetics of bis(hydroxyphenyl) substituted azoles, thiophenes, benzenes, and aza-benzenes as potent and selective nonsteroidal inhibitors of 17β hydroxysteroid dehydrogenase type 1 (17 β-HSD1). J. Med. Chem. 2008, 51, 6725-6739.
(7) Wilson, J. M.; Henderson, G; Black, F; Sutherland, A; Ludwig, R. L.; Vousden, K. H.; Robins, D. J. Synthesis of 5-deazaflavin derivatives and their activation of p53 in cells. Bioorg. Med. Chem. 2007, 15, 77-86.
(8) Yoneda, F.; Nagamatsu, T. The thermolysis and photolysis of 6(Benzylidenehydrazino)uracils. New syntheses of pyrazolo[3,4- d] pyrimidines. A method
to convert aldehydes to nitriles. Bulletin of the Chemical Society of Japan. 1975, 48, 1484-1489.
(9) Yoneda, F.; Nagamatsu, T. A covenient synthesis of toxoflavins, toxflavin 4-oxides and 1-demethyltoxoflavins. Chem. Pharm. Bull. 1975, 23, 2001-2009.
(10) Wempen, I.; Fox, J. J. Pyrimidines II. Synthesis of 6-fluorouracil. J. Med. Chem. 1964, 7, 207-209.
(11) Baker, B. R.; Rzeszotarski, W. Irreversible enzyme inhibitors. CXXI. Thymidine phosphorylase. 9. Nature and dimensions of the hydrophobic bonding region. J. Med. Chem. 1968, 11, 639-644.
(12) Wright, G. E.; Brown, N. C. Inhibitors of Bacillus subtilis DNA polymerase III. 6Anilinouracils and 6-(alkylamino)uracils. J. Med. Chem. 1980, 23, 34-38.
(13) McCaffrey, R.; Wright, G.; Baril, E. F. Composition and method for inhibiting terminal deoxyribonucleotidyl transferase activity in cancer chemotherapy. 1986, US 4576948 A.
(14) Shinkai, S.; Kawase, A.; Yamaguchi, T.; Manabe, O.; Wada, Y.; Yoneda, F.; Ohta, Y.; Nishimoto, K. Coenzyme models. 47. Synthesis and reactivity studies of novel flavinophanes and 5-deazaflavinophanes: correlation between flavin reactivity and ring strain. J. Am. Chem. Soc. 1989, 111, 4928-4935.
(15) Shinkai, S.; Yamaguchi, T.; Nakao, H.; Manabe, O. Synthesis of new deazaflavins with planar chirality. Redox-induced "rope-skipping" racemization. Tetrahedron Lett. 1986, 27, 1611-1614.
(16) Brown, N. C.; Barnes, M. H.; Wright, G. E. Compounds destabilizing the zinc finger of the dnaE protein of Gram-positive bacteria and their use as antibiotics. 2000, WO 2000020556 A2.

