Supporting Information

Cyclopentadienyl Iron(II) Complexes of N-heterocyclic Carbenes Bearing a Malonate or Imidate Backbone: Synthesis, Structure and Catalytic Potential in Hydrosilylation

Vincent César, *^{†,‡} Luis C. Misal Castro,[§] Thomas Dombray,[§] Jean-Baptiste Sortais, *[§] Christophe Darcel,[§] Stéphane Labat,[⊥] Karinne Miqueu,[⊥] Jean-Marc Sotiropoulos,[⊥] Rémy Brousses,^{†,‡} Noël Lugan, *^{†,‡} Guy Lavigne^{†,‡}

Contents

Characterization of the products of catalysis	S 3
Normal resolution and high resolution XRD studies	S8
• Table S1. Crystal data and structures refinements for complexes 3_{tBu} , 3_{Me} , 4, and $[6^{Me}]$ (OTf)	S8
• Table S2. Multipolar parameters for complex 3 _{Me}	S 9
• Table S3. Values of the experimental and theoretical (italic) orthodox parameters at bond	S15
critical points within complex 3_{Me}	
• Figure S1. Residual electron density maps for 3_{Me} after the multipolar refinement	S17
• Figure S2. Laplacian of the experimental (left) and theoretical (right, M06-2X/6-31G**)	S18
electron density for 3_{Me} in various planes	
Computational studies	S19
• Table S4. Main geometrical parameters (bond lengths in Å and bond angles in deg) for the	S21
complex 3_{Me} at different levels of theory	

• Table S5. Experimental X-Ray data for complexes 3_{Me} , 4, 6^{Me} (OTf). Calculated	S22
geometrical parameters for compounds 3_{Me} , 4, $6^{Me}(OTf)$, 7 and 8 at the M06-2X/6-31G**	
level of theory	
• Table S6. Experimental and theoretical topological analysis of complex 3_{Me}	S23
• Table S7. AIM analysis for complex 4	S25
• Table S8. AIM analysis for complex 6 ^{Me} (OTf)	S27
• Table S9. AIM analysis for complex 7	S29
• Table S10. AIM analysis for complex 8	S31
• Analysis of the influence of the electronic properties of the carbene and of the N-substituents	S33
on the interligand interaction	
• Analysis of the bonding situation of the Fe- $C_{carbene}$ bond in 3_{Me} , 4 and $6^{Me}(OTf)$	S34
• Table S11. NBO analysis of the C \rightarrow Fe interaction in the three complexes 3_{Me} , 4 and	S35
6 ^{Me} (OTf)	
• Table S12. Topological analysis of the $C(aryl)C(\equiv O)$ bond critical points	S37
• Table S13. NBO analysis of the $C(aryl)C(\equiv O)$ non-covalent weak interactions for	S38
compounds 3_{Me} , 4 , 6_{Me} (OTf), 7 and 8 at the M06-2X/6-31G** level of theory.	
• Figure S3. Contour plot of the Laplacien $\nabla^2 \rho(BCP)$ with charge accumulation ($\nabla^2 \rho(r) < 0$)	S39
printed in blue and charge depletion ($\nabla^2 \rho(r) > 0$) printed in red for the complexes 3 _{Me} , 4 and	
6 ^{Me} (OTf)	
• Figure S4. Molekel plot (cutoff : 0.05) for the NLMO associated with the C \rightarrow Fe interaction	S39
in complex 3_{Me}	
• Figure S5. Electronic delocalization and density $\rho(\mathbf{r}_b)$ in e ⁻ Å ⁻³ for the carbon skeleton in the	S39
complexes 3_{Me} , 4 and 6^{Me} (OTf)	
Z-Matrices	S 39
NMR Spectra	S45

Characterizations of the products of catalysis

4-Chlorobenzyl alcohol

OH According to the <u>general procedure A</u>, 4-chlorobenzaldehyde (141 mg, 1 mmol) gave 4-chlorophenylmethanol (118 mg, 83%) as a white solid.

¹H NMR (300 MHz, CDCl₃): δ 7.32 (d, 2H, *J* = 8.7 Hz), 7.26 (d, 2H, *J* = 8.7 Hz), 4.62 (s, 2H), 2.19 (br s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 139.4, 133.5, 128.8, 128.4, 64.6.

o-Tolylmethanol

OH According to the <u>general procedure A</u>, *o*-tolualdehyde (116 μ L, 1 mmol) gave *o*-tolylmethanol (88 mg, 72%) as a light yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.40-7.32 (m, 1H), 7.25-7.15 (m, 3H), 4.68 (s, 2H), 2.36 (s, 3H), 1.87 (br s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 138.9, 136.3, 130.5, 127.8, 127.7, 126.2, 63.6, 18.8.

4-(*N*,*N*-dimethylaminophenyl)methanol

A flame dried Schlenk flask was charged with the iron complex 3_{tBu} (5.8 mg, 10 µmol, 1 mol%), 4-(*N*,*N*-dimethylamino)benzaldehyde (149 mg, 1.0 mmol), phenylsilane (113 µL, 1.2 mmol) and anhydrous toluene (0.2 mL). The reaction was stirred in a 30 °C pre-heated oil bath under light irradiation for 3 hours. The reaction was then hydrolyzed with methanol (2 mL) and a 2M aqueous solution of sodium hydroxide (2 mL). The product was extracted with diethylether (3×10 mL). The combined organic layers were washed with brine, dried with sodium sulfate and evaporated. The crude residue was purified by silica gel chromatography using a petroleum ether/diethyl ether mixture (7:3) as the eluent to give 4-(*N*,*N*-dimethylaminophenyl)methanol (124 mg, 82%) as a yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.25 (d, 2H, *J* = 8.4 Hz), 6.73 (d, 2H, *J* = 8.4 Hz), 4.57 (s, 2H), 2.95 (s, 6H), 1.61 (br s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 150.5, 129.1, 128.8, 112.8, 65.6, 40.9.

4-Cyanobenzyl alcohol

A flame-dried Schlenk tube was charged with the iron complex 3_{rBu} (5.8 mg, 10 µmol, 1 mol%), 4-cyanobenzaldehyde (131.1 mg, 1 mmol), phenylsilane (113 µL, 1.2 mmol) and anhydrous toluene (0.2 mL). The reaction was stirred in a 30 °C pre-heated oil bath under light irradiation for 3 hours. The reaction was hydrolyzed with methanol (2 mL) and 2M aqueous solution of sodium hydroxide (2 mL). The product was extracted with diethylether (3×10 mL). The combined organic layer was washed with brine, dried with sodium sulfate and evaporated. The crude residue was purified by silica gel chromatography using a petroleum ether/diethyl ether mixture (6:4) as the eluent to give 4-cyanophenylmethanol (129 mg, 95%) as a yellow solid.

¹H NMR (300 MHz, CDCl₃): δ 7.53 (d, 2H, *J* = 8.3 Hz), 7.39 (d, 2H, *J* = 8.3 Hz), 4.66 (s, 2H), 3.48 (br s, 1H).

¹³C {¹H} NMR (75 MHz, CDCl₃): δ 146.7, 132.2, 127.0, 118.9, 110.5, 63.7.

[4-(Phenylethynyl)phenyl]methanol

According to the <u>general procedure A</u>, 4-(phenylethynyl)benzaldehyde (103 mg, 0.5 mmol) gave [4-(phenylethynyl)phenyl]methanol (100 mg, 96%) as a white solid.

¹H NMR (300 MHz, CDCl₃): δ 7.64-7.45 (m, 4H), 7.42-7.28 (m, 5H), 4.68 (s, 2H), 2.13 (br s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 141.2, 131.9, 131.8, 128.5, 128.4, 127.0, 123.4, 122.6, 89.6, 89.4, 65.1.

1-(Naphthalen-2-yl)ethanol

OH According to the <u>general procedure B</u>, 2-acetonaphtone (85 mg, 0.5 mmol) gave 1-(naphthalen-2-yl)ethanol (60 mg, 70%) as a white solid.

¹H NMR (300 MHz, CDCl₃): δ 7.90-7.73 (m, 4H), 7.54-7.43 (m, 3H), 5.05 (q, 1H, J = 6.5 Hz), 2.20 (br s, 1H), 1.58 (d, 3H, J = 6.5 Hz).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 143.2, 133.4, 132.9, 128.3, 128.0, 127.7, 126.2, 125.8, 123.9, 123.8, 70.5, 25.2.

1-(4-Methoxyphenyl)ethanol

OH According to the <u>general procedure B</u>, 4-methoxyacetophenone (75 mg, 0.5 mmol) gave 1-(4-methoxyphenyl)ethanol (23 mg, 30%) as a yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.30 (d, 2H, *J* = 8.7 Hz), 6.88 (d, 2H, *J* = 8.7 Hz), 4.85 (q, 1H, *J* = 6.5 Hz), 3.80 (s, 3H), 1.88 (br s, 1H), 1.48 (d, 3H, *J* = 6.5 Hz).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 159.2, 138.2, 126.9, 114.0, 70.2, 55.5, 25.2.

1-(4-Bromophenyl)ethanol

OH According to the <u>general procedure B</u>, 4-bromoacetophenone (199 mg, 1 mmol) gave 1-(4-bromophenyl)ethanol (94 mg, 47%) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, 2H, *J* = 8.4Hz), 7.24 (d, 2H, *J* = 8.4Hz), 4.85 (q, 1H, *J* = 6.4 Hz), 1.97 (br s, 1H), 1.46 (d, 3H, *J* = 6.4 Hz).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 144.9, 131.7, 127.3, 121.3, 70.0, 25.4.

4-Methyl-N-(1-phenylethyl)aniline

A flame dried Schlenk flask was charged with the iron complex 3_{rBu} (14.5 mg, 25 µmol, 5 mol%), 4-methyl-*N*-(1-phenylethylidene)aniline (105 mg, 0.5 mmol), phenylsilane (250 µL, 2 mmol) and anhydrous toluene (0.2 mL). The reaction was stirred in a 100 °C pre-heated oil bath under light irradiation for 24 hours. The reaction was hydrolyzed with methanol (2 mL) and a 2M aqueous solution of sodium hydroxide (2 mL). The product was extracted with diethylether (3×10 mL). The combined organic layer was washed with brine, dried with sodium sulfate and evaporated. The crude residue was purified by silica gel chromatography using a petroleum ether/diethyl ether mixture (95:5) as the eluent to give 4-methyl-*N*-(1-phenylethyl)aniline (98 mg, 93%) as a white solid.

¹H NMR (300 MHz, CDCl₃): δ 7.42-7.30 (m, 5H), 6.99 (d, 2H, *J* = 8.3Hz), 6.48 (d, 2H, *J* = 8.7Hz), 4.49 (q, 1H, *J* = 6.8 Hz), 3.90 (br s, 1H), 2.27 (s, 3H), 1.54 (d, 3H, *J* = 6.8 Hz).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 144.9, 144.2, 132.5, 129.8, 128.9, 127.4, 126.8, 113.6, 53.3, 25.2, 20.5.

4-Methyl-N-(4-methylbenzyl)aniline

A flame dried Schlenk flask was charged with the iron complex 3_{tBu} (14.5 mg, 25 µmol, 5 mol%), 4-methyl-*N*-(4-methylbenzylidene)aniline (105 mg, 0.5 mmol), phenylsilane (250 µL, 2 mmol) and anhydrous toluene (0.2 mL).

The reaction was stirred in a 30 °C pre-heated oil bath under light irradiation for 30 hours. The reaction was hydrolysed with methanol (2 mL) and 2M aqueous solution of sodium hydroxide (2 mL). The product was extracted with diethylether (3×10 mL). The combined organic layer was washed with brine, dried with sodium sulfate and evaporated. The crude residue was purified by silica gel chromatography using a petroleum ether/diethyl ether mixture (98:2) as the eluent to give 4-methyl-*N*-(4-methylbenzyl)aniline (55 mg, 52%) as a yellow solid.

¹H NMR (300MHz, CDCl₃): δ 7.32 (d, 2H, *J* = 7.9 Hz), 7.21 (d, 2H, *J* = 7.9 Hz), 7.05 (d, 2H, *J* = 8.3 Hz), 6.62 (d, 2H, *J* = 8.3 Hz), 4.32 (s, 2H), 3.93 (br s, 1H), 2.41 (s, 3H), 2.31 (s, 3H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 146.0, 136.9, 136.7, 129.9, 129.4, 127.7, 126.9, 113.2, 48.6, 21.3, 20.6.

Normal resolution and high resolution XRD studies

SHELX Refinment										
complex	3 _{tBu}	3 _{Me}	4	[6 ^{Me}](OTf)						
empirical formula	C ₃₃ H ₃₆ FeN ₂ O,CH ₂ O	$Cl_2C_{30}H_{30}FeN_2O_4$	C28H27FeN3O4	C ₂₉ H ₃₀ FeN ₃ O ₄ , CF ₃ O ₃ S						
molecular weight (g)	612.42	538.39	525.38	689.48						
temperature (K)	180	100	180	180						
crystal system	orthorhombic	triclinic	monoclinic	monoclinic						
space group	P2 ₁ 2 ₁ 2 ₁ (#19)	P 1 (bar) (#2)	P2 ₁ /n (#14)	P2 ₁ /n (#14)						
a (Å)	13.079(3)	9.6895(8)	9.5746(3)	12.5292(5)						
b (Å)	15.663(3)	9.9041(8)	15.8303(5)	15.1526(6)						
c (Å)	15.731(3)	14.4926(12)	16.3931(6)	16.9812(6)						
α (°)		109.600(3)								
β (°)		104.051(15)	93.601(1)	109.835(2)						
γ (°)		107.503(2)								
volume (Å ³)	3222.6(11)	1259.82(18)	2479.78(14)	3032.6(2)						
Z	4	2	4	4						
$D_{calcd.}$ (g.cm ⁻³)	1.372	1.419	1.407	1.510						
μ (mm ⁻¹)	0.674	0.634	0.634	0.637						
F ₀₀₀	1392	564	1096	1424						
θ_{\max} (°)	30.5	26.4	26.4	26.4						
completeness to θ_{max}	99	99	99	99						
index range	-18 <h<18< td=""><td>-12<h<11< td=""><td>-11<h<11< td=""><td>-15<h<15< td=""></h<15<></td></h<11<></td></h<11<></td></h<18<>	-12 <h<11< td=""><td>-11<h<11< td=""><td>-15<h<15< td=""></h<15<></td></h<11<></td></h<11<>	-11 <h<11< td=""><td>-15<h<15< td=""></h<15<></td></h<11<>	-15 <h<15< td=""></h<15<>						
	-22 <k<22< td=""><td>-12<l<11< td=""><td>-19<k<19< td=""><td>-18<k<18< td=""></k<18<></td></k<19<></td></l<11<></td></k<22<>	-12 <l<11< td=""><td>-19<k<19< td=""><td>-18<k<18< td=""></k<18<></td></k<19<></td></l<11<>	-19 <k<19< td=""><td>-18<k<18< td=""></k<18<></td></k<19<>	-18 <k<18< td=""></k<18<>						
	-22 <l<22< td=""><td>-18<l<18< td=""><td>-20<l<20< td=""><td>-21<1<21</td></l<20<></td></l<18<></td></l<22<>	-18 <l<18< td=""><td>-20<l<20< td=""><td>-21<1<21</td></l<20<></td></l<18<>	-20 <l<20< td=""><td>-21<1<21</td></l<20<>	-21<1<21						
reflections collected	1013470	312535	97705	182350						
independant reflections	9802	5144	6196	6203						
data/restraints/parameters	9802 / 0 / 397	5144/0/341	6196 / 0 / 417	6203 / 0 / 363						
g.o.f.	1.08	1.067	1.04	1.03						
R, Rw [I>2σ(I)]	R1 = 0.0222	R1 = 0.0255	R1 = 0.0278	R1 = 0.0278						
	wR2 = 0.0588	wR2 = 0.0767	wR2 = 0.0741	wR2 = 0.0741						
R, Rw (all data)	R1 = 0.0230	R1 = 0.0257	R1 = 0.0321	R1 = 0.0332						
	wR2 = 0.0594	wR2 = 0.0770	wR2 = 0.0780	wR2 = 0.0780						
resid. electr. dens. (e.Å ⁻³)	0.44 / -0.31	0.35 / -0.39	0.35 / -0.33	0.35 / -0.31						
		MoPro Refinm	ent ($S < 1.1 \text{ Å}^{-1}$)							
θ_{max}		53.2								
Completeness to θ_{max} (%)		99								
index range		-23 <h<23< td=""><td></td><td></td></h<23<>								
		-23 <l<23< td=""><td></td><td></td></l<23<>								
		-34 <l<34< td=""><td></td><td></td></l<34<>								
Independent reflections		23392								
Parameters / restraints		965 / 84								
g.o.f.		1.05								
R [I>3 σ (I)] (calculated against F)		0.0132								
$R_{\rm w}$ [I>3 σ (I)] (calculated against F)	0.0169								

I ADIC SI. CITYSIAI UATA AND SUBCLUIC ICHNEHICIUS IOI COMPLEXES $J_{\rm fRn}$, $J_{\rm Me}$, \mathbf{H} , and $[\mathbf{U}]$	Table S1. Crystal data and	structure refinements	for complexes 3_{tBr}	$3_{Me}, 3_{Me}, 4, and [6]$	^{Me}](OTf)
---	----------------------------	-----------------------	-------------------------	------------------------------	----------------------

Table S2. Multipolar parameters for complex 3_{Me}

atom: Fe1 D0 X Fe1 C3 Y system coord κ. κ' 0.962746 0.798890 Pv 5.8753 P00 0.0000 0.0270 P1m± 0.0630 -0.0840 P2m± 0.0170 0.0750 0.0110 -0.0050 -0.0040 -0.0320 -0.0710 0.0390 -0.0370 0.0200 P3m± -0.0730 -0.0120 P4m± -0.0310 -0.1150 -0.3060 -0.0180 -0.0350 -0.01800.0020 -0.1000 0.0870 atom: O1 C1 Z O1 Fe1 Y system coord κ, κ' 1.003132 0.998316 Pv 5.7827 0.0000 P00 P1m± -0.0120 -0.0260 -0.1160 P2m± 0.0110 -0.0090 0.0730 -0.0690 -0.0140 0.0230 P3m± 0.0100 0.0110 -0.0190 0.0130 0.0420 -0.0090 atom: O2 system coord C2 Z O2 Fe1 Y к. к' 1.003132 0.998316 Pv 5.9365 P00 0.0000 0.0110 0.0530 -0.0420 P1m± P2m± 0.0180 0.0620 0.1060 0.0470 -0.0400 P3m± 0.0380 -0.0370 0.0000 0.0050 0.0390 0.0210 0.0210 03 atom: system coord C4 X O3 N1 Y 0.980041 0.963376 κ, κ' 6.3211 Pv P00 0.0000 -0.0200 0.0060 -0.0450 P1m± -0.0010 -0.0120 -0.0200 0.0040 -0.0640 P2m± -0.0010 0.0050 P3m± -0.0070 -0.0100 -0.0130 0.0030 0.0380 atom: 04 C6 X O4 N2 Y system coord κ, κ' 0.980041 0.963376 6.2653 Pv P00 0.0000 P1m± 0.0410 -0.0070 -0.0700 0.0200 -0.0150 -0.0180 0.0090 -0.0510 P2m± -0.0030 -0.0010 0.0120 0.0320 -0.0170 -0.0050 0.0350 P3m±

atom: N1 system coord C6 X N1 C3 Y 1.001363 0.960001 κ, κ' 5.0636 Pv P00 0.0000 -0.0340 0.0290 0.0550 P1m± -0.0040 -0.0090 -0.0210 0.0050 0.0130 P2m± P3m± 0.0450 0.0030 0.0150 -0.0010 0.0190 0.0040 -0.2170 N2 atom: system coord C4 X N2 C3 Y κ, κ' 1.001363 0.960001 Pv 5.0603 P00 0.0000 P1m± -0.0420 0.0100 0.0160 P2m± 0.0230 0.0060 -0.0240 -0.0040 -0.0130 P3m± 0.0370 -0.0280 0.0270 0.0100 -0.0230 -0.2220 0.0170 atom: C1 O1 Z C1 Fe1 Y system coord 0.980570 0.926660 κ, κ' Pv 4.2149 P00 0.0000 0.0400 -0.0020 0.0850 P1m± -0.0280 P2m± -0.0250 0.4540 -0.0350 0.0210 P3m± 0.0360 0.0230 0.0180 0.1260 -0.0280 0.0220 0.0380 atom: C2 O2 Z C2 Fe1 Y system coord 0.980570 0.926660 κ, κ' Pv 4.2658 0.0000 P00 P1m± -0.0150 -0.0790 0.0140 P2m± -0.0100-0.0250 0.4000 0.0520 -0.0170 0.0230 -0.0420 0.0250 0.0500 0.0200 -0.0310 P3m± -0.0190 atom: C3 N1 X C3 N2 Y system coord κ, κ' 0.977123 0.931556 Pv 4.2024 0.0000 P00 -0.0650 0.0310 -0.0680 P1m± 0.0360 0.0210 -0.2360 -0.0030 -0.0480 P2m± 0.0140 P3m± 0.0390 -0.0260 0.0130 -0.0210 0.0050 0.2660

atom: C4 N2 X C4 C5 Y system coord κ, κ' 1.016601 1.002564 Pv 3.9252 P00 0.0000 P1m± 0.1130 -0.0060 -0.0540 P2m± 0.0990 -0.0080 -0.1970 0.0020 0.0330 0.0380 0.0250 0.0050 0.0090 -0.2520 P3m± 0.0150 0.0160 atom: C5 C3 X C5 C6 Y system coord 1.008238 1.001011 κ, κ' Pv 4.0630 P00 0.0000 P1m± 0.0420 0.0240 0.0440 -0.0150 0.0020 P2m± -0.0120 -0.0650 -0.0070 P3m± 0.0070 -0.0130 0.0280 -0.0160 0.0470 -0.0290 -0.2600 atom: C6 system coord N1 X C6 C5 Y 1.016601 1.002564 κ, κ' Pv 3.8622 0.0000 P00 P1m± 0.0840 0.0020 -0.0650 P2m± 0.1240 0.0010 -0.2270 -0.0020 0.0900 0.0700 -0.0060 -0.0060 -0.0020 0.0300 -0.0310 -0.2560 P3m± atom: C7 system coord C5 Z C7 H71 X κ, κ' 0.973579 0.921152 Pv 4.4084 P00 0.0000 0.0000 -0.0620 -0.0450 P1m± P2m± 0.0000 0.0000 -0.0370 0.0000 0.0000 P3m± -0.0540 0.0000 0.0000 0.3500 0.0000 0.0000 0.0390 atom: C11 D0 X C11 Fe1 Z system coord κ, κ' 0.975475 0.916847 Pv 4.2047 P00 0.0000 0.0000 -0.0220 P1m± 0.0330 P2m± 0.0000 0.0000 -0.2600 -0.0180 0.0670 P3m± 0.0000 0.0000 0.0000 0.0090 0.0440 0.0430 -0.3300 atom: C12 D0 X C12 Fe1 Z system coord к. к' 0.975475 0.916847 4.2269 Pv P00 0.0000 -0.0410 P1m± 0.0000 0.0410 P2m± 0.0000 0.0000 -0.2160 -0.0070 0.0530 0.0000 0.0000 0.0000 0.0330 0.0330 0.0360 -0.2790 P3m± atom: C13 system coord D0 X C13 Fe1 Z 0.975475 0.916847 κ, κ' Pv 4.1486 P00 0.0000 P1m± 0.0000 0.0360 -0.0570 0.0000 -0.1890 -0.0050 P2m± 0.0000 0.0580 P3m± 0.0000 0.0000 0.0000 0.0530 0.0640 0.0200 -0.2750 atom: C14 system coord D0 X C14 Fe1 Z κ, κ' 0.975475 0.916847 Pv 4.2428 P00 0.0000 0.0280 0.0210 P1m± 0.0000 P2m± 0.0000 0.0000 -0.2380 0.0110 0.0500 P3m± 0.0000 0.0000 0.0720 0.0580 -0.0060 -0.3340 0.0000 atom: C15 system coord D0 X C15 Fe1 Z к. к' 0.975475 0.916847 Pv 4.3017 P00 0.0000 P1m± 0.0000 0.0310 0.0000 0.0000 0.0000 -0.1980 P2m± 0.0440 0.1210 P3m± 0.0000 0.0000 0.0000 0.0200 0.0370 0.0150 -0.2680 atom: C21 C24 X C21 C22 Y system coord κ, κ' 1.002619 0.958249 Pv 4.0339 P00 0.0000 P1m± 0.0170 -0.0140 0.0880 P2m± -0.0030 -0.0280 -0.1400 -0.0210 -0.0900 -0.0070 0.0040 -0.0200 -0.0410 0.0330 0.0150 -0.2930 P3m± C22 atom: C25 X C22 C23 Y system coord к. к' 1.002619 0.958249 Pv 3.9882 P00 0.0000 P1m± 0.0140 -0.0240 0.0370 P2m± 0.0240 0.0080 -0.1800 -0.0070 -0.0270 P3m± -0.0070 0.0010 -0.0040 -0.0200 0.0300 0.0220 -0.2270

atom: C23 system coord C26 X C23 C24 Y к. к' 1.002619 0.958249 Pv 4.2313 P00 0.0000 P1m± -0.0500 -0.0080 -0.0220 P2m± -0.0410 -0.0120 -0.1930 0.0010 0.0210 P3m± -0.0270 -0.0210 0.0020 -0.0020 0.0430 -0.0030 -0.2610 atom: C24 C21 X C24 C25 Y system coord 1.002619 0.958249 κ, κ' 3.9847 Pv P00 0.0000 P1m± -0.0420 -0.0250 0.0770 0.0240 P2m± 0.0000 -0.2180 -0.0240 -0.0300 P3m± -0.0150 0.0040 0.0120 0.0150 0.0200 -0.0080 -0.2610 atom: C25 system coord C22 X C25 C26 Y 1.002619 0.958249 κ, κ' Pv 4.1730 0.0000 P00 P1m± -0.0080 -0.0160 -0.0200 P2m± 0.0070 0.0100 -0.1760 -0.0260 -0.0160 -0.0190 0.0280 -0.0120 0.0310 0.0260 -0.2850 P3m± -0.0010 atom: C26 system coord C23 X C26 C25 Y κ, κ' 1.002619 0.958249 3.9909 Pv 0.0000 P00 -0.0170 0.0200 0.0640 P1m± P2m± -0.0110 0.0120 -0.1870 0.0110 -0.0280 P3m± 0.0060 -0.0100 0.0190 -0.0070 0.0140 -0.0020 -0.2480 atom: C27 C22 Z C27 H271 X system coord κ, κ' 0.973579 0.921152 Pv 4.4549 P00 0.0000 0.0000 0.0000 P1m± -0.0540 P2m± 0.0000 0.0000 -0.0450 0.0000 0.0000 P3m± 0.0060 0.0000 0.0000 0.3230 0.0000 0.0000 0.1990

atom: C28 system coord C24 Z C28 H281 X к. к' 0.973579 0.921152 4.4745 Pv P00 0.0000 P1m± 0.0000 -0.0540 0.0000 P2m± 0.0000 0.0000 -0.0450 0.0000 0.0000 0.0060 0.0000 0.0000 0.3230 0.0000 0.0000 0.1990 P3m± atom: C29 system coord C26 Z C29 H291 X 0.973579 0.921152 κ, κ' 4.4109 Pv P00 0.0000 P1m± 0.0000 -0.0540 0.0000 0.0000 P2m± 0.0000 -0.0450 0.0000 0.0000 P3m± 0.0060 0.0000 0.0000 0.3230 0.0000 0.0000 0.1990 atom: C31 system coord C33 X C31 C32 Y κ, κ' 1.002619 0.958249 Pv 4.0394 P00 0.0000 P1m± -0.0570 -0.0080 0.1120 P2m± 0.1180 0.0240 -0.1460 0.0020 -0.0220 -0.2840 -0.0020 -0.0120 0.0070 0.0290 P3m± -0.0120 0.0130 atom: C32 system coord C35 X C32 C33 Y к. к' 1.002619 0.958249 Pv 4.0102 P00 0.0000 P1m± -0.0170 0.0160 0.0220 P2m± 0.0260 0.0060 -0.1810 0.0220 0.0030 P3m± -0.0320 -0.0150 -0.0030 0.0280 0.0120 -0.0030 -0.2230 atom: C33 C36 X C33 C34 Y system coord κ, κ' 1.002619 0.958249 Pv 4.1531 P00 0.0000 P1m± -0.0230 -0.0140 -0.0150 P2m± 0.0240 -0.0100 -0.1800 -0.0240 -0.0050 -0.0350 -0.0230 -0.0330 -0.0010 0.0220 P3m± -0.0160 -0.2860 atom: C34 system coord C31 X C34 C35 Y к. к' 1.002619 0.958249 Pv 4.0465 P00 0.0000 P1m± 0.0190 -0.0040 0.0490 P2m± 0.0210 -0.0170 -0.2110 0.0150 -0.0870 P3m± -0.0430 0.0030 0.0040 0.0090 0.0220 0.0070 -0.2660

atom: C35 C32 X C35 C36 Y system coord κ, κ' 1.002619 0.958249 Pv 4.0275 P00 0.0000 P1m± 0.0000 -0.0060 -0.0340 P2m± 0.0110 -0.0200 -0.1600 0.0000 0.0340 P3m± -0.0240 -0.0070 0.0150 0.0100 0.0420 -0.0100 -0.2550 atom: C36 C33 X C36 C35 Y system coord 1.002619 0.958249 κ, κ' Pv 4.0154 P00 0.0000 P1m± 0.0060 -0.0010 0.0570 -0.0040 0.0140 -0.0210 P2m± -0.1830 -0.0170 P3m± 0.0430 -0.0080 -0.0120 0.0110 -0.0080 0.0230 -0.2880 atom: C37 system coord C32 Z C37 H371 X 0.973579 0.921152 κ, κ' Pv 4.4327 0.0000 P00 P1m± 0.0000 -0.0740 0.0000 P2m± 0.0000 0.0000 -0.0570 0.0000 0.0000 -0.0050 0.0000 0.0000 0.3210 0.0000 0.0000 0.1440 P3m± atom: C38 C34 Z C38 H381 X system coord κ, κ' 0.973579 0.921152 Pv 4.5581 P00 0.0000 0.0000 -0.0740 0.0000 P1m± P2m± 0.0000 0.0000 -0.0570 0.0000 0.0000 P3m± -0.0050 0.0000 0.0000 0.3210 0.0000 0.0000 0.1440 atom: C39 C36 Z C39 H391 X system coord κ, κ' 0.973579 0.921152 Pv 4.3658 P00 0.0000 0.0000 0.0000 P1m± -0.0740 P2m± 0.0000 0.0000 -0.0570 0.0000 0.0000 P3m± -0.0050 0.0000 0.0000 0.3210 0.0000 0.0000 0.1440

atom: H71 system coord C7 Z H71 C5 X 1.142921 1.200000 к. к' Pv 0.7630 P00 0.0000 0.1570 0.0000 P1m± 0.0000 H72 atom: C7 Z H72 C5 system coord κ, κ' 1.142921 1.200000 0.7630 Pv P00 0.0000 0.1970 0.0000 P1m± 0.0000 H73 atom: system coord C7 Z H73 C5 X κ, κ' 1.142921 1.200000 Pv 0.7630 P00 0.0000 P1m± 0.0000 0.1670 0.0000 atom: H11 system coord C11 Z H11 C12 X κ, κ' 1.207180 1.200000 Pv 0.7172 P00 0.0000 P1m± 0.0000 0.1020 0.0000 atom: H12 C12 Z H12 C11 X system coord κ, κ' 1.207180 1.200000 0.7172 Pv P00 0.0000 P1m± 0.0000 0.1240 0.0000 atom: H13 C13 Z H13 C12 X system coord κ, κ' 1.207180 1.200000 Pv 0.7172 P00 0.0000 P1m± 0.0000 0.1400 0.0000 atom: H14 C14 Z H14 C13 X system coord 1.207180 1.200000 κ, κ' 0.7172 Pv P00 0.0000 P1m± 0.0000 0.1600 0.0000 atom: H15 C15 Z H15 C11 X system coord κ, κ' 1.207180 1.200000 0.7172 Pv P00 0.0000 P1m± 0.0000 0.1170 0.0000

atom: H23

C23 Z H23 C22 X system coord κ, κ' 1.265170 1.200000 Pv 0.7943 P00 0.0000 P1m± 0.0000 0.0820 0.0000 atom: H25 C25 Z H25 C24 X/ system coord 1.265170 1.200000 κ, κ' Pv 0.7943 P00 0.0000 P1m± 0.0000 0.1160 0.0000 atom: H271 system coord C27 Z H271 C22 X κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1640 0.0000 atom: H272 system coord C27 Z H272 C22 X κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1840 0.0000 atom: H273 C27 Z H273 C22 X system coord κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1320 0.0000 atom: H281 C28 Z H281 C24 X system coord κ, κ' 1.142921 1.200000 Pv 0.8437 0.0000 P00 P1m± 0.0000 0.1730 0.0000 atom: H282 system coord C28 Z H282 C24 X κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1040 0.0000

atom: H283 system coord C28 Z H283 C24 X κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1650 0.0000 atom: H291 C29 Z H291 C26 X system coord κ, κ' 1.142921 1.200000 0.8437 Pv P00 0.0000 P1m± 0.0000 0.1410 0.0000 atom: H292 C29 Z H292 C26 X system coord 1.142921 1.200000 κ, κ' Pv 0.8437 0.0000 P00 P1m± 0.0000 0.1230 0.0000 atom: H293 system coord C29 Z H293 C26 X κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1470 0.0000 atom: H33 C33 Z H33 C32 X system coord 1.265170 1.200000 κ, κ' Pv 0.7943 P00 0.0000 P1m± 0.0000 0.1440 0.0000 atom: H35 system coord C35 Z H35 C34 X κ, κ' 1.265170 1.200000 Pv 0.7943 P00 0.0000 P1m± 0.0000 0.1310 0.0000 atom: H371 C37 Z H371 C32 X system coord κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1620 0.0000

atom: H372 C37 Z H372 C32 X system coord 1.142921 1.200000 κ, κ' Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1630 0.0000 atom: H373 C37 Z H373 C32 X system coord κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1700 0.0000 atom: H381 system coord C38 Z H381 C34 X κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1000 0.0000 atom: H382 C38 Z H382 C34 X system coord κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1030 0.0000 atom: H383 C38 Z H383 C34 X system coord κ, κ' 1.142921 1.200000 0.8437 Pv P00 0.0000 P1m± 0.0000 0.1280 0.0000 atom: H391 C39 Z H391 C36 X system coord κ, κ' 1.142921 1.200000 0.8437 Pv P00 0.0000 P1m± 0.0000 0.1660 0.0000 atom: H392 C39 Z H392 C36 X system coord κ, κ' 1.142921 1.200000 Pv 0.8437 P00 0.0000 P1m± 0.0000 0.1440 0.0000

bond	R _b	<i>d</i> 1	d2	$ ho(\mathbf{r}_{\mathrm{b}})$	$\nabla^2 \rho(\mathbf{r}_{\rm b})$	λ_1	λ_2	λ3	3	$G\rho(\mathbf{r}_{b})$	$G\rho(\mathbf{r}_b)/\rho($	$V\rho(\mathbf{r}_b)$	$H\rho(\mathbf{r}_b)$	$\delta(A/B)$	$E_{\rm int}$
											r _b)				
Interatomic	bonds														
Fe1-C1	1.793	0.908	0.893	0.95	13.42	-4.29	-3.74	21.46	0.15	1.36	1.44	-1.79	-0.42	o - (
	1.889	0.971	0.926	0.75	11.89	-3.30	-2.31	17.48	0.44	1.05	1.40	-1.27	-0.27	0.74	
Fe1-C2	1.782	0.907	0.875	1.09	13.48	-5.18	-4.91	23.56	0.06	1.55	1.43	-2.16	-0.61		
	1.876	0.970	0.913	0.76	13.31	-2.75	-2.45	18.19	0.30	1.14	1.50	-1.35	-0.21	0.78	
Fe1-C3	2.044	0.967	1.079	0.62	8.03	-2.09	-1.87	11.99	0.11	0.74	1.19	-0.91	-0.17		
	2.075	0.966	1.111	0.60	6.72	-2.01	-1.58	10.52	0.12	0.64	1.07	-0.81	-0.17	0.61	
Fe1-C11	2.141	1.097	1.055	0.53	6.14	-1.79	-0.19	8.12	8.41	0.57	1.07	-0.71	-0.14		
	2.170	1.103	1.068	0.47	4.55	-1.54	-0.67	6.76	1.29	0.46	0.99	-0.60	-0.14	0.30	
Fe1-C12							not observ	ed experi	mentally						
	2.159	1.123	1.057	0.46	5.06	-1.61	-0.28	6.95	4.74	0.48	1.04	-0.61	-0.13	0.33	
Fe1-C13	2.103	1.056	1.07	0.53	6.10	-1.41	-0.41	7.93	2.40	0.57	1.06	-0.71	-0.14		
	2.167	1.118	1.065	0.47	4.77	-1.53	-0.45	6.75	2.43	0.47	1.01	-0.61	-0.14	0.31	
Fe1-C14	2.111	1.062	1.06	0.54	6.18	-1.59	-0.51	8.27	2.13	0.58	1.07	-0.73	-0.15		
	2.177	1.110	1.072	0.46	4.53	-1.48	-0.62	6.62	1.39	0.46	0.99	-0.60	-0.14	0.30	
Fe1-C15							not observ	ved experi	mentally						
	2.170	1.125	1.057	0.45	5.17	-1.74	-0.11	7.02	14.95	0.48	1.07	-0.60	-0.12	0.33	
01-C1	1.145	0.749	0.395	3.23	-11.26	-35.07	-32.74	56.55	0.07	5.16	1.60	-11.11	-5.95		
	1.133	0.757	0.376	3.18	33.04	-34.91	-18.92	102.83	0.00	7.55	2.38	-12.79	-5.23	1.55	
O2-C2	1.142	0.756	0.387	3.12	10.39	-32.41	-30.55	73.35	0.06	5.83	1.87	-10.93	-5.10		
	1.133	0.756	0.376	3.18	32.82	-35.08	-18.93	102.90	0.00	7.55	2.37	-12.79	-5.24	1.55	
O3-C4	1.241	0.767	0.474	2.76	-31.45	-25.25	-22.54	16.34	0.12	2.89	1.05	-7.99	-5.09		
	1,227	0,821	0,406	2,66	2,33	-24,37	-13,35	49,09	0,09	4,65	1,75	-9,14	-4,49	1.18	
O4-C6	1.236	0.747	0.489	2.90	-36.11	-27.56	-24.89	16.35	0.11	3.06	1.05	-8.64	-5.58	-	
	1,227	0,822	0,406	2,66	2,04	-24,30	-13,34	48,78	0,08	4,63	1,74	-9,12	-4,49	1.17	
N1-C3	1.355	0.823	0.532	2.18	-23.80	-16.84	-14.97	8.01	0.13	1.83	0.84	-5.34	-3.51		
	1.349	0.891	0.458	2.16	-17.34	-15.62	-8.78	13.56	0.02	2.30	1.06	-5.81	-3.51	1.09	
N1-C4	1.455	0.837	0.618	1.80	-11.31	-14.09	-11.88	14.66	0.19	1.61	0.90	-4.02	-2.41		
	1.476	0.891	0.561	1.67	-15.24	-11.41	-5.19	7.05	0.05	0.92	0.55	-2.90	-1.99	0.79	
N1-C21	1.446	0.822	0.624	1.87	-13.19	-13.88	-13.39	14.08	0.04	1.67	0.89	-4.26	-2.59		
	1.439	0.911	0.529	1.82	-18.64	-12.40	-6.12	5.78	0.03	1.13	0.62	-3.56	-2.44	0.89	
N2-C3	1.362	0.804	0.558	2.27	-23.58	-18.20	-15.54	10.16	0.17	2.04	0.90	-5.74	-3.70		
	1.347	0.890	0.457	2.16	-17.29	-15.59	-8.85	13.73	0.01	2.31	1.07	-5.84	-3.53	1.10	
N2-C6	1.462	0.843	0.620	1.75	-10.70	-13.54	-11.43	14.27	0.18	1.54	0.88	-3.82	-2.28		
	1.480	0.915	0.565	1.66	-15.00	-11.33	-5.13	7.14	0.05	0.90	0.54	-2.84	-1.95	0.79	
N2-C31	1.448	0.837	0.611	1.79	-12.29	-13.16	-12.33	13.20	0.07	1.55	0.87	-3.97	-2.42		
	1.441	0.913	0.529	1.81	-18.41	-12.29	-11.93	5.81	0.03	1.12	0.62	-3.55	-2.42	0.08	

Table S3. Values of experimental and theoretical (italic) orthodox parameters at bond critical points within complex $\mathbf{3}_{Me}^{a,b}$

C4-C5	1.396	0.736	0.660	2.17	-19.65	-17.95	-13.84	12.14	0.30	2.02	0.93	-5.41	-5.01		
	1.401	0.743	0.658	2.07	-20.12	-15.43	-5.49	7.43	0.27	0.70	0.34	-2.80	-2.11	1.20	
C5-C6	1.401	0.673	0.728	2.14	-17.99	-17.54	-12.99	12.53	0.35	2.01	0.94	-5.28	-3.27		
	1.401	0.659	0.743	2.06	-19.93	-15.37	-5.47	7.44	0.28	0.70	0.34	-2.79	-2.10	1.21	
C5-C7	1.498	0.767	0.731	1.78	-13.47	-12.61	-11.44	10.59	0.10	1.46	0.82	-3.87	-2.41		
	1.500	0.765	0.735	1.69	-13.77	-11.16	-4.04	8.02	0.05	0.42	0.25	-1.80	-1.39	1.01	
C- $C(Cp)$	1.424	0.716	0.709	2.02	-16.64	-14.450	-11.65	9.50	0.24	1.82	0.90	-4.80	-2.98		
	1.418	0.713	0.705	1.98	-17.49	-14.00	-11.35	7.86	0.23	0.67	0.34	-2.58	-1.90	1.27	
C- $H(Cp)$	1.083	0.76	0.32	1.76	-16.64	-17.47	-16.62	17.46	0.05	1.28	0.73	-3.73	-2.45		
	1.081	0.683	0.398	1.91	-24.91	-18.14	-17.85	11.07	0.02	0.26	0.14	-2.27	-2.01	0.95	
C-C (aryl)	1.40	0.70	0.70	2.14	-18.69	-16.60	-13.43	11.33	0.23	1.99	0.93	-5.28	-3.29		
	1.396	0.704	0.692	2.08	-19.94	-15.26	-12.56	7.88	0.22	0.67	0.32	-2.75	-2.07	1.33	
C-H (aryl)	1.083	0.73	0.36	1.78	-14.10	-17.38	-16.40	19.71	0.06	1.45	0.81	-3.88	-2.43		
	1.088	0.677	0.411	1.88	-23.50	-17.40	-17.06	10.96	0.02	0.29	0.15	-2.23	-1.94	0.95	
C - $C(sp^3)$	1.502	0.76	0.74	1.71	-11.86	-11.54	-10.80	10.48	0.07	1.41	0.83	-3.65	-2.24		
	1.505	0.765	0.740	1.70	-14.24	-11.34	-11.02	8.12	0.03	0.40	0.23	-1.80	-1.40	1.01	
$C(sp^3)$ -H	1.093	0.75	0.35	1.68	-14.11	-15.32	-14.16	15.37	0.08	1.24	0.74	-3.47	-2.23		
	1.094	0.682	0.412	1.85	-22.52	-16.15	-16.65	10.93	0.01	0.30	0.16	-2.19	-1.88	0.94	
					Intra	molecular i	interligand	weak inte	eractions						
C1C21	2.720	1.337	1.388	0.13	1.15	-0.30	-0.24	1.69	0.28	0.08	0.61	-0.08	0.00		3.9
	2.811	1.357	1.455	0.11	1.16	-0.28	-0.17	1.62	0.62	0.07	0.65	-0.06	0.01	0.05	3.1
C2C36							not observe	ed experim	entally						
	2.908	1.516	1.409	0.08	0.95	-0.19	-0.05	1.19	2.67	0.05	0.72	-0.04	0.01	0.02	2.0
C32H15	2.39	1.44	0.999	0.09	1.08	-0.22	-0.18	1.48	0.25	0.06	0.67	-0.05	0.01		2.5
	2.489	1.485	1.010	0.07	0.91	-0.19	-0.17	1.26	0.12	0.05	0.72	-0.04	0.01	0.03	2.0
H11H372	1.992	1.924	1.145	0.05	0.99	-0.18	-0.15	1.32	0.18	0.05	1.0	-0.04	0.02		1.7
	2.155	1.101	1.072	0.05	0.73	-0.19	-0.15	1.07	0.22	0.04	0.73	-0.03	0.01	0.02	1.4
O3H48							not observe	ed experim	entally						
	2.525	1.476	1.075	0.07	0.92	-0.21	-0.15	1.28	0.46	0.06	0.82	-0.05	0.01	0.03	1.9
O4H61							not observe	ed experim	entally						
	2.623	1.522	1.151	0.06	0.83	-0.15	-0.08	1.06	0.87	0.05	0.83	-0.04	0.01	0.02	1.6

^{*a*}Top line experimental values, second line (italic) theoretical values from isolated molecule DFT calculation. ^{*b*}*R*_b is the interatomic distance (Å); *d*1 and *d*2 are the distances of the bcp from the two atoms (Å); $\rho(\mathbf{r}_b)$ is the ED (e.Å⁻³); $\nabla^2 \rho(\mathbf{r}_b)$ is the Laplacian of the ED (e.Å⁻⁵); λ_{1-3} are the curvatures of the bond (e.Å⁻⁵); ϵ is the ellipcity of the bond; $G\rho(\mathbf{r}_b)$, $V\rho(\mathbf{r}_b)$, and $H\rho(\mathbf{r}_b)$ are the kinetic, potential, and total electron energy densities estimated using the approximation of Abramov (hartree.Å⁻³).^{*f*} $\delta(C...C)$ are the delocalization indices; ^{*f*} E_{int} is the interaction energy estimated using Espinoza correlation scheme (kcal.mol⁻¹).

Figure S1. Residual electron density maps for $\mathbf{3}_{Me}$ after the multipolar refinement (0.1 e.Å⁻³ isocontours; positive: full lines; negative: dashed lines; zero contour: yellow dashed line).

In the Fe1 / C1 / O1 plane

In the C3 / N1 / N2 plane

In the C11 / C13 / C15 plane

In the C21 / C23/C25 plane

In the C31 / C33 / C35 plane

Figure S2. Laplacian of the experimental (left) and theoretical (right, M06-2X/6-31G**) electron density for $\mathbf{3}_{Me}$ in various planes. Contours are drawn at 0.000, ±2.0 x 10n, ±4.0 x 10n, ±8.0 x 10n e.Å⁻⁵ levels, where n = 0, -3, ±2, ±1; positive: solid (red) lines, negative: dashed (blue) lines.

Computational studies

Calculations were carried out with the Gaussian 09 program¹ at the DFT level of theory using the M06-2X functional.² All the atoms (C, N, H, O, Fe) were described with a 6-31G(d,p) double- ζ basis set.³ Geometry optimizations were carried out without any symmetry restrictions, the nature of the *minima* was verified with analytical frequency calculations. All total energies and Gibbs free energies were zero-point energy (ZPE) and temperature corrected using unscaled density functional frequencies. The electronic structure of the different complexes was studied using Natural Bond Orbital analysis

¹ *Gaussian 09. Revision C.01* Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

² Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.

³ Hariharan, P. C.; Pople, J. A. *Theor. Chim. Acta* **1973**, *28*, 213.

(NBO-5 program).⁴ The electron density of the optimized structures was subject to an Atoms-In Molecules analysis (QTAIM analysis).⁵ The Natural Localized Molecular Orbital associated with the Fe-C_{carbene} bond was plotted by using the molecular graphic package Molekel.⁶

In order to choose the better level of theory (M06-2X), geometry optimizations of 3_{Me} were carried out with different functionals like B3LYP,⁷ BPW91,^{11a-b,8} M06,⁶ M06-L,⁹ B97D¹⁰ and WB97XD.¹¹ Diffuse functions were also been added in some cases on the different atoms except hydrogens and iron.

⁶ (a) Molekel 4.3, Flükiger, P.; Lüthi, H. P.; Portmann, S.; Weber, J. Swiss Center for Scientific Computing, Manno, Switzerland, **2000-2002**; (b) Portmann, S.; Lüthi, H. P. *Chimica* **2000**, *54*, 766.

⁷ (a) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648; (b) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098; (c) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev.* **1988**, *B37*, 785.

⁸ Perdew, J. P. in *Electronic Structure of Solids '91*, Ed. P. Ziesche and H. Eschrig (Akademie Verlag, Berlin), **1991**, 11.

⁹ Zhao, Y.; Truhlar, D. G. J. Chem. Phys., 2006, 125, 1.

⁴ (a) NBO 5.0. Glendening, E. D.; Badenhoop, J, K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001; (b) Reed, E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899; (c) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211; (d) Reed A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736.

⁵ (a) Bader, R. F. W. *Atoms in Molecules: A Quantum Theory*; Oxford University Press: New-York Ed., **1990**; (b) Bader, R. F. W. *Chem. Rev.* **1991**, *91*, 893; (c) AIMAll (Version 10.10.11), Keith, T. A. **2010** (aim.tkgristmill.com).

¹⁰ (a) Becke, A. D. J. Chem. Phys., **1997**, 107, 8554; (b) Schmider, H. L.; Becke, A. D. J. Chem. Phys., **1998**, 108, 9624; (c) Grimme, S. J. Comp. Chem., **2006**, 27, 1787.

¹¹ Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys., 2008, 10, 6615.

Bond or angle	B3LYP/6-31+G** SDD(Fe)	B3LYP/6-31G** SDD (Fe)	B3LYP/6-31+G**	B3LYP/6-31G**	B97D/6-31+G**	BPW91/6-31+G**	BPW91/6-31G**	WB97XD/6-31+G**	M06/6-31+G**	M06L/6-31+G**	M062X/6-31+G**	M062X/6-31G**	RX
d (N1-C3)	1.357	1.356	1.357	1.356	1.356	1.364	1.361	1.350	1.350	1.351	1.350	1.349	1.363
<i>d</i> (C1-N2)	1.357	1.355	1.357	1.355	1.356	1.362	1.362	1.350	1.350	1.351	1.349	1.349	1.356
∠ _{N1-C3-N2 (deg)}	115.09	114.92	115.15	114.83	115.70	115.21	114.93	114.89	115.25	115.57	114.79	114.59	114.49
<i>d</i> (N1-C4)	1.491	1.499	1.495	1.500	1.513	1.510	1.517	1.474	1.485	1.495	1.471	1.476	1.462
<i>d</i> (C4-C5)	1.402	1.401	1.403	1.401	1.410	1.409	1.408	1.399	1.400	1.400	1.402	1.401	1.400
<i>d</i> (C5-C6)	1.403	1.401	1.402	1.401	1.410	1.409	1.408	1.399	1.400	1.400	1.403	1.401	1.396
d (C6-N2)	1.495	1.497	1.492	1.498	1.511	1.510	1.516	1.474	1.490	1.495	1.476	1.480	1.454
∠ _{N1-C4-C5 (deg)}	115.96	115.63	115.96	115.58	115.436	115.758	115.686	116.088	116.030	115.528	115.974	115.477	116.409
∠ _{N1-C4-C5-C6 (deg)}	-2.38	-3.07	-3.02	-2.82	-1.62	-3.94	0.86	-1.46	4.69	2.04	1.62	-0.04	6.65
d (Fe-C2)	1.789	1.785	1.780	1.773	1.756	1.753	1.748	1.784	1.782	1.767	1.894	1.876	1.782
<i>d</i> (C2-O)	1.150	1.150	1.151	1.151	1.166	1.169	1.169	1.144	1.149	1.158	1.133	1.133	1.143
∠(Fe-C2-O2) (deg)	168.32	168.62	167.67	167.92	167.82	167.89	167.52	167.68	168.22	168.36	170.22	169.77	173.95
d (Fe-C1)	1.79	1.79	1.780	1.775	1.756	1.755	1.749	1.784	1.782	1.767	1.90	1.89	1.793
<i>d</i> (C1-O1)	1.150	1.149	1.151	1.151	1.166	1.169	1.169	1.144	1.149	1.158	1.133	1.133	1.146
∠(Fe-C1-O1) (deg)	168.33	168.91	167.68	167.18	167.77	166.57	166.70	167.72	168.21	168.35	167.03	165.49	165.45
<i>d</i> (C3-Fe)	2.07	2.07	2.067	2.059	2.047	2.054	2.046	2.041	2.047	2.053	2.089	2.075	2.044
<i>d</i> (N2-C31)	1.45	1.45	1.453	1.450	1.447	1.453	1.451	1.442	1.442	1.442	1.443	1.441	1.448
<i>d</i> (C31-C2)	2.996	3.045	2.989	3.033	2.979	3.076	3.056	2.959	2.927	2.968	3.085	3.105	3.183
<i>d</i> (C31-O2)	3.509	3.574	3.506	3.573	3.512	3.634	3.619	3.480	3.407	3.474	3.629	3.666	3.687
∠ _{(N2-C31-C2)(deg)}	90.54	88.84	90.40	88.64	91.33	87.03	86.12	91.54	92.14	91.77	92.11	90.32	84.03
d (N1-C21)	1.45	1.45	1.453	1.450	1.447	1.453	1.451	1.442	1.441	1.442	1.442	1.439	1.446
<i>d</i> (C21-C1)	3.00	2.96	2.991	2.964	2.968	2.946	2.980	2.954	2.925	2.955	2.863	2.811	2.720
<i>d</i> (C21-O1)	3.51	3.47	3.508	3.483	3.497	3.467	3.520	3.474	3.404	3.453	3.352	3.296	3.178
∠ _{(N1-C21-C1) (deg)}	90.43	91.00	90.23	89.97	91.57	90.37	88.34	91.60	92.04	92.09	97.77	98.15	97.04

Table S4. Main geometrical parameters (Interatomic distances, in Å, and bond angles, in[°]) for the complex 3_{Me} at different level of theory.

Table S5. Experimental and/or optimized (M06-2X/6-31G** level of theory) geometrical parameters for complexes 3_{Me} , 4, 6^{Me} (OTf), 7, and 8.

bond or angle ^a	3 _{Me} (exp)	3 _{Me} (theo)	4 (exp)	4(theo)	[6 ^{Me}](OTf)(exp)	$[6^{Me}](OTf)(theo)^{b}$	7	8
Fe-C3	2.044	2.075	2.031	2.065	2.003	2.079	2.074	2.061
N1-C4	1.463	1.480	1.464	1.495	1.423	1.431	1.480	1.477
N2-C5	1.455	1.476	1.464	1.494	1.423	1.428	1.479	1.474
C4-O3	1.236	1.227	1.219	1.215	1.198	1.203	1.229	1.229
C5-O4	1.241	1.227	1.221	1.214	1.205	1.204	1.225	1.228
C4-X	1.401	1.401	1.333	1.331	1.373	1.374	1.399	1.401
C5-X	1.396	1.401	1.330	1.330	1.365	1.372	1.403	1.401
C1-C21	2.720	2.811	2.867	2.816	2.856	2.856	2.755	2.663
C1-C26	2.922	2.896	2.924	2.908	3.020	2.939	2.878	2.909
C2-C31	3.180	3.105	3.095	3.119	3.042	3.070	3.142	3.243
C2-C36	3.052	2.908	3.001	2.923	2.930	2.955	2.935	/
Fe-C1-O1	174.00	169.77	171.84	170.22	171.96	166.65	164.906	163.15
Fe-C2-O2	165.48	165.49	168.73	165.31	171.29	169.76	171.047	178.77

^a bond lengths in Å and bond angles in deg; ^b for **6**^{Me}, the geometry optimization was carried out by taking into account the counter-anion.

Table S6. Experimental and theoretical topological analysis of complex 3_{Me}^{a}

Molecular grap including bcp's (red dots), rcp's (yellow dots), and bp's (black lines) within or close to that plane.

bond	$R_{\rm b}^{\rm b}$	<i>d</i> 1	d2	$\rho(r_b)^c$	$\nabla^2 \rho(\mathbf{r}_{\rm b})^d$	λ_1^{e}	λ_2^{e}	λ_3^{e}	ε ^f	$G\rho(\mathbf{r}_{b})^{\mathrm{g}}$	${\rm G} ho({ m r}_{ m b})/ ho({ m r}_{ m b})$	$V\rho(r_b)^g$	$H\rho(r_b)^g$
Fe1-C1	1.793	0.908	0.893	0.95	13.42	-4.29	-3.74	21.46	0.15	1.36	1.44	-1.79	-0.43
	1.889	0.971	0.926	0.75	11.89	-3.30	-2.31	17.48	0.44	1.05	1.40	-1.27	-0.22
Fe1-C2	1.782	0.907	0.875	1.09	13.48	-5.18	-4.91	23.56	0.06	1.55	1.43	-2.16	-0.61
	1.876	0.970	0.913	0.76	13.31	-2.75	-2.45	18.19	0.30	1.14	1.50	-1.35	-0.21
Fe1-C3	2.044	0.967	1.079	0.62	8.03	-2.09	-1.87	11.99	0.11	0.74	1.19	-0.91	-0.17
	2.075	0.966	1.111	0.60	6.72	-2.01	-1.58	10.52	0.12	0.64	1.07	-0.81	-0.17
01-C1	1.145	0.749	0.395	3.23	-11.26	-35.07	-32.74	56.55	0.07	5.16	1.60	-11.11	-5.95
	1.133	0.757	0.376	3.18	33.04	-34.91	-18.92	102.83	0.00	7.55	2.38	-12.79	-5.23
O2-C2	1.142	0.756	0.387	3.12	10.39	-32.41	-30.55	73.35	0.06	5.83	1.87	-10.93	-5.10
	1.133	0.756	0.376	3.18	32.82	-35.08	-18.93	102.90	0.00	7.55	2.37	-12.79	-5.24
N1-C3	1.355	0.823	0.532	2.18	-23.80	-16.84	-14.97	8.01	0.13	1.83	0.84	-5.34	-3.51
	1.349	0.891	0.458	2.16	-17.34	-15.62	-8.78	13.56	0.02	2.30	1.06	-5.81	-3.51
N1-C4	1.455	0.837	0.618	1.80	-11.31	-14.09	-11.88	14.66	0.19	1.61	0.90	-4.02	-2.41
	1.476	0.891	0.561	1.67	-15.24	-11.41	-5.19	7.05	0.05	0.92	0.55	-2.90	-1.99
N1-C21	1.446	0.822	0.624	1.87	-13.19	-13.88	-13.39	14.08	0.04	1.67	0.89	-4.26	-2.59
	1.439	0.911	0.529	1.82	-18.64	-12.40	-6.12	5.78	0.03	1.13	0.62	-3.56	-2.44
N2-C3	1.362	0.804	0.558	2.27	-23.58	-18.20	-15.54	10.16	0.17	2.04	0.90	-5.74	-3.70
	1.347	0.890	0.457	2.16	-17.29	-15.59	-8.85	13.73	0.01	2.31	1.07	-5.84	-3.53
N2-C6	1.462	0.843	0.620	1.75	-10.70	-13.54	-11.43	14.27	0.18	1.54	0.88	-3.82	-2.28
	1.480	0.915	0.565	1.66	-15.00	-11.33	-5.13	7.14	0.05	0.90	0.54	-2.84	-1.95
N2-C31	1.448	0.837	0.611	1.79	-12.29	-13.16	-12.33	13.20	0.07	1.55	0.87	-3.97	-2.42
	1.441	0.913	0.529	1.81	-18.41	-12.29	-11.93	5.81	0.03	1.12	0.62	-3.55	-2.42
C4-C5	1.396	0.736	0.660	2.17	-19.65	-17.95	-13.84	12.14	0.30	2.02	0.93	-5.41	-5.01
	1.401	0.743	0.658	2.07	-20.12	-15.43	-5.49	7.43	0.27	0.70	0.34	-2.80	-2.11
C5-C6	1.401	0.673	0.728	2.14	-17.99	-17.54	-12.99	12.53	0.35	2.01	0.94	-5.28	-3.27
	1.401	0.659	0.743	2.06	-19.93	-15.37	-5.47	7.44	0.28	0.70	0.34	-2.79	-2.10
C5-C7	1.498	0.767	0.731	1.78	-13.47	-12.61	-11.44	10.59	0.10	1.46	0.82	-3.87	-2.41
	1.500	0.765	0.735	1.69	-13.77	-11.16	-4.04	8.02	0.05	0.42	0.25	-1.80	-1.39

^{*a*}Top line experimental values, second line (italic) theoretical values from isolated molecule DFT calculation. ^{*b*}R_b is the interatomic distance (Å); *d*1 and *d*2 are the distances of the bcp from the two atoms (Å); ^{*c*} $\rho(\mathbf{r}_b)$ is the ED (e.Å⁻³); ^{*d*} $\nabla^2 \rho(\mathbf{r}_b)$ is the Laplacian of the ED (e.Å⁻⁵); ^{*e*} λ_{1-3} are the curvatures of the bond (e.Å⁻⁵); ^{*f*} ϵ is the ellipcity of the bond; ^{*g*} $G\rho(\mathbf{r}_b)$, $V\rho(\mathbf{r}_b)$, and $H\rho(\mathbf{r}_b)$ are the kinetic, potential, and total electron energy densities estimated using the approximation of Abramov (hartree.Å⁻³).¹²

¹² Abramov, Y. A. Acta Crystallogr., Sect A. 1997, 53, 264.

Table S7. AIM analysis for complex 4.

Molecular graph including bcp's (red dots), rcp's (yellow dots), and bp's (black lines).

bond	ρ(r _b) (eÅ ⁻³)	$ abla^2 ho(r_b)$ (eÅ ⁻⁵)	3	н	δ(A/B)	bond	ρ(r _b) (eÅ ⁻³)	$\nabla^2 \rho(r_b)$ (eÅ ⁻⁵)	3	н	δ(A/B)
C1 - N54	2.19	-18.29	0.01	-3.58	1.10	H5 - H32	0.05	0.75	0.46	0.01	0.02
C2 - N55	2.36	-29.34	0.14	-3.70	1.08	C21 - C30	1.70	-14.26	0.03	-1.41	1.01
C1 - N56	2.19	-18.13	0.03	-3.58	1.09	C30 - H31	1.85	-22.57	0.01	-1.89	0.96
C3 - N55	2.36	-29.35	0.14	-3.71	1.08	C30 - H32	1.85	-22.34	0.01	-1.88	0.93
C1 - Fe59	0.61	6.93	0.12	-0.17	0.62	C30 - H33	1.85	-22.94	0.01	-1.89	0.93
C4 - H5	1.92	-25.09	0.01	-2.02	0.93	C34 - N56	1.83	-18.48	0.03	-2.48	0.89
C4 - C6	2.00	-17.76	0.25	-1.94	1.30	C3 - N56	1.62	-13.92	0.06	-1.77	0.74
C6 - H7	1.91	-24.88	0.02	-2.01	0.94	C34 - C35	2.07	-19.61	0.24	-2.05	1.29
C6 - Fe59	0.47	5.08	4.35	-0.13	0.33	C35 - C36	2.09	-20.00	0.21	-2.08	1.35
C4 - Fe59	0.47	4.57	1.29	-0.14	0.30	C36 - H37	1.88	-23.59	0.02	-1.94	0.95
C6 - C8	1.94	-16.88	0.21	-1.83	1.22	C36 - C38	2.09	-20.10	0.20	-2.09	1.36
C8 - Fe59	0.47	4.79	2.57	-0.14	0.32	C34 - C62	0.11	1.15	0.60	0.01	0.05
C8 - H9	1.90	-24.57	0.02	-1.99	0.96	C38 - C39	2.08	-19.90	0.20	-2.06	1.35
C12 - Fe59	0.45	5.22	12.40	-0.12	0.33	C39 - C41	2.09	-20.04	0.21	-2.09	1.37
C4 - C12	1.98	-17.45	0.23	-1.90	1.27	C39 - H40	1.88	-23.54	0.02	-1.94	0.95
C8 - C10	2.01	-18.02	0.25	-1.97	1.32	H7 - C50	0.05	0.69	1.44	0.01	0.02
C10 - C12	1.97	-17.31	0.22	-1.87	1.25	H5 - H52	0.05	0.71	0.50	0.01	0.02
C10 - Fe59	0.46	4.54	1.44	-0.14	0.30	C34 - C41	2.08	-19.87	0.22	-2.06	1.28
C10 - H11	1.91	-24.67	0.01	-1.99	0.96	H25 - H45	0.05	0.58	0.07	0.01	0.02
C12 - H13	1.92	-25.37	0.02	-2.04	0.93	C35 - C42	1.70	-14.15	0.03	-1.39	1.01
C14 - N54	1.81	-18.19	0.03	-2.45	0.89	C42 - H43	1.86	-22.95	0.01	-1.90	0.94
C2 - N54	1.63	-14.00	0.06	-1.78	0.74	C42 - H45	1.81	-21.33	0.01	-1.82	0.93
H13 - C21	0.07	0.86	0.12	0.01	0.03	C42 - H44	1.86	-22.90	0.01	-1.91	0.95
C14 - C15	2.09	-19.95	0.24	-2.08	1.30	C38 - C46	1.70	-14.30	0.03	-1.40	1.01
C15 - C16	2.08	-19.83	0.21	-2.07	1.35	C46 - H47	1.83	-22.08	0.01	-1.86	0.95
C16 - H17	1.88	-23.57	0.02	-1.94	0.95	C46 - H48	1.86	-22.66	0.01	-1.90	0.96
C16 - C18	2.09	-20.07	0.21	-2.09	1.37	C46 - H49	1.85	-22.63	0.01	-1.89	0.96
C18 - C19	2.08	-19.88	0.20	-2.06	1.35	H51 - O58	0.07	0.91	0.52	0.01	0.03
C19 - C21	2.09	-19.97	0.21	-2.08	1.36	C41 - C50	1.70	-14.29	0.03	-1.41	1.01
C19 - H20	1.88	-23.49	0.02	-1.94	0.95	C50 - H51	1.86	-23.20	0.01	-1.91	0.92
C14 - C21	0.06	0.77	0.25	0.01	0.02	C50 - H52	1.85	-22.50	0.01	-1.89	0.93
C15 - C22	2.08	-19.93	0.23	-2.07	1.28	C50 - H53	1.85	-22.36	0.01	-1.88	0.96
C22 - H25	1.70	-14.16	0.03	-1.40	1.00	C2 - 057	2.74	4.19	0.12	-4.66	1.13
C22 - H23	1.84	-22.11	0.01	-1.87	0.93	C3 - O58	2.75	4.40	0.13	-4.66	1.14
C22 - H24	1.86	-22.75	0.01	-1.90	0.95	C15 - C63	0.07	0.93	2.73	-0.08	0.02
C18 - C26	1.85	-22.70	0.01	-1.88	0.93	Fe59 - C62	0.75	11.83	0.44	-2.54	0.74
C26 - H27	1.70	-14.26	0.03	-1.39	1.01	Fe59 - C63	0.76	13.31	0.30	-2.70	0.78
C26 - H28	1.85	-22.60	0.01	-1.89	0.96	O60 - C62	3.18	33.13	0.00	-25.60	1.55
C26 - H29	1.86	-22.67	0.01	-1.90	0.96	O61 - C63	3.18	32.91	0.00	-25.61	1.56
H33 - O57	1.83	-22.07	0.01	-1.86	0.95	l					

Theoretical values from isolated molecule DFT calculation. $\rho(\mathbf{r}_b)$ is the ED (e.Å⁻³); $\nabla^2 \rho(\mathbf{r}_b)$ is the Laplacian of the ED (e.Å⁻⁵); ε is the ellipcity of the bond; $H\rho(\mathbf{r}_b)$ is the total electron energy density. δ (A-B) is the delocalization index.

Table S8. AIM analysis for complex 6^{Me}(OTf).

Molecular graph including bcp's (red dots), rcp's (yellow dots), and bp's (black lines).

bond	ρ(r _b) (eÅ ⁻³)	∇²ρ(r _b) (eÅ⁻⁵)	8	н	δ(А/В)	bond	ρ(r _b) (eÅ ⁻³)	∇²ρ(r _b) (eÅ⁻⁵)	8	н	δ(А/В)	
C3 - Fe67	0.56	7.13	0.19	-0.14	0.58	C36 - H37	1.85	-22.56	0.01	-1.88	0.94	ĺ
C4 - N60	1.90	-20.73	0.10	-2.41	0.82	C36 - H39	1.81	-21.47	0.01	-1.82	0.93	l
C5 - N62	1.91	-21.00	0.09	-2.42	0.82	C27 - C36	1.70	-14.19	0.02	-1.40	1.01	l
C4 - N61	2.14	-24.59	0.13	-3.27	0.89	C36 - H37	1.85	-22.56	0.01	-1.88	0.94	
C6 - N61	1.61	-12.15	0.03	-2.19	0.86	C36 - H38	1.86	-23.00	0.01	-1.91	0.95	l
C5 - N61	2.13	-24.63	0.13	-3.23	0.89	H39 - H59	0.06	0.70	0.10	0.01	0.02	ĺ
C6 - H7	1.90	-24.07	0.04	-1.96	0.93	C2 - C40	0.07	0.84	6.20	0.01	0.03	ĺ
C6 - H8	1.93	-25.42	0.03	-2.04	0.91	C3 - N62	2.14	-18.11	0.06	-3.47	1.06	
C6 - H9	1.92	-25.82	0.03	-2.04	0.89	H19 - C41	0.06	0.82	1.65	0.01	0.02	l
C14 - Fe67	0.47	4.70	2.39	-0.14	0.32	C40 - C41	2.07	-19.79	0.22	-2.05	1.29	
C12 - Fe67	0.47	5.03	3.79	-0.13	0.34	C42 - H43	1.88	-23.65	0.02	-1.94	0.95	l
C16 - Fe67	0.47	4.55	1.66	-0.14	0.31	C41 - C42	2.08	-19.87	0.20	-2.07	1.36	
C18 - Fe67	0.46	5.16	6.73	-0.13	0.35	C42 - C44	2.08	-19.94	0.20	-2.07	1.36	l
C10 - Fe67	0.47	4.44	1.73	-0.14	0.30	C40 - C47	2.08	-19.64	0.25	-2.06	1.30	
N62 - 071	0.09	1.19	2.15	0.01	0.05	C44 - C52	1.70	-14.26	0.03	-1.39	1.01	
H51 - 071	0.12	1.38	0.10	0.00	0.06	C44 - C45	2.09	-20.06	0.20	-2.08	1.36	
C10 - H11	1.93	-26.82	0.01	-2.09	0.88	C45 - H46	1.88	-23.61	0.02	-1.95	0.95	l
C10 - C12	1.99	-17.70	0.23	-1.93	1.29	C45 - C47	2.08	-19.85	0.21	-2.07	1.35	l
C12 - H13	1.91	-24.99	0.02	-2.01	0.94	C40 - N62	1.73	-15.92	0.02	-2.33	0.86	l
C12 - C14	1.94	-16.87	0.21	-1.82	1.22	H49 - O66	0.06	0.81	0.74	0.01	0.02	l
C14 - H15	1.90	-24.54	0.01	-1.99	0.96	C41 - C48	1.70	-14.29	0.03	-1.42	1.01	l
C10 - C18	1.98	-17.48	0.22	-1.90	1.27	C48 - H49	1.84	-22.58	0.01	-1.87	0.92	l
C14 - C16	2.02	-18.07	0.25	-1.97	1.32	C48 - H51	1.89	-24.09	0.01	-1.97	0.90	1
C16 - C18	1.96	-17.20	0.21	-1.86	1.24	C48 - H50	1.84	-22.29	0.01	-1.88	0.95	155
C16 - H17	1.90	-24.58	0.01	-1.99	0.96	H11 - 071	0.13	1.45	0.05	0.00	0.06	1
C18 - H19	1.92	-25.25	0.02	-2.03	0.94	C52 - H53	1.86	-22.66	0.01	-1.90	0.96	l
C1 - C20	0.10	1.07	0.62	0.01	0.05	C52 - H54	1.85	-22.50	0.01	-1.88	0.96	l
C3 - N60	2.15	-17.70	0.06	-3.50	1.07	C52 - H55	1.84	-22.29	0.01	-1.87	0.95	l
C20 - C21	2.08	-19.88	0.22	-2.06	1.29	C56 - H59	1.83	-21.97	0.01	-1.86	0.92	l
H13 - H30	0.05	0.79	1.36	0.01	0.01	C47 - C56	1.69	-14.13	0.03	-1.39	1.00	
C22 - H23	1.89	-23.78	0.02	-1.95	0.95	C56 - H57	1.86	-22.96	0.01	-1.91	0.95	l
C21 - C22	2.08	-19.87	0.20	-2.06	1.36	C56 - H58	1.84	-22.31	0.01	-1.86	0.94	
C22 - C24	2.08	-19.95	0.20	-2.07	1.36	O66 - F75	0.02	0.49	0.06	0.01	0.01	l
C20 - C27	2.07	-19.58	0.25	-2.05	1.29	C5 - 071	0.09	1.26	9.89	0.01	0.02	
C24 - C32	1.70	-14.30	0.02	-1.40	1.01	C1 - O63	3.18	33.30	0.00	-5.24	1.56	
C24 - C25	2.08	-20.03	0.20	-2.08	1.35	C2 - 064	3.18	33.18	0.00	-5.25	1.56	
C25 - H26	1.88	-23.59	0.02	-1.94	0.95	C4 - O65	2.81	6.65	0.13	-4.80	1.17	
C25 - C27	2.09	-19.95	0.21	-2.08	1.36	C5 - O66	2.80	6.03	0.12	-4.78	1.16	l
C20 - N60	1.74	-15.91	0.02	-2.35	0.86	C1 - Fe67	0.74	11.61	0.44	-0.21	0.73	1
H11 - H30	0.05	0.76	1.18	0.01	0.01	C2 - Fe67	0.74	12.49	0.37	-0.20	0.75	l
C21 - C28	1.70	-14.35	0.03	-1.43	1.01	C6 - F75	0.03	0.49	1.38	0.01	0.01	1
N60 - 071	0.07	0.89	1.13	0.00	0.04	H49 - F74	0.02	0.36	1.11	0.01	0.01	l
H30 - 071	0.08	0.94	0.11	0.00	0.04	H9 - 070	0.10	1.17	0.07	0.00	0.05	
C28 - H29	1.84	-22.94	0.01	-1.88	0.90	H29 - O70	0.06	0.73	0.24	0.01	0.03	1
C28 - H30	1.87	-23.38	0.02	-1.94	0.90	071 - S72	1.82	23.90	0.06	-2.03	0.89	l
C28 - H31	1.85	-22.52	0.01	-1.89	0.95	C68 - S72	1.35	-10.85	0.00	-1.04	0.65	1
C32 - H34	1.86	-22.70	0.01	-1.90	0.96	C68 - F73	1.88	-1.18	0.19	-2.78	0.67	l
C32 - H33	1.85	-22.63	0.01	-1.89	0.96	O69 - S72	1.91	28.77	0.06	-2.16	1.00	l
C32 - H35	1.83	-22.11	0.01	-1.86	0.95	O70 - S72	1.89	27.29	0.06	-2.12	0.97	l
C36 - H39	1.81	-21.47	0.01	-1.82	0.93	C68 - F74	1.85	-1.49	0.20	-2.72	0.66	l
C27 - C36	1.70	-14.19	0.02	-1.40	1.01	C68 - F75	1.83	0.00	0.21	2.58	0.66	l

Theoretical values from isolated molecule DFT calculation. $\rho(\mathbf{r}_b)$ is the ED (e.Å⁻³); $\nabla^2 \rho(\mathbf{r}_b)$ is the Laplacian of the ED (e.Å⁻⁵); ε is the ellipcity of the bond; $H\rho(\mathbf{r}_b)$ is the total electron energy density. δ (A-B) is the delocalization index.

Table S9. AIM analysis for complex 7.

Molecular graph including bcp's (red dots), rcp's (yellow dots), and bp's (black lines).

bond	ρ(r _b) (eÅ ⁻³)	∇²ρ(r₅) (eÅ⁻⁵)	8	н	δ(A/B)	bond	ρ(r _b) (eÅ ⁻³)	∇²ρ(r₅) (eÅ⁻⁵)	3	н	δ(А/В)
Fe1 - C10	0.6	6.9	0.1	-0.2	0.6	C30 - C31	2.1	-20.8	0.2	-2.2	1.3
Fe1 - C8	0.7	11.6	0.4	-0.2	0.7	C28 - C33	2.1	-19.9	0.2	-2.1	1.3
Fe1 - C9	0.8	13.6	0.3	-0.2	0.8	C31 - C32	2.1	-21.0	0.2	-2.2	1.3
C8 - C20	0.1	1.2	0.4	0.0	0.1	C32 - C33	2.1	-19.9	0.2	-2.1	1.3
N6 - C10	2.2	-17.6	0.0	-3.6	1.1	O5 - H56	0.1	0.9	0.7	0.0	0.0
N6 - C11	1.7	-15.1	0.1	-2.0	0.8	H39 - H55	0.1	0.7	0.2	0.0	0.0
04 - C11	2.7	2.8	0.1	-4.5	1.2	C29 - C34	1.7	-14.3	0.0	-1.4	1.0
N7 - C10	2.1	-16.9	0.0	-3.5	1.1	H49 - H57	0.0	0.5	0.1	0.0	0.0
C12 - C13	2.1	-20.1	0.3	-2.1	1.2	C33 - C35	1.7	-14.2	0.0	-1.4	1.0
C9 - C33	0.1	0.9	2.4	0.0	0.0	C14 - H36	1.8	-22.3	0.0	-1.9	1.0
C11 - C12	2.1	-20.0	0.3	-2.1	1.2	C14 - H38	1.8	-22.1	0.0	-1.9	1.0
N7 - C13	1.7	-14.9	0.0	-2.0	0.8	C15 - H39	1.9	-25.1	0.0	-2.0	0.9
O5 - C13	2.7	1.6	0.1	-4.5	1.2	C16 - H40	1.9	-24.9	0.0	-2.0	0.9
O2 - C8	3.2	33.2	0.0	-5.2	1.6	C17 - H41	1.9	-24.6	0.0	-2.0	1.0
O3 - C9	3.2	32.7	0.0	-5.2	1.6	C18 - H42	1.9	-24.7	0.0	-2.0	1.0
C12 - C14	1.7	-13.8	0.0	-1.4	1.0	C19 - H43	1.9	-25.3	0.0	-2.0	0.9
C14 - H37	1.9	-23.3	0.0	-1.9	0.9	C22 - H44	1.9	-23.8	0.0	-2.0	0.9
Fe1 - C15	0.5	4.6	1.3	-0.1	0.3	C26 - H46	1.9	-23.1	0.0	-1.9	0.9
Fe1 - C16	0.5	5.0	4.4	-0.1	0.3	C26 - H47	1.9	-22.5	0.0	-1.9	0.9
Fe1 - C18	0.5	4.5	1.4	-0.1	0.3	C26 - H48	1.8	-22.4	0.0	-1.9	1.0
Fe1 - C19	0.4	5.2	13.5	-0.1	0.3	C27 - H49	1.8	-21.2	0.0	-1.8	0.9
C16 - C17	1.9	-16.9	0.2	-1.8	1.2	C27 - H50	1.9	-23.0	0.0	-1.9	0.9
C15 - C16	2.0	-17.8	0.2	-1.9	1.3	C27 - H51	1.9	-22.9	0.0	-1.9	1.0
Fe1 - C17	0.5	4.8	2.6	-0.1	0.3	C30 - H52	1.9	-25.1	0.0	-2.0	0.9
C17 - C18	2.0	-18.1	0.2	-2.0	1.3	C32 - H53	1.9	-25.2	0.0	-2.0	0.9
C18 - C19	2.0	-17.4	0.2	-1.9	1.3	C34 - H54	1.9	-22.6	0.0	-1.9	1.0
C15 - C19	2.0	-17.4	0.2	-1.9	1.3	C34 - H55	1.9	-22.6	0.0	-1.9	0.9
N6-C20	1.8	-17.7	0.0	-2.5	0.9	C34 - H56	1.9	-23.1	0.0	-1.9	0.9
H40 - H47	0.0	0.7	1.8	0.0	0.0	C35 - H57	1.8	-22.4	0.0	-1.9	0.9
C20 - C21	2.1	-19.9	0.2	-2.1	1.3	C35 - H58	1.9	-22.9	0.0	-1.9	1.0
C21-C22	2.1	-20.0	0.2	-2.1	1.4	C35 - H59	1.0	-22.7	0.0	-1.9	0.9
C22 - C25	2.0	-19.1	0.2	-2.0	1.5	CS1 - N60	1.7	-17.5	0.1	-2.2	0.8
C20 - C25	2.1	-19.0	0.2	-2.0	1.5	N60 - 061	5.4	-25.1	0.1	-4.4	1.7
C23 - C24	2.0	-19.2	0.2	-2.0	1.5	N60 - 062	5.4	-25.1	0.1	-4.4	1.7
04 446	2.1	-20.0	0.2	-2.1	1.4	N03 - C00	1.0	-10.5	0.1	-2.5	0.9
U4 - H40	0.1	0.9	0.5	0.0	0.0	C23 - IN05	2.1	-21.1	0.1	-5.1	1.0
C21 C26	0.1	0.7	0.5	0.0	1.0	1N05 - C04	1.0	-10.5	0.1	-2.5	0.9
C21 - C20	1.7	-14.5	0.0	-1.4	1.0	C64 - H65	1.5	-22.5	0.0	-1.5	0.9
C23 - C27	1.7	-14.2	0.0	-1.4	1.0	C64 - H65	1.9	-23.5	0.0	-2.0	0.9
N7 - C28	1.5	-23.0	0.0	-2.0	0.9	C68 - H69	1.5	-23.4	0.0	-1.5	0.9
C20 - H/3	0.1	-15.0	0.1	-2.4	0.5	C68 - H70	1.5	-22.5	0.0	-1.5	0.5
C29 - 1143	2.1	-20.0	0.1	-2.1	13	C68 - H71	1.5	-23.3	0.0	-2.0	0.9
C20 - C29	2.1	-20.0	0.2	-2.1	1.5	00-171	1.5	-23.5	0.0	-1.5	0.5
225-030	2.1	-20.0	0.2	-2.1	1.4						

Theoretical values from isolated molecule DFT calculation. $\rho(\mathbf{r}_b)$ is the ED (e.Å⁻³); $\nabla^2 \rho(\mathbf{r}_b)$ is the Laplacian of the ED (e.Å⁻⁵); ε is the ellipcity of the bond; $H\rho(\mathbf{r}_b)$ is the total electron energy density. δ (A-B) is the delocalization index.

Table S10. AIM analysis for complex 8.

Molecular grap including bcp's (red dots), rcp's (yellow dots), and bp's (black lines)

bond	ρ(r _b) (eÅ ⁻³)	∇²ρ(r _b) (eÅ⁻⁵)	8	н	δ(A/B)	bond	ρ(r _b) (eÅ ⁻³)	∇²ρ(r _b) (eÅ⁻⁵)	8	н	δ(A/B)
Fe1 - C8	0.79	15.50	0.04	-0.20	0.82	C20 - C21	2.08	-19.86	0.23	-2.06	1.26
Fe1 - C9	0.74	11.46	0.40	-0.21	0.72	C21 - C22	2.09	-20.01	0.23	-2.10	1.38
Fe1 - C10	0.62	6.84	0.12	-0.18	0.62	C22 - C23	2.03	-19.15	0.20	-1.98	1.26
N7 - C10	2.17	-17.62	0.02	-3.53	1.10	C20 - C25	2.07	-19.60	0.24	-2.04	1.26
N6 - C11	1.68	-15.62	0.05	-2.03	0.80	C23 - C24	2.03	-19.13	0.20	-1.97	1.25
N7 - C13	1.66	-15.15	0.05	-1.98	0.79	C24 - C25	2.10	-20.05	0.23	-2.11	1.38
C12 - C14	1.69	-13.78	0.05	-1.39	1.01	C21 - C26	1.70	-14.30	0.03	-1.41	1.01
C9 - C20	0.14	1.40	0.16	0.01	0.08	C25 - C27	1.70	-14.19	0.03	-1.39	1.01
C11 - C12	2.07	-20.03	0.28	-2.10	1.21	C14 - H30	1.83	-21.79	0.01	-1.84	0.95
N7 - C20	1.83	-18.18	0.02	-2.49	0.89	C15 - H31	1.91	-25.12	0.01	-2.01	0.94
O5 - C13	2.66	2.08	0.08	-4.48	1.17	C16 - H32	1.91	-24.68	0.02	-2.00	0.95
O2 - C8	3.17	32.28	0.00	-5.23	1.55	C17 - H33	1.90	-24.58	0.02	-1.99	0.96
C8 - H47	0.09	1.10	0.45	0.01	0.03	C18 - H34	1.91	-24.69	0.01	-2.00	0.96
O3 - C9	3.17	32.88	0.00	-5.22	1.55	C19 - H35	1.91	-24.89	0.02	-2.01	0.95
N6 - C10	2.18	-16.82	0.03	-3.58	1.11	C22 - H36	1.89	-23.76	0.03	-1.97	0.94
C12 - C13	2.07	-20.08	0.28	-2.11	1.21	C53 - H56	1.86	-22.82	0.03	-1.88	0.93
N6 - C44	1.73	-16.84	0.04	-2.22	0.91	C49 - H50	1.86	-22.82	0.03	-1.88	0.93
04 - C11	2.65	2.12	0.08	-4.46	1.17	C24 - H37	1.90	-23.79	0.03	-1.98	0.94
C14 - H29	1.86	-22.88	0.01	-1.91	0.95	C26 - H40	1.85	-23.03	0.01	-1.90	0.93
C14 - H28	1.86	-22.88	0.01	-1.91	0.95	C26 - H38	1.84	-22.31	0.01	-1.88	0.96
Fe1 - C15	0.47	4.61	1.28	-0.14	0.30	C26 - H39	1.85	-22.50	0.01	-1.89	0.93
Fe1 - C16	0.47	5.06	3.19	-0.13	0.33	C27 - H42	1.86	-22.81	0.01	-1.91	0.96
Fe1 - C19	0.45	5.44	12.54	-0.12	0.33	C27 - H41	1.82	-21.70	0.01	-1.84	0.94
C16 - H47	0.06	0.74	0.68	0.01	0.02	C27 - H43	1.85	-22.84	0.01	-1.89	0.94
Fe1 - C18	0.46	4.52	1.35	-0.14	0.30	O4 - H46	0.16	2.58	1.23	0.02	0.06
C15 - C16	2.00	-17.65	0.25	-1.94	1.30	C44 - H46	1.94	-25.80	0.02	-2.06	0.90
Fe1 - C17	0.46	4.84	3.83	-0.13	0.31	C44 - H45	1.87	-23.23	0.03	-1.91	0.92
C16 - C17	1.94	-16.91	0.21	-1.83	1.22	C44 - H47	1.91	-24.04	0.03	-1.99	0.91
C17 - C18	2.02	-18.08	0.25	-1.98	1.32	C23 - N48	2.06	-21.13	0.08	-3.12	1.04
C15 - C19	1.98	-17.49	0.24	-1.90	1.27	N48 - C49	1.79	-18.34	0.05	-2.26	0.94
C18 - C19	1.96	-17.16	0.22	-1.86	1.24	N48 - C53	1.79	-18.34	0.05	-2.26	0.94
O3 - C24	0.06	0.75	3.65	0.01	0.03	C49 - H51	1.89	-23.90	0.03	-1.96	0.93
O5 - H40	0.06	0.85	0.86	0.01	0.03	C49 - H52	1.88	-23.35	0.03	-1.92	0.92
H35 - H39	0.05	0.64	0.18	0.01	0.02						

Theoretical values from isolated molecule DFT calculation. $\rho(\mathbf{r}_b)$ is the ED (e.Å⁻³); $\nabla^2 \rho(\mathbf{r}_b)$ is the Laplacian of the ED (e.Å⁻⁵); ε is the ellipcity of the bond; $H\rho(\mathbf{r}_b)$ is the total electron energy density. δ (A-B) is the delocalization index.

Analysis of the influence of the electronic properties of the carbene and of the N-substituents on the interligand interaction

Both experimental and optimized geometries of complexes 4 and 6^{Me} also exhibit a somewhat unsymmetrical geometry, one of the $C_{ipso}(aryl)...C(\equiv O)$ distances being slightly shorter than the other one (Table S5). As a matter of fact, the variation of σ -donor effects along the series of free carbenes $\mathbf{1}_{Me}$. \mathbf{K}^+ , $\mathbf{2}^-$. \mathbf{K}^+ and 2_{Me} (n_C^{σ} : -6.40 eV for 1_{Me} .K⁺, -6.60 eV for 2⁻.K⁺ and -7.3 eV for 2_{Me}), coherent with the IR observations (donor effect : $1_{Me} > 2^{-}$), is not substantiated by important changes in the geometry of these complexes. As previously observed for 3^{Me} , the AIM analysis of the theoretical ED within these complexes in their optimized geometry also reveals the recurrence of bcp's between the Cipso and Cortho of each aryl ring, and their proximal CO ligand (Tables S7 and S8). Topological characteristics ($\rho(\mathbf{r}_b), \nabla^2 \rho(\mathbf{r}_b)$) and derived values (including E_{int}) as well as delocalization indices at these pairs of bcp's appear to be very similar to those appearing in the molecular graph of 3_{Me} and do not reveal any clear trend between the electron donating properties of the malo- or imidNHC rings and the magnitude of the weak non-covalent interactions (Tables S7 and S8). In the same way, the calculated energies E_{int} and the NBO stabilizing energies $\Delta E(2)$ are only weakly modified and do not exceed respectively 3 and 5 kcal/mol. The strongest interaction, even if it remains weak, corresponds to the shortest $C_{Mes}...C_{C=O}$ distance. As previously observed for $\mathbf{3}_{Me}$, the NLMO associated with the $\pi_{C=C}^{Mes}$ orbitals involved in the interaction with the $\pi *_{C=O}$ orbitals presents a weak CO participation. The latter is quasi similar for the three complexes 3_{Me} , 4 and 6^{Me} (OTf), the highest participation corresponding to the shortest C_{Mes}...C_{CO} contact (Table S11). By contrast, the electron richness of the aryl ring appears to be more influential on these interligand interactions. In order to bring support to this hypothesis, DFT calculations were conducted on the unsymmetrical model complex 7 derived from 3_{Me} by formal substitution of the 4-Me groups of the two Mesityl substituents by an NMe₂ group and an NO₂ group respectively. These changes do not affect the steric hindrance of the aryl groups, remaining a priori constant. Very characteristically, the DFT geometry optimization carried out on 7 leads to a slightly more unsymmetrical structure than that previously observed for $\mathbf{3}_{Me}$. It is characterized by a shortening of the $C_{ipso}(aryl)...C(\equiv O)$ distance involving the aryl group bearing the 4-NMe₂ donor substituent (C1...C21 = 2.755 Å, Table S5), and an increase in the $C_{ortho}(aryl)...C(\equiv O)$ distance involving on the other side the aryl group bearing the 4-NO₂ donor substituent (C2...C36: 2.935 Å). Beyond distance variations, the AIM and NBO analyses conducted as above (Table S12 and S13) indicate a strengthening of the C1...C21 interaction, concomitant with a weakening of the C2...C26 one, corroborating our previous demonstration that the magnitude of such interactions is sensitive to the electron-richness of the aryl ring,¹³ favoring the $\pi(C_{ipso}=C_{ortho})$ to $\pi^*(C\equiv O)$ donation. For the shortest contact, the energy value E_{int} becomes higher than 3 kcal.mol⁻¹ and the $\Delta E(2)$ NBO stabilizing energy becomes higher than 5 kcal.mol⁻¹.

It is noteworthy that the magnitude of such an interaction is even more strengthened in the case of a totally unsymmetrical structure such as **8**, in which the nitrogen substituents are a para-NMe₂-2,6-dimethylphenyl substituent on one side and a methyl group on the other side. Here, the stabilizing interaction on the aryl group side is maximised up to 6.9 kcal.mol⁻¹, leading to a significant shortening of the $C_{Mes}...C_{CO}$ bond (2.663 Å) and an even more bent carbonyl group, with a Fe-C-O bond angle of 163.15°. In the same way, the density $\rho(r_b)$ is 0.14 Å.bohr⁻³ with a delocalization index $\delta(C_{Mes},C_{CO})$ around 0.08 and the energy E_{int} is the highest calculated (3.8 kcal.mol⁻¹). All these results are corroborated by the NLMO analysis, associated with the $\pi_{C=C}$ orbital of the aryl group since the small participation of the $\pi^*_{C=O}$ orbital slightly increases from **3**_{Me} to **8** (Table S13 : %C : from 0.5 to 1.4; %O : from 0.2 to 0.5).

Analysis of the bonding situation of the Fe-C_{carbene} bond in 3_{Me}, 4 and 6^{Me}(OTf)

An analysis of the bonding situation of the Fe-C_{carbene} bond reveals the presence of a strong donor-acceptor interaction between the carbene unit and the FeCp(CO)₂ fragment. The sum of the stabilizing interaction $[\Delta E(2)]$ at the second order perturbation theory between the carbene lone pair (hybridization : ~40%s, ~60%p) and an orbital involving the mixing of the s and d_{z2} orbitals of iron is strong around 140-150 kcal.mol⁻¹, which is in the range of a covalent bond (Table S11). The corresponding NLMO (Plot see Figure S2) presents a

¹³ Valyaev, D. A.; Brousses, R.; Lugan, N.; Fernández, I.; Sierra, M. A. Chem. Eur. J. 2011, 17, 6602.

major contribution from the carbene center (~79-80 %) and a "delocalization tail" from the metal center (15-17%).

NBO analysis		
	$\Delta E(2)^{a}$	NLMO ^b
	$n_C^{\sigma} \rightarrow Fe$	n _C ^σ
3 _{Me}	$n_{C3}^{\sigma} \rightarrow s_{(Fe)}$: 74.45	C ₃ : 79.2 %
	$n_{C3}^{\sigma} \rightarrow d_{(Fe)}$: 70.97	Fe : 17.0 %
4	$n_{C3}^{\sigma} \rightarrow s_{(Fe)}$: 74.78	C ₃ : 79.2 %
Me	$n_{C3}^{\sigma} \rightarrow d_{(Fe)} : 71.32$	Fe : 17.2 %
$[6^{MC}](OTf)$	$n_{C3}^{\sigma} \rightarrow s_{(Fe)}$: 77.25	$C_3: 81.1\%$
	$n_{C3}^{o} \rightarrow d_{(Fe)} : 45.66$	Fe : 15.2 %

Table S11. NBO analysis of the C \rightarrow Fe interaction in the three for the complexes 3_{Me} , 4 and $6^{Me}(OTf)$.

^{*a*} Stabilizing energy in kcal/mol; ^{*b*} Natural Localized Molecular Orbital associated with the n_c^σ orbital.

Table S12. Topological analysis of the C(aryl)...C(=O) bond critical points^{*a*}

complex	contact	$R_b^{\ b}$	$\rho(\mathbf{r}_{b})^{c}$	$\nabla^2 \rho(\mathbf{r_b})^d$	$G\rho(\mathbf{r}_{b})^{e}$	$V\rho(\mathbf{r}_{b})^{e}$	δ(CC) ^f	E_{int}^{g}
3 _{Me} ^a	C1C21	2.7197(4)	0.13	1.15	0.08	-0.08	n/a	3.9
		2.811	0.11	1.16			0.05	2.7
	C2C36 ^{<i>h</i>}	3.0518(5)			bcp not obs	served expe	rimentally	
		2.908	0.08	0.95	0.05	-0.04	0.02	1.9
4	C1C21	2.816	0.11	1.15	0.07	-0.06	0.05	2.7
	C2C36 ^{<i>h</i>}	3.119	0.07	0.93	0.04	-0.04	0.02	2.0
[6 ^{Me}]OTf	C1C21	2.856	0.10	1.07	0.06	-0.05	0.05	2.4
	C2C31 ^{<i>h</i>}	3.070	0.07	0.84	0.05	-0.04	0.03	1.8
7	C1C21	2.755	0.12	1.25	0.08	-0.07	0.06	3.1
	C2C36 ^{<i>h</i>}	2.935	0.07	0.91	0.05	-0.04	0.02	1.9
8	C2C31	2.663	0.014	1.40	0.09	-0.08	0.08	3.8

^{*a*} For $\mathbf{3}_{Me}$: top line experimental values, second line (italic) theoretical values from isolated molecule DFT calculation; ^{*b*} R_b is the interatomic distance (Å); ^{*c*} $\rho(\mathbf{r}_b)$ is the ED (e.Å⁻³); ^{*d*} $\nabla^2 \rho(\mathbf{r}_b)$ is the Laplacian of the ED (e.Å⁻⁵); ^{*e*} $G\rho(\mathbf{r}_b)$, and $V\rho(\mathbf{r}_b)$ are the kinetic and potential electron energy densities, respectively, estimated using the approximation of Abramov^{ref} (hartree.Å⁻³); ^{*f*} δ (C...C) are the delocalization indices; ^{*g*} E_{int} is the interaction energy estimated using Espinoza correlation scheme (kcal.mol⁻¹). ^{*h*} for the weak interaction C(aryl)...C(=O) either C_{ipso} (labeled C₂₁) or C_{ortho} (labeled C₃₆) carbon atom of the aryl group is involved.

Table S13. NBO analysis of the C(aryl)...C(\equiv O) non-covalent weak interactions for compounds 3_{Me} , 4, 6_{Me} (OTf), 7 and 8 at the M06-2X/6-31G^{**} level of theory.

NBO Analysis						
	$\pi_{C=C} \rightarrow \pi^*_{C=O}$ inter	action involved in	$\pi_{C=C} \rightarrow \pi^*_{C=O}$ inter	action involved in		
	the major C _{Me}	sC _{CO} contact	the minor C _{Mes} C _{CO} contact			
	$\Delta E(2)^{a}$	NLMO ^b	$\Delta E(2)^{a}$	NLMO ^b		
	$\pi_{C=C} \rightarrow \pi^*_{C=O}$	$\pi_{C=C}$	$\pi_{C=C} \to \pi^*_{C=O}$	$\pi_{C=C}$		
		C ₂₁ : 43.8 %		C ₃₁ : 43.5 %		
3	4.4	C ₂₆ : 38.8 %	3.4	C ₃₆ : 39.1 %		
JMe	4.4	$C_1: 0.6\%$	5.4	$C_2: 0.3\%$		
		$O_1: 0.2 \%$		O ₂ : 0.1 %		
		C ₂₁ : 43.8 %		C ₃₁ : 43.9 %		
Λ	4.0	C ₂₆ : 38.9 %	26	C ₃₆ : 39.0 %		
4	4.7	C ₁ : 0.6%	2.0	C ₂ : 0.3%		
		O ₁ : 0.2 %		O ₂ : 0.1 %		
		C ₂₁ : 45.6 %		C ₃₁ : 45.2 %		
	27	C ₂₆ : 38.1 %	2.4	C ₃₆ : 38.8 %		
0 (011)	5.7	C ₁ : 0.5%	5.4	C ₁ : 0.3%		
		$O_1: 0.2 \%$		$O_1: 0.1 \%$		
		C ₂₁ : 48.8 %		C ₃₁ : 42.8 %		
7	5.2	C ₂₆ : 33.7 %	20	C ₃₆ : 38.0 %		
1	5.2	$C_1 : 1.0\%$	2.0	$C_2: 0.3\%$		
		$O_1: 0.4 \%$		O ₂ : 0.1 %		
		C ₂₁ : 48.8 %				
8	6.0	C ₂₆ : 32.4 %	/	1		
	0.9	$C_1: 1.4\%$	/	1		
		$O_1: 0.5 \%$				

^{*a*} Stabilizing energy in kcal.mol⁻¹; ^{*b*} Natural Localized Molecular Orbital associated with the $\pi_{C=C}^{aryl}$ orbital involved in the weak interaction $\pi_{C=C}^{aryl} \rightarrow \pi^*_{C=O}$.

Figure S3. Contour plot of the Laplacien $\nabla^2 \rho(BCP)$ with charge accumulation ($\nabla^2 \rho(r) < 0$) printed in blue and charge deplection ($\nabla^2 \rho(r) > 0$) printed in red for the complexes **3**_{Me}, **4** and **6**^{Me}(**OTf**).

Figure S4. Molekel plot (cutoff : 0.05) for the NLMO associated with the C \rightarrow Fe interaction in the complex 3_{Me} .

Electronic delocalization in complexes 3_{Me} , 4 and $6^{Me}(OTf)$.

In agreement with the experimental description of the geometrical structure given in the main text, the calculated geometrical parameters and the AIM analysis carried out for the three complexes show that compounds 3_{Me} and 4 can be described as the juxtaposition of two π -systems, namely, NCN NCN ($4\pi e^{-1}$ system) and O=CXC=O ($6\pi e^{-1}$ system) units whereas in $6^{Me}(OTf)$ an electronic delocalization occurs between these two units. Indeed, a slight decrease of the central C-N bond lengths (1.46 to 1.48 Å versus 1.43Å) and a slight increase of the density $\rho(r_b)$ from 1.6-1.7 Å.bohr⁻³ in 3_{Me} and 4 to 1.9 Å.bohr⁻³ in $6_{Me}(OTf)$ are theoretically observed (Figure S3).

Figure S5. Electronic delocalization and density $\rho(\mathbf{r}_b)$ in e⁻Å⁻³ for the carbene skeleton in the complexes $\mathbf{3}_{Me}$, 4 and 6^{Me}(OTf).

3 _{Me}				
Fe	-0.00507100	-1.55535200	-0.28001400	
0	2.46071500	-2.49974100	1.14385600	
0	-1.66354500	-2.43539800	2.05669900	
0	2.33530800	3.15164600	-0.48730500	
0	-2.34992800	3.18835100	0.04478900	
Ν	1.12934800	1.22470800	-0.11219300	
Ν	-1.13519900	1.23502100	0.01662200	

1		-1.70+31300	0.002+3700
-	1.08214100	-1.98685300	1.19400100
-(0.00503000	0.50247700	-0.01194700
1	.21400800	2.68484100	-0.31427400
-(0.00713300	3.37050400	-0.27439700
-	1.22421400	2.71036500	-0.05815000
(0.01291700	4.86047300	-0.44644700
-(0.20378400	-1.24211600	-2.41857000
(0.92636400	-2.05054900	-2.16400100
(0.46336700	-3.25228600	-1.54416800
-(0.93638900	-3.16364000	-1.41475100

С	-1.35864800 -1.91021500 -1.93964100	С	-0.21190900 -1.30841600 -2.	32201700
С	2.42075800 0.63125800 0.11356200	Н	-0.20234700 -0.37044200 -2	.85921500
С	3.26690600 0.34154700 -0.96252200	С	0.92480400 -2.08670100 -2.	01002200
С	4 50798500 -0 22814400 -0 68378800	Н	1.94806900 -1.86417500 -2.	27910000
Č	4 94703800 -0 43170100 0 62585000	С	0.47299500 -3.23505500 -1.	28831200
C	A 11751600 _0 03414300 _1 67329900	Н	1.09750600 -4.03383800 -0.	91137100
C	2 85126100 0 40666700 1 42822800	С	-0.92630100 -3.14236200 -1.	15462900
C	2.85120100 0.47000700 1.45852800	Н	-1.56203300 -3.85274200 -0	.64243500
C	2.89509700 0.73814900 -2.30374900	С	-1.35950300 -1.93798800 -1.	77713600
C	6.285/4900 -1.06486400 0.90205400	Н	-2.37877300 -1.58814000 -1	.84133900
C	1.9482/100 0.86888/00 2.58428600	C	-2.43427100 0.77575800 0.	09310300
С	-2.42898400 0.62194400 0.18342100	C	-2.86968700 0.55912100 1.	40247200
С	-3.28332900 0.50338400 -0.91553400	C	-4.12654000 -0.01434700 1.	59764500
С	-4.52210700 -0.10898000 -0.72578400	Н	-4.46486800 -0.2067/400 2.	61322400
С	-4.94156400 -0.54093100 0.53245700	C	-4.96453600 -0.31/63800 0.	52613100
С	-4.10488000 -0.30994600 1.62368700	C	-4.539/6200 0.0161/500 -0.	/6141/00
С	-2.85919000 0.29814800 1.47293200	H	-5.20944100 -0.14/21/00 -1	00501400
С	-2 91816000 1 10071800 -2 24581700	C	-3.29135000 0.58929200 -0.	56924200
Č	-6 29466000 -1 17690100 0 72397200	C	-2.03328600 1.01469800 $2.$	51419200
C	2 02223200 0 66270700 2 66073000	Н	-2.46/3/900 0.68491300 3.	51418300
С U	-2.02223200 0.00279700 2.00973900 0.51022700 5.25551400 0.20466000	H	-1.98229900 2.10890600 2.	51522800
п	1.00022200 5.22441000 0.51759000	П	-1.00301000 0.03032400 2.	74015200
Н	-1.00922200 5.23441900 -0.51758000	C II	-0.50480900 -0.90919800 0.	02715600
H	0.56/50000 5.13//9000 -1.34803300	п	-7.04023300 -0.39849300 0.	75909200
Н	-0.18446800 -0.26011800 -2.87060600	п	-0.07437000 -0.7772000 1.	620/2700
Н	1.95309900 -1.81309500 -2.40539800	C II	-0.23831100 -2.03473000 0.	36/37200
Н	1.08064700 - 4.08327700 - 1.23020400	ч	-3.48042700 = 0.57348400 = 3	1/670100
Η	-1.58059100 -3.91049100 -0.96938300	н	-1.84790700 0.97259800 -2	56292400
Н	-2.37615500 -1.55374000 -1.98438000	Н	-3 13146600 2 15786900 -2	41705200
Η	5.16835500 -0.47725700 -1.51169500	C	2 41889100 0 80233200 0 0	3979900
Н	4.45922100 -0.15086800 2.69926000	Č	2.86813600 0.77945500 1	36563900
Н	3 10379200 1 80586500 -2 48138200	Č	4 14035600 0 27528100 1	52617500
Н	1 82895600 0 60248900 -2 55662000	Н	4.49642600 0.24570600 2.	55335100
н	3 46850500 0 17578500 -3 10502000	C	4.95744300 -0.20442600 0.	60389100
ц	6 18735100 2 15107300 1 00237000	С	4.49999900 -0.11099000 -0.	71220200
и П	6 71600200 0 68564100 1 82101600	Н	5.15072900 -0.42557100 -1.	52538500
	(0.0216600 - 0.08304100 - 0.00204000 - 0.002000 - 0.002000 - 0.002000 - 0.0000 - 0.0000 - 0.00000 - 0.0000 - 0.0000 - 0.00000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.00000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.00000 - 0.00000 - 0.0000 - 0.0000 - 0.00000 - 0.00000 - 0.00000 - 0.0000 - 0.00000 - 0.0000 - 0.0000 - 0.00000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.000000 - 0.0000 - 0.0000 - 0.0000 - 0.000000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.0000000 - 0.00000000	С	3.25194500 0.42630900 -1.	02066000
п	0.99210000 -0.80943900 0.09204900	С	1.98091100 1.25025700 2.4	48766400
H	1.20693500 0.07941800 2.77002400	Н	1.46890900 2.18294700 2.1	23468200
Н	1.39560100 1.79058600 2.38186700	Н	2.56253600 1.40796400 3.1	39763700
Н	2.52429400 0.99842000 3.50236900	Н	1.20527800 0.50710700 2.	71729800
Н	-5.18674900 -0.22565800 -1.57940900	С	6.30301200 -0.80808200 0.	91023000
Η	-4.43579200 -0.59226500 2.62081700	Н	6.22137900 -1.89325500 1.	03394300
Η	-3.45775100 0.61912200 -3.06499800	Н	6.71691700 -0.40043900 1.	83530600
Η	-1.84520200 1.04401900 -2.43996300	Н	7.01512200 -0.62004300 0.	10331500
Н	-3.17497500 2.16468800 -2.22453700	С	2.86088800 0.69756400 -2.	44651800
Н	-7.01932800 -0.44112700 1.08717500	Н	3.08124500 1.74559800 -2.	67052100
Н	-6 25170400 -1 98509300 1 45868500	Н	1.79032000 0.56027400 -2.	61022500
Н	-6 67804800 -1 58527100 -0 21374800	Н	3.41420900 0.06008800 -3.	14085600
н	-0.98878800 0.31618900 2.58084200	N	-1.13356500 1.35350700 -0.	11638100
и П	2 44881600 0 24020400 2 58577000	N	-0.01957400 3.45578300 -0.	53031700
н Ц	-2.44881000 0.24929400 5.58577000 1 02027500 1 75254100 2 76117200	N	1.11634500 1.35091200 -0.	21361500
11	-1.7000/300 1./3334100 2./011/800	0	-2.20/05400 3.34191900 $-0.$	13/20000
		U E	2.239/0100 3.25593500 -0.	80990200 16822100
4		ге	0.00555100 - 1.4408/400 - 0.24025000 1	10823100
-	-0.00582600 0.62286800 0.07707400	0	2.49033900 -2.24233000 l.	2002/300 22620100
C	-1 16789500 2 84061400 -0 25862400		-1.03/02900 -2.108/1300 2. 1.58775100 -1.77276500 0.	23038100 81224500
č	1 14140200 2 80686300 -0 55241100	C	1.36773100 - 1.77370300 0. -1.06708400 1.74280800 1	01234300 3/137600
C	1.17170200 2.00000000 -0.JJ2 7 1100	C	-1.00/00400 -1./4200000 1.	54152000

6 ^{Me} (OTf).			
C	-2.95699300	1.66027200	-0.64749000
С	-0.81039800	3.34307300	-0.36586200
С	-0.35723900	0.47141500	0.42894300
С	-0.46846000	-1.57234300	1.81447400
С	1.60353300	-0.32457600	1.70741100
С	1.46243300	-2.41015000	3.00317000
Н	0.91593300	-2.47814700	3.94486500
Н	2.49618100	-2.12025500	3.17169100
Н	1.40370700	-3.35603800	2.46209800
С	-0.09938700	0.34320400	-2.54281400
Н	0.45456700	-0.53409800	-2.22245200
С	-1.48168700	0.38617100	-2.84339600
Н	-2.15990900	-0.45578900	-2.84680500
С	-1.81553200	1.73738900	-3.17597200
Н	-2.79391900	2.10241800	-3.46027500
С	-0.64678200	2.51495100	-3.05764300
Н	-0.57729800	3.58214400	-3.22594600
С	0.41763700	1.66088300	-2.64467700
Н	1.44030500	1.96406700	-2.47887900
С	-2.43796900	-0.80774400	0.69362600
С	-2.86382100	-1.70060300	-0.29591600
С	-4.24046500	-1.87625100	-0.45176000
Н	-4.59289100	-2.55387000	-1.22631600
С	-5.16738200	-1.25584500	0.38818000
С	-4.69172000	-0.44700900	1.42090000
Н	-5.39757900	0.01584600	2.10698700
С	-3.32952100	-0.20847500	1.59045900
С	-1.88574300	-2.51423400	-1.09244800
Н	-1.47860800	-3.31691600	-0.46464300
Н	-1.02971600	-1.92633500	-1.42516200
Н	-2.36527900	-2.97133600	-1.96092400
С	-6.64681100	-1.45904700	0.18825200
Н	-7.18911200	-1.36309700	1.13200800
Н	-6.85637200	-2.44592100	-0.23136000
Н	-7.04728100	-0.71081100	-0.50419100
С	-2.84869800	0.70589000	2.68499300
Н	-1.96257400	0.31159600	3.19152300
Н	-3.63193800	0.85416600	3.43062900
Н	-2.58598500	1.69272200	2.28182800
С	1.65305800	1.85536200	0.70296600
С	2.70577800	1.92693100	-0.21729600
С	3.37305200	3.14752100	-0.33465300
Н	4.17982300	3.22884100	-1.06053700
С	3.06950300	4.24561600	0.47313700
С	2.07776400	4.09922700	1.44219000
Н	1.84886200	4.92923700	2.10659100
С	1.36894100	2.90593100	1.58201000
С	3.17845400	0.72880100	-0.99024500
Н	3.83486500	0.13157800	-0.34734500
Н	3.74575800	1.03304200	-1.87363200
Н	2.36719800	0.06278700	-1.28379600
С	3.84405200	5.53154800	0.33919200
H	3.32426400	6.36105200	0.82387200
Н	4.00105200	5.78950700	-0.71158900
H	4.83013900	5.43455200	0.80512800
C	0.33140500	2.75469100	2.66318500
Н	0.30590700	3.64286500	3.29717100

0.54656600	1.88663700	3.29627600
-0.67110000	2.60671100	2.24823100
-1.01792000	-0.60136300	0.91621300
0.84192800	-1.37037700	2.16902800
0.90662200	0.62210300	0.89121700
-4.08207500	1.78098500	-0.60017100
-0.72299400	4.43340300	-0.07300500
-1.14636400	-2.46298400	2.25775300
2.75755400	-0.14555700	2.00700100
-1 11909600	1 63961900	-1 12645000
3 26862200	-3 33884400	-0 59954200
1 15778600	-3 68156200	-2 14557700
0.88887800	-3 91257900	0 32645700
1 27391700	-1 69825700	-0 67468000
1 44148200	-3 16761600	-0.80947500
2 65826700	4 60780500	0.70020300
3.03830700	-4.00/80300	-0.70920300
2 62151000	-2.01094900	-1.51025800
3.03131000	-2.8894/400	0.01001/00
0.00574(00	1 42001 500	0 41102000
-0.085/4600	-1.42991500	-0.41103900
2.43365600	-2.40512400	0.90/18400
-1.67848000	-2.361/2900	1.947/0300
2.27683100	3.26949600	-0.42909800
-2.40721700	3.30884300	0.12273800
1.06376800	1.33043100	-0.13707300
-1.19832500	1.35965100	-0.00381900
1.52252300	-1.87415200	0.49244400
-1.11226200	-1.90753800	1.07768000
-0.07412700	0.61522500	-0.06842400
1.15620000	2.80049100	-0.26969000
-0.05910900	3.49619300	-0.18275600
-1.28001900	2.83697900	-0.00590300
-0.02372500	4.99325200	-0.26853700
-0.30860300	-1.05825500	-2.53908100
0.81279600	-1.88736000	-2.32081500
0.34228300	-3.09856000	-1.72415900
-1.05461700	-2.99619500	-1.57621400
-1.46654900	-1.72433700	-2.06192600
2.35247000	0.71269400	0.03310400
3 18103300	0 47229600	-1 06842000
4 43131700	-0.09621000	-0 85884000
4 91715700	-0 35461400	0.44002100
4 10368300	0.01426300	1 52960200
2 83475400	0 54413700	1 33590900
2.03475400	0.92350400	-2 44359100
1 96507400	0.92550400	2 51935800
2 /0/01200	0.75781800	2.51955800
-2.49491800	0.73781800	0.1515/900
-3.33000000	0.09107400	-0.33120800
-4.39/08/00	0.0851/200	-0./840/800
-4.95528/00	-0.3831/000	0.4/220200
-4.15130400	-0.22095700	1.58/89500
-2.90630200	0.38760500	1.436/9000
-2.99064700	1.33557200	-2.25819500
-2.05394200	0.71192900	2.63343300
0.68118600	5.40819800	0.45826100
-1.01972200	5.39415700	-0.07680200
0.30862500	5.32796700	-1.25700500
-0.28175900	-0.06738200	-2.97059300

 $\begin{array}{c} \mathrm{H} \\ \mathrm{H} \\ \mathrm{N} \\ \mathrm{N} \\ \mathrm{N} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{F} \\ \mathrm{F} \\ \mathrm{F} \\ \mathrm{F} \\ \mathrm{F} \end{array}$

Н	1.84001800	-1.65521000	-2.56668500		С	-0.98684100	0.94288300	-2.54770400
Н	0.95226100	-3.94504400	-1.43894800		C	-0.85272700	1.15836300	2.46459100
Н	-1.70352000	-3.74677300	-1.14401100		H	3.13188600	4.85263600	0.13266700
Н	-2.48111900	-1.35942100	-2.09673800		Н	1.40059600	5.15629500	-0.20246300
Н	5.05724500	-0.28461700	-1.72313200		Н	2.50548700	4.73369500	-1.51283400
Н	4,45464900	-0.11614600	2.54593500		Н	2,98929600	-0.80362500	-1.94658200
Н	2 98070800	1 99502900	-2 52451200		Н	3 85176900	-2 68020900	-0 22570000
Н	1 70269700	0 79531200	-2 61184200		Н	1 89736600	-4 52741800	0.03087300
Н	3 32537900	0 39182400	-3 22288700		Н	-0 13303800	-3 80131700	-1 55455900
Н	1 20994700	0.09669200	2 68100100	-	Н	0 54232500	-1 51262800	-2 80124100
Н	1 43005400	1 82115400	2 37227200	-	Н	-3 54456900	0.25534100	-2.10186100
Н	2 56105700	0.95117600	3 43079400		Н	-3 46368600	0 54674700	2 20380400
Н	-5 29451500	-0.01421000	-1 60837300		Н	-1 48226900	0.40601800	-3 36061000
Н	-4 50492400	-0 55286700	2 55671400		Н	0.07151100	0.67143000	-2 52437300
н	-3 56642600	0.91561000	-3 08569400	-	н	-1 02879800	2 01761300	-2.32+37500
Н	-1 92505200	1 23954100	-2 47417500		H	-0.06294600	0.42392600	2 66202100
н	-3 20153800	2 40688800	-2.47417500		н Ц	-1.52185300	1 17650900	3 32650400
и П	-5.20155800	0.37500100	2 51401500		и П	-1.52185500	2 13401700	2 27872200
н ц	-1.02030700	0.37399100	2.51401500		C	-0.30444200	2.13401700	2.37873300
п u	-2.40330200	1.70023000	2 76078500		с u	3.79291300	0.02882200	0.78012000
П N	-2.02080400	1.79923900	2.70078300			4.3/918000	-0.28323300	-0.08937200
IN O	-0.239/4800	-1.0404/000	0.03180/00			4.43303300	0.0030/800	1.38810200
0	-0.30339300	-1.43234100	1.74334300		П N	5.48225500	-0.84229700	1.34/04000
U N	-0.95080200	-1.1/455/00	-0.30213300		N	-5.03215400	-0.04348900	0.10989000
N	6.15342500	-0.93269800	0.63469400			-5./453/500	0.096/0800	1.362/1900
C	6./01/8500	-0.98846200	1.9/410000		H	-5./2093200	1.12556500	1./4906100
H	6.05911200	-1.583/2300	2.63116200		H	-6./8582/00	-0.19158500	1.21316500
H	/.6//65200	-1.4/256500	1.93821900		H	-5.32343500	-0.56592000	2.12559400
H	6.82337600	0.00/90900	2.42172000		C	-5.79387300	-0.07514300	-1.12166900
C	7.05161900	-1.0/435000	-0.49293/00		H	-5.39405/00	-0.83038100	-1.80622700
H	7.29225700	-0.11020900	-0.96255800		H	-6.82473000	-0.34708700	-0.89477200
Н	7.97930200	-1.53403500	-0.15242000		H	-5.79504800	0.89325400	-1.64208500
Н	6.61781900	-1.72843400	-1.25681900					
				1	 K ⁺			
8				-	C	-0.21663100	-0.56548300	-0.10113000
Fe	1 11538200	-1 71552100	0.04690700		Č	-1 24653600	1 64812300	-0 63967400
0	1 67056600	-2 05837100	2 96161000		C	1 20771800	1 41133000	-0.61850100
Õ	-1 83741300	-2 16198500	0 38075500		C C	0.15572000	3 60921800	-1 30179800
0	4 20548200	2 51291000	0.26305700	-	н	-0 57670000	3 76372700	-2 09824900
0	-0 36324000	3 30303400	-0 58684600	-	н	1 15498200	3 80532300	-1.70351000
N	2 63937600	0.83237000	0 38253300		H	-0.09362600	4 37933800	-0.55015400
N	0.44146500	1 21196200	0.56255500	-	n C	-2 57520100	-0.32945100	-0.07670400
C	1 44602600	-1.93/07000	1 85681500		C C	-3 28964200	-0.32745100	1 08381600
C	-0.76746600	-1.93407000	0.30033600		C C	-3.28904200	-0.02797400	1.08581000
C C	-0.70740000	-1./943/900	0.30033000		с u	-4.33213000	-0.03091000	2 17047700
C	2 01201000	0.51713900	0.22383300		п С	-5.09809500	-0.40287200	2.17047700
C	5.01591000	2.23/34200	0.14394900		C C	-3.003/3400	-1.31392700	0.3312/400
C	1.903/8300	3.09823800	-0.20213500			-4.32400300	-1.78308200	-0.81950500
C	0.03989300	2.05345100	-0.30663200	-	п	-4./28/0400	-2.46459500	-1.3030/900
C	2.26/6/300	4.54416300	-0.4594/000		C	-3.0/8/5800	-1.20011000	-1.044/8100
C	2.45239600	-1.69694800	-1.65518900			-2.72762500	0.93303800	2.09592100
C	2.89424000	-2.66429900	-0.72559200		H	-2.70499900	1.94230100	1.6/240300
C	1.864/3300	-3.64/51100	-0.596/3500		H	-1./0234/00	0.65611900	2.36586500
C	0.803/1200	-3.2/15/900	-1.44160000		Н	-3.33512500	0.94324800	3.00350800
C	1.14905500	-2.04965300	-2.08/19500		U	-6.39390300	-2.18398100	0.565/2600
C	-0.94562100	0.84211400	-0.03116200		H	-6.92069700	-2.35566700	-0.3/648900
C	-1.65656100	0.68663800	-1.22600100		H	-7.03524800	-1.57/01900	1.20947100
C	-3.00995800	0.3/909/00	-1.16//1400		Н	-6.26291000	-5.15/04/00	1.0510/900
C	-3.69291200	0.28428500	0.06194700		U	-2.28806800	-1.49859100	-2.28973400
C	-2.96690900	0.55161000	1.24129900	-	H	-2.01828000	-0.57404600	-2.81026400
(C)	-1.60995000	0 83979300	1.20220600		н	-2 86417800	-2 12607100	-7 97293300

-1 35636600	-2.01222400	-2.03349900	(3 02140100
2 15233000	-0.76834400	-0.05807700		-	1 64212400
2.15255900	1 15754200	1 24820000	L		1 26171200
2.43830900	-1.13/34200	1.24650900	1 T	1 ·	2 14024700
3.57872700	-1.90008900	1.45557600	1	1 ·	2.14024700
3.82005700	-2.2/90/300	2.46/83800	F	1 .	-0./1624400
4.38960400	-2.37029600	0.39769500	(5.74689100
4.05193500	-1.96313800	-0.89208000	ŀ		-5.70061300
4.66775800	-2.28197900	-1.73041300	F	I -	6.63561700
2.93978200	-1.16092900	-1.14249200	H	ł .	-5.89079200
1.57887200	-0.74558900	2.39938700	(- 2	2.65962700
1.41225300	0.33960900	2.40783800	H	ł.	2.83121000
2.02490800	-1.03236700	3.35438400	ŀ	ł .	1.60241100
0.59169400	-1.20790600	2.30639500	ŀ	ł .	3.26021500
5.61252500	-3.21600200	0.64723400	Ν	1	1.21761600
5.88037000	-3.79455800	-0.24008600	Ν	J -	0.08771300
5,44994500	-3.91410300	1.47247200	Ν	J -	1.03129000
6 47497700	-2 59336700	0 90799200	()	2 18406600
2 58642000	-0 72644800	-2 53805600	Ć) .	2 33078900
3 18756100	-1 26154300	-3 27608700	k		1 50857100
2 76206600	0 34787200	-2 65027100	ľ		1.50057100
1 52862500	0.94787200	-2.74755800			
1.32802300	-0.91300300	-2.74733800	2		
-1.2/408400	0.20278800	-0.27490300	2	Me	0 00258400
0.96349300	0.04041600	-0.26366200		-	1.22208200
-2.29445/00	2.20803900	-0.78175500	(1.22298200
0.06308800	2.19658000	-0./9096800	(1.23154000
2.39/30500	1.83431600	-0.65935000	C	, - T	0.03833100
1.93236300	3.51633900	1.09110600	ŀ	1 ·	-0.53865200
			ŀ	1	0.98709600
			F		-0.60194700
			(-	2.38741200
0.16771000	-0.53324000	0.04891200	(-	3.16924600
1.15638600	1.74460100	-0.13626900	(-	4.36515300
-1.18702900	1.50833600	-0.21670500	F	I -	4.98891500
2.53405600	-0.27059900	0.05933700	(4.77746500
3.10206300	-0.80596000	-1.09509500	(3.96478300
4.36457800	-1.39152100	-0.99700500	H	ł ·	4.27488600
4.81877700	-1.81563800	-1.88982700	(- 2	2.76248900
5.05450100	-1.44102400	0.21195900	(- 5	2.73705000
4.45917200	-0.87817000	1.34183200	H	ł.	2.82597200
4.99034000	-0.89871900	2.29127600	ŀ	ł.	1.69335100
3.20037700	-0.28627400	1.28586400	ŀ	ł.	3.35671100
2.36619600	-0.74281200	-2.40588200	(- 2	6.05842800
2.96841800	-1.16957800	-3.21058400	H	ł.	6.53669800
2.12591500	0.29350400	-2.66589800	H	ł.	6.76663500
1.42131400	-1.29135200	-2.34723600	F	ł .	5.86574500
6 40584400	-2 10242500	0 30956300	(-	1 88756600
7 08972300	-1 51362800	0.92700000	F	Į.	1 68063900
6 85848900	-2 22683300	-0.67691600	I F	I I .	2 36898300
6 3 2 3 8 0 8 0 0	-2.22005500	0.76592000	I L	I	0.02614400
2 56302800	0.22555500	2 40815800	1	י <u>ו</u> ר	2 2001/200
2.30392800	0.333333500	2.49813800		- 1	2.39014800
3.16995200	0.19720300	3.36203900		-	2.70493400
1.38203000	-0.10891800	2.0928/100	(T	T	3.90329400 ·
2.42094900	1.408/2900	2.33514600	F	1	4.2/000100
-2.22202700	-0.6920/500	0.05042400	(4.//592600
-2.53279000	-1.55036400	-1.00518800	(<u>;</u>	4.36177400
-3.67598700	-2.34255100	-0.89630200	H	1	4.98036000
-3.92453600	-3.01824900	-1.71175900	(2	3.16785000
-4.50024700	-2.29154300	0.22497500	(1.88927100
-4.15373800	-1.42613200	1.26266300	H	1	1.68455600
-4.77806900	-1.38385700	2.15290900	H	ł	2.36911200

H C C C H C C H C C H H H C H H H C H H H N N O C O K

2.К⁺ С С С С С С С С Н С С Н С С Н Н С С Н Н

C H H H C H H H C C C H C C H

-3.02140100	-0.61841700	1.19571800
-1.64212400	-1.65086000	-2.21365500
-1.36171300	-0.66133600	-2.58781200
-2.14024700	-2.19844700	-3.01657900
-0.71624400	-2.17129500	-1.95065800
-5.74689100	-3.13459400	0.31345500
-5.70061300	-3.98369800	-0.37232600
-6 63561700	-2 54839000	0.05704000
-5 89079200	-3 52174800	1 32573300
-2 65962700	0.30502100	2 32686900
-2.83121000	1 3//75900	2.031/13600
-2.83121000	0.20492100	2.03143000
-1.00241100	0.20400100	2.3914/000
-5.20021500	0.08//3900	5.21250500
1.21/01000	0.31301000	-0.016/2300
-0.08//1300	2.2/609100	-0.25346800
-1.03129000	0.11689/00	-0.03004100
2.18406600	2.39/13800	-0.12799600
-2.33078900	1.98947800	-0.33399200
-1.50857100	4.40034100	-0.55368600
0.00258400	-0.25190200	-0.00199900
-1.22298200	1.89805800	-0.04593400
1.23154000	1.90429400	0.04013400
-0.03833100	4.00819300	-0.00309100
-0.53865200	4.35786000	-0.90702000
0.98709600	4.36522000	0.03475600
-0.60194700	4.35555600	0.86376000
-2 38741200	-0 22786500	-0.05869500
-3 16924600	-0 27770600	1 09547700
-4 36515300	-0.99165600	1.04021600
-4 98891500	-0.99103000	1 92979900
4 77746500	1 64170500	0.12172800
-4.77740300	-1.041/0300	-0.12172800
-3.904/8300	-1.30318000	-1.232/1800
-4.2/488000	-2.00434200	-2.10/90000
-2.76248900	-0.86119/00	-1.24451800
-2.73705000	0.42524200	2.35372400
-2.8259/200	1.50996000	2.23589600
-1.69335100	0.19793200	2.59374400
-3.35671100	0.12066700	3.19900400
-6.05842800	-2.43551400	-0.14978500
-6.53669800	-2.37839400	-1.13072800
-6.76663500	-2.07085900	0.59777800
-5.86574500	-3.49224700	0.06242000
-1.88756600	-0.79084400	-2.46719600
-1.68063900	0.24793400	-2.74565600
-2.36898300	-1.28190700	-3.31469100
-0.92614400	-1.27814900	-2.27662700
2.39014800	-0.22356300	0.05669400
2.76495400	-0.85285300	1.24569600
3.96329400	-1.56185100	1.25496400
4.27066100	-2.06265200	2.17041500
4 77592600	-1 64427200	0 12327500
4 36177400	-1 00332900	-1 04196500
4 98036000	-1.06315500	_1 03/31700
3 16785000	-0.28440000	-1.008/7100
1 00007100	0.20440900	-1.0704/100
1.0092/100	-0.77703200	2.40/43300
1.08455600	0.20314300	2.74255000
2.36911200	-1.20030200	3.3108/800

Н	0.92687400	-1.26287400	2.27785400
С	6.07893700	-2.40004100	0.17479200
Н	6.48819800	-2.55380300	-0.82598700
Н	5.94857300	-3.37883500	0.64438600
Н	6.82387200	-1.85183800	0.76038800
С	2.73203000	0.40724400	-2.36161300
Н	3.35166300	0.09823900	-3.20531900
Н	2.81786500	1.49312500	-2.25218300
Н	1.68867300	0.17520600	-2.59860500
N	-1.13319300	0.49378000	-0.02595900
N	0.00147500	2.54599900	-0.00327400
N	1.13577900	0.49871000	0.02130900
0	-2.26796100	2.50298100	-0.08712500
0	2.28482700	2.49425000	0.08173200

¹H NMR spectrum of [6^{Me}](TfO) (400 MHz, CD₂Cl₂)

S59