## SUPPORTING INFORMATION

## (5 pages)

Reactivity of Ortho-Palladated Benzamides Toward CO, Isocyanides, and Alkynes. Synthesis of Functionalized Isoindolin-1-ones and 4,5-Disubstituted Benzo[c]azepine-1,3-diones

Roberto Frutos-Pedreño, Pablo González-Herrero,\* and José Vicente\*

Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química,

Universidad de Murcia, Apdo. 4021, 30071 Murcia, Spain

## Peter G. Jones

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

## **Contents:**

|                                                                          | Page |
|--------------------------------------------------------------------------|------|
| Synthesis of 2-iodo-N-methylbenzamide.                                   | S2   |
| Synthesis of 2-iodo- <i>N</i> , <i>N</i> -dimethylbenzamide              | S2   |
| <sup>1</sup> H NMR data of the mixture of <b>15a</b> and (tmedaH)TfO     | S3   |
| <sup>1</sup> H NMR spectrum of the mixture of <b>15a</b> and (tmedaH)TfO | S3   |
| Table of crystallographic data for 2a, 3a, 7a, and 11b                   | S4   |
| Table of crystallographic data for 14b, 15b, 18 and 19                   | S5   |

**Synthesis of 2-iodo-***N***-methylbenzamide.** To a solution of 2-iodobenzoic acid (5 g, 20.16 mmol) in dry  $CH_2Cl_2$  (80 mL) was added  $SOCl_2$  (10 mL, 137.85 mmol) and the mixture was stirred at 50 °C for 6 h under an  $N_2$  atmosphere. The solvent was evaporated under reduced pressure to give an oil. Aqueous MeNH<sub>2</sub> (40%, 100 mL) was then added dropwise while keeping the solution at 0 °C in an ice-bath. The resulting suspension was stirred at 0 °C for 1 h and then concentrated to ca. 50 mL. The colorless precipitate was collected by filtration, washed with  $H_2O$  (5 × 5 mL) and vacuum-dried at 50 °C for 16 h. Yield: 4.64 g, 88%. HRMS (ESI+, m/z): exact mass calcd for  $C_8H_9INO$  [M+H]<sup>+</sup> requires 261.9723, found 261.9729, error = 2.33 ppm. Mp: 153 °C (lit 145-147 °C¹). The ¹H NMR data are in agreement with those reported in the literature.¹

**Synthesis of 2-iodo-***N*,*N***-dimethylbenzamide.** To a solution of 2-iodobenzoic acid (5.00 g, 20.16 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (80 mL) was added SOCl<sub>2</sub> (10 mL, 137.85 mmol) and the mixture was stirred at 50 °C for 6 h under an N<sub>2</sub> atmosphere. The solvent was evaporated under reduced pressure to give an oil. Aqueous Me<sub>2</sub>NH (40%, 40 mL) was then added dropwise while keeping the solution at 0 °C in an ice-bath. The mixture was stirred at 0 °C for 30 min, treated with a saturated solution of  $K_2CO_3$  in H<sub>2</sub>O (100 mL), and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 50 mL). The combined organic extracts were dried over anhydrous MgSO<sub>4</sub> and filtered. The solvent was then evaporated under reduced pressure and the residue was vacuum-dried at 60 °C for 16 h to give the product as a viscous oil. Yield: 5.30 g, 96%. HRMS (ESI+, m/z): exact mass calcd for C<sub>9</sub>H<sub>11</sub>INO [M+H]<sup>+</sup> requires 275.988, found 275.9891, error = 3.96 ppm. The <sup>1</sup>H NMR data are in agreement with those reported in the literature.<sup>2</sup>

\_

<sup>&</sup>lt;sup>1</sup> Kundu, N. G.; Khan, M. W. Tetrahedron **2000**, *56*, 4777–4792.

<sup>&</sup>lt;sup>2</sup> Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. **2012**, 134, 8298–8301.

<sup>1</sup>H NMR (400.9 MHz, CDCl<sub>3</sub>) of the mixture of 3-[carboxy(methoxycarbonyl)methyl]-2-methyl-3-phenylisoindolin-1-one (15a) and (tmedaH)TfO. δ 9.60 (br, 2 H), 8.09 (d,  ${}^{3}J_{HH} = 7.6$  Hz, 1 H), 7.73 (m, 2 H), 7.56 (m, 2 H), 7.47 (m, 2 H), 7.39 (td,  ${}^{4}J_{HH} = 1.2$  Hz,  ${}^{3}J_{HH} = 7.2$  Hz, 1 H), 7.33-7.23 (m, 6 H), 7.13 (m, 2 H), 7.00 (m, 2 H), 4.82 (s, 1 H), 4.72 (s, 1 H), 3.69 (s, 3 H), 3.59 (s, 3 H), 3.17 (s, 6 H, CH<sub>2</sub>, tmedaH<sup>+</sup>), 2.87 (s, 3 H), 2.59 (s, 3 H, 12 H, Me, tmedaH<sup>+</sup>).

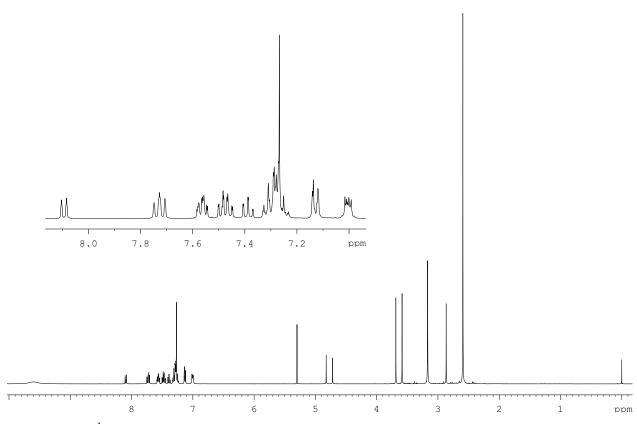



Figure S1. <sup>1</sup>H NMR spectrum (400.9 MHz, CDCl<sub>3</sub>) of the mixture of 15a and (tmedaH)TfO.

Table S1. Crystallographic Data for 2a, 3a, 7a, and 11b.

|                           | 2a                         | <b>3a</b> ·1.17H <sub>2</sub> O | 7a                         | 11b                        |
|---------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|
| formula                   | $C_{14}H_{22}F_3N_3O_4PdS$ | $C_{13}H_{21.34}N_3O_{1.17}Pd$  | $C_{23}H_{30}F_3N_3O_4PdS$ | $C_{25}H_{32}F_3N_3O_6PdS$ |
| fw                        | 491.81                     | 344.84                          | 607.96                     | 666.00                     |
| T(K)                      | 100                        | 100                             | 100                        | 100                        |
| λ(Å)                      | 1.54148                    | 0.71073                         | 0.71073                    | 0.71073                    |
| cryst syst                | trigonal                   | monoclinic                      | orthorhombic               | orthorhombic               |
| space                     | $P3_{2}21$                 | C2/c                            | Pbcn                       | Pbca                       |
| a (Å)                     | 11.60504(8)                | 17.7877(7)                      | 28.1406(8)                 | 17.8564(4)                 |
| b (Å)                     | 11.60504(8)                | 12.4571(3)                      | 9.4389(3)                  | 16.0031(4)                 |
| c (Å)                     | 24.7296(2)                 | 15.6840(6)                      | 19.7762(6)                 | 19.9027(4)                 |
| $\alpha$ (deg)            | 90                         | 90                              | 90                         | 90                         |
| $\beta$ (deg)             | 90                         | 124.139(6)                      | 90                         | 90                         |
| γ (deg)                   | 120                        | 90                              | 90                         | 90                         |
| $V(\mathring{A}^3)$       | 2884.31(4)                 | 2876.42(17)                     | 5252.9(3)                  | 5687.3(2)                  |
| Z                         | 6                          | 8                               | 8                          | 8                          |
| $ ho_{ m calcd}$ (Mg      | 1.699                      | 1.593                           | 1.538                      | 1.556                      |
| $\mu$ (mm <sup>-1</sup> ) | 9.3                        | 1.3                             | 0.8                        | 0.8                        |
| $R1^a$                    | 0.0144                     | 0.0223                          | 0.0306                     | 0.0290                     |
| $wR2^b$                   | 0.0374                     | 0.0531                          | 0.0673                     | 0.0656                     |

<sup>&</sup>lt;sup>a</sup>  $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$  for reflections with  $I > 2\sigma(I)$ . <sup>b</sup>  $wR2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]^{0.5}$  for all reflections;  $w^{-1} = \sigma^2(F^2) + (aP)^2 + bP$ , where  $P = (2F_c^2 + F_o^2)/3$  and a and b are constants set by the program.

Table S2. Crystallographic Data for 14b, 15b, 18 and 19.

|                                     | 14b                | 15b                  | <b>18</b> ·CH <sub>2</sub> Cl <sub>2</sub> | 19                 |
|-------------------------------------|--------------------|----------------------|--------------------------------------------|--------------------|
| formula                             | $C_{18}H_{15}NO_2$ | $C_{20}H_{19}NO_{5}$ | $C_{21}H_{31}Cl_2N_3O_5Pd$                 | $C_{14}H_{13}NO_5$ |
| fw                                  | 277.31             | 353.36               | 582.79                                     | 275.25             |
| T(K)                                | 100                | 100                  | 100                                        | 100                |
| λ(Å)                                | 1.54148            | 0.71073              | 0.71073                                    | 1.54148            |
| cryst syst                          | triclinic          | triclinic            | orthorhombic                               | monoclinic         |
| space group                         | $P\overline{1}$    | $P\overline{1}$      | $Pca2_1$                                   | $P2_{1}/n$         |
| a (Å)                               | 8.8386(10)         | 8.5887(2)            | 18.1799(2)                                 | 10.2315(6)         |
| b (Å)                               | 9.2130(10)         | 13.2148(4)           | 8.36643(10)                                | 6.8252(4)          |
| c (Å)                               | 10.0650(10)        | 15.8792(4)           | 15.7760(2)                                 | 18.2358(11)        |
| $\alpha$ (deg)                      | 115.140(10)        | 99.440(2)            | 90                                         | 90                 |
| $\beta$ (deg)                       | 105.462(10)        | 96.959(2)            | 90                                         | 104.125(6)         |
| γ (deg)                             | 98.329(10)         | 96.003(2)            | 90                                         | 90                 |
| $V(\mathring{A}^3)$                 | 683.09(13)         | 1750.45(8)           | 2399.54(5)                                 | 1234.93(13)        |
| Z                                   | 2                  | 4                    | 4                                          | 4                  |
| $\rho_{\rm calcd}~({ m Mg~m}^{-3})$ | 1.348              | 1.341                | 1.613                                      | 1.480              |
| $\mu$ (mm $^{-1}$ )                 | 0.7                | 0.1                  | 1.0                                        | 1.0                |
| $R1^a$                              | 0.0318             | 0.0443               | 0.0167                                     | 0.0320             |
| $wR2^b$                             | 0.0812             | 0.1085               | 0.0404                                     | 0.0903             |

<sup>&</sup>lt;sup>a</sup>  $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$  for reflections with  $I > 2\sigma(I)$ . <sup>b</sup>  $wR2 = [\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]^{0.5}$  for all reflections;  $w^{-1} = \sigma^2(F^2) + (aP)^2 + bP$ , where  $P = (2F_c^2 + F_o^2)/3$  and a and b are constants set by the program.