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Parallel implementations of docking programs SOLGRID & SOL 

Due to large computational demands for virtual screening of molecular databases the 

implementation of parallel multi-processor facilities into docking tools is extremely required. 

Programs GOLD
1
, FlexX & FlexE

2
 can use PVM (Parallel Virtual Machine) for simultaneous 

docking of many ligands on UNIX-clusters. In this case parallel computations are based on 

master-slave scheme, where one (indivisible) task for one machine is docking of one ligand from 

beginning to the end. Program ICM
3
 uses PBS (Portable Batch System) for analogous purposes. 

Program DOCK
4
 can use MPI through MPICH and MPICH2 libraries

5
. In this case parallel 

computations again based on master-slave scheme with the elemental task of one ligand docking. 

Virtual screening with DOCK can be started also with grid technology
6
. 

AutoDock can be used in various grid systems, such as FightAIDS@Home
7
 and Discover 

Dengue Drugs–Together
8
. DOVIS

9,10
, GriDock

11
 and other add-ons

12
 can be used with 

AutoDock for Linux-clusters; VSDocker
13
 can be used with AutoDock for Windows-clusters. 

These systems are created for maximal automation of docking, including preparing of input data 

(ligands and proteins) and sorting output data. AutoDock in these systems is used as executable 

unit without parallelization inside it. Program AutoDock Vina can use multicore processors, 

simultaneously performing optimization of different ligand poses
14,15

. Parallel docking on 

clusters with AutoDock was implemented in ref.
16
, through the simultaneous execution of 

independent runs of Lamarckian GA. Acceleration is close to linear when the number of 

processors is in the range 1-96. Program AutoGrid for grid potentials construction was not 

parallelized in this work. Parallel version of AutoDock for CUDA also exists
17
, however 

practically significant results have not been published yet. 

We have made MPI parallel implementations for one ligand docking by the program SOL as 

well as for  SOLGRID generating grids of protein-ligand interaction potentials. Our tests were 

carried out on cluster supercomputer Chebyshev, where each node had two 4-cores processors 



Intel Xeon E5472 3.0 GHz and 8 GB of RAM and InfiniBand DDR (Mellanox ConnectX) with 

latency of 1.3-1.95 microsecond and bandwidth of 1540 MB per second was used as MPI 

network. 

Parallel implementation of SOLGRID 

Potentials in each point are calculated independently. There are 101*101*101 = 1030301 space 

points, where potentials have to be calculated, so it is excellent opportunity for parallel 

calculations. One process is master and does not calculate potentials. Other processes are slaves. 

Master process divides grid to many slices, and dynamically distributes these slices one by one 

to slaves. Number of slices is much greater than number of slaves. But time of calculation 

potentials in one slice is much greater than MPI latency. Each slave calculates potentials in its 

area, then sends results to master process, and then receives new area until all potentials are 

calculated. 

Here and below we characterize parallel implementation in practical aspect by acceleration 

a(N) and efficiency e(N). Acceleration a(N)=t1/tN, where t1 is calculation time with one 

calculating process and tN is calculation time with N calculating processes. Efficiency 

e(N)=a(N)/N. Ideally, the efficiency is equal to 1. 

Figure 1 shows the acceleration and efficiency of the program SOLGRID on the number of 

processes in the range of 1-128. 



 

Figure 1. Dependence of acceleration (square points) and efficiency (triangular point) on the 

number of processes (N) of the program SOLGRID 

 

As can be seen from Figure 1, acceleration of SOLGRID remains almost linear up to 128 

processes. Thus, the calculation of the grid potentials on 100 cores will take a few minutes 

instead of hours required to calculate the grid potentials on one core. Moreover, the SOLGRID 

parallel version allows creating grid potentials directly on a cluster within a few minutes instead 

of transferring it through, usually slow, Internet connection. 

Parallel implementation of SOL 

Independent runs of genetic algorithm (GA) can be performed simultaneously. But we also 

implemented parallel execution of one run of GA. The basic idea in parallel execution of one GA 

run is that different ligand poses can be processed independently. There is an array of ligand 



poses on each GA iteration, these poses are modifications of previous successful poses; this array 

is called “population”. There are about 30000 ligand poses in the population. Processing of the 

population is about 80-90% of the overall time of GA performance. 

So, independent GA runs are simultaneously performed by groups of processes, and processes 

in each group simultaneously treat the population. We have suggested two approaches to parallel 

processing of the population: first approach with distributed storage of the population in 

processes, second approach with centralized storage of the population in memory of one process. 

Parallel implementation of SOL with distributed storage of the population 

The population is equally divided between the processes of one group. Each process handles 

only its slice of population, but synchronization is required to choose best poses in the entire 

population. It is a bottleneck of this approach. Also processing of independent GA runs cannot 

be easily switched between groups of processes. So it is necessary to organize execution of 

independent GA runs in such a way that it will be done by the same time. For example, if we 

have 50 independent GA runs and 30 processes, the best solution is to simultaneously execute 30 

GA runs (with 30/30=1 process per run), then simultaneously execute 15 GA runs (with 30/15=2 

processes per run), then simultaneously execute remaining 5 GA runs (with 30/5=6 processes per 

run). Such planning is performed by searching combination with lowest estimating time.  

Figure 2 shows the acceleration and efficiency of the program SOL with distributed storage of 

population on the number of processes in the range of 1-1024. 



 

Figure 2. Dependence of acceleration (square points) and efficiency (triangular point) on the 

number of processes (N) of program SOL with distributed storage of population. 

We can see that efficiency decreases rapidly from 100% to 40% when number of processes 

changes from 1 to 16, then efficiency slowly decreases from 40% to 20% when number of 

processes changes from 8 to 1024. 

Parallel implementation of SOL with centralized storage of the population 

In this realization population is stored only in one process in group (main process). This 

process alone finds best ligand poses, then transfer this poses to other processes in group. Then 

processes are continuously making slices of populations and send them to main process. Main 

process is also making slices of population. When the new population is fully filled by these 

slices, the iteration is repeated. 

This approach allows switching different GA runs between different groups of processes. 

There is master process, containing all best poses from all independent GA runs, and this process 



from time to time exchanging poses between independent GA runs. So number of groups of 

processes is not necessary equal to number of independent GA runs. 

Figure 3 shows the acceleration and efficiency of the program SOL with local storage of 

population on the number of processes in the range of 1-1024. 

 

Figure 3. Dependence of acceleration (square points) and efficiency (triangular point) on the 

number of processes (N) of program SOL with centralized storage of the population. 

We can see that efficiency again decreases rapidly from 100% to 40% when number of 

processes changes from 1 to 16, then efficiency slowly decreases from 40% to 30% when 

number of processes changes from 8 to 1024. 

Thereby for both parallel versions of SOL near linear scalability is observed in the range of 64-

1024 processes with efficiency about 20-40%. For mass screening it is better to execute many 

serial docking programs on the cluster. However these parallel versions of SOL can be useful for 



choosing docking parameters before mass screening or for analyzing particular ligand-protein 

complexes. 
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