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1. Quantum-mechanical consideration of tunneling probability through MoS2 barriers 

 In order to obtain the tunneling current density, we need to calculate the transmission 

probability through the barrier as below; 

T�E� � exp 	
2√2m∗� � �U�z� 
 E�� �⁄
�� �⁄ dz�, 

where m∗ is the out-of-plane effective mass of MoS2 (0.54m  for electrons and 0.44m  

for holes),  is the thickness of the barrier, and U�z� is the potential energy of the barrier as 

a function of . This consideration is valid for the direct tunneling regime, i.e., energy of 

tunneling carriers has to be always less than U�z�. Since there is an electric field between top 

and bottom graphene layers, the tunnel barrier must be a function of z, U�z� � 	Δ#,$ %qV(z d⁄ , where Δ# 	≅ 0.5	eV and Δ$ 	≅ 1.4	eV are the barrier height for electrons and holes, 

respectively. 

 Now, let us discuss effects of the band-movement at the interfaces between the MoS2 

and graphene. In the recent literature
1
, tunneling current can be modulated by taking into 



account Schottky barriers when the sandwiched MoS2 layer is doped. In fact, in this study, we 

consider an undoped MoS2 as an intrinsic semiconductor. In this case, there is no charge 

transfer from metal (graphene) to semiconductor (MoS2), so that we do not need to take into 

account any band-bending which is a result of the formation of depletion layers. Therefore, 

we can calculate transmission probability by using the flat band edges that have been proven 

to be reasonable for hBN by L. Britnell et al
2
. 

 

2. Non-linearity of carrier concentration induced by gate voltage 

 The heterostructure used in this study is consists of two graphene layers and a thin 

MoS2 layer, and the graphene layers are doped by applying gate voltage via a back gate 

electrode separated by an insulating layer as illustrated in Fig. 1 in the main text. Carrier 

concentration n(,- and n-,. in both bottom and top graphene layers induced by the gate 

voltage V/ has to satisfy following equations; 

ϵ1,23 V456h 
 ϵ89( V/d � en(,-, 
ϵ1,23 V456h � 
en-,., 


ϵ89( V/d � ep, 
where ϵ1,23 and ϵ89( are dielectric constant of MoS2 and substrate, and h and d are the 

thickness of MoS2 layer and substrate, respectively. V456 in these equations is a finite voltage 

difference between two graphene layers as below eV456 � 	√π�v<=�n-,. 
�n(,->. 
Combining above equations, one can obtain an equation regarding to n-,.; e�n-,.hϵ1,23 % √π�v<@�n-,. %An-,. % ϵ89(V/ed B � 0, 
and n-,. is calculated numerically. Similarly, n(,- is also calculated in the same manner. 

Here, we put n-,. and n-,. positive values in the case of n-doped graphene layers, but they 

can be negative in the case of p-doped grahene layers when the gate voltage is inversely 

applied. The calculated carrier concentration in the top and the bottom graphene layers is 

exhibited in Fig. 1s. 

 
Fig 1s Carrier concentration in top (red) and bottom (blue) graphene layers of graphene/MoS2/graphene 

heterostructure. Due to the screening from the bottom layer, more carriers are induced in the top layer. 

Gray dashed lines implies linear curves in order to verify the non-linearity of the carrier concentrations 

in graphene layers. 



 It clearly shows the non-linearity of the induced carrier concentration versus the gate 

voltage. Moreover, one can directly see that there always exists a difference in the carrier 

concentrations in top and bottom graphene layers. This difference produces different 

chemical potentials in each graphene layers from the relation between chemical potential and 

carrier concentration in graphene system; μ � 	sgn�n��v<�π|n| . However, the whole 

system should be in equilibrium without bias voltage applied between two grpahene layers. 

Thus, Dirac cone in top graphene layer has to be shifted in order to make the chemical 

potentials in both layers lies at the same energy as illustrated in Fig. 2s. Since the chemical 

potential difference between two graphene layers gets larger as gate voltage increases, the 

energy shift of Dirac cone μ  also depends on gate voltage. Due to the Dirac cone shift, the 

asymmetric characteristics of tunneling current arises with respect to the direction of the 

applied bias voltage (see Fig. 1s). 

 
Figure 2s Energetic diagrams in each case of quantum tunneling through the heterostructures. (a) In 

equilibrium, the difference of chemical potentials between the top and bottom graphene layers induces a 

finite electric field, resulting in the shift of Dirac cone. (b) and (c) When the bias voltage is applied 

between two graphene layers, net tunneling current density becomes non-zero, exhibiting asymmetric 

characteristics due to the induced potential GHIJK. 
 
3. Effects of doping MoS2 by dopants 

 In the present study, an intrinsic MoS2 layer is considered as a tunnel barrier and its 

Fermi level is aligned asymmetrically between the conduction and valence band edges. This 

asymmetry leads to the carrier-dependent feature of the tunneling current, resulting in small 

hole tunneling current due to the high tunnel barrier for holes. The hole tunneling current is 

needed to be increased because the very large spin-polarization is expected for hole tunneling 

through graphene/m-MoS2/graphene heterostructures. Here, in order to increase the 

magnitude of the hole tunneling current, we make the MoS2 layer doped by substitution of 

phosphorous atoms. Indeed, Q. Sun et al. theoretically showed that p-type MoS2 is realized 

through substituting sulfur with phosphorous.
3
 

 In the intrinsic case, thermally excited carrier density is given by n4�T� � �N#�T�N$�T�e�MN �OPQ⁄ , 
where N#�T� � RS T�UV∗OPQW� XY �⁄

, N$�T� � RS T�UZ∗ OPQW� XY �⁄
, and Eg is direct energy gap near K-

valley of MoS2. By defining the chemical potential in this intrinsic case, Fermi level of 

undoped MoS2 is located almost at midgap, but Fermi level of MoS2 for graphene/MoS2 

hybrid systems is asymmetrically located as aforementioned. Let us put the intrinsic Fermi 

level at zero energy, the valence band edge Ev = -1.4 eV. 

(a)

Vb = 0

eVind

(b)

Vb > 0

eVb+eVind

(c)

Vb < 0

eVb-eVind



 Now, let us consider the extrinsic case. By assuming that the MoS2 layer is neutral, 

the following relation between the hole density and the impurity densities is obtained by 

p � n4�p % N[ 
 N6, 
yielding 

p � N[ 
 N62 % A\N[ 
 N62 ]� % n4�, 
where Na and Nd are acceptor and donor densities. From the carrier density, one can obtain 

Fermi level as below E< � E4 
 k_T ln \pn4], 
where Ei = 0. For N[ ≫ N6, Fermi level of p-doped MoS2 of graphene/MoS2 heterostructures 

is shown in Fig. 3s. Figure 3s shows that Fermi level of p-doped MoS2 get closer to the 

valence band edge as increasing dopant density. This means that one can lower the height of 

tunnel barrier for hole tunneling, so that the hole tunneling current can be increased by p-

doping of MoS2. Here, the valence band edge is assumed as a constant value because we 

consider only light doping. The larger hole tunneling current is expected for highly p-doped 

MoS2 layers, but the heavy doping effects should be taken into account. 

 
Figure 3s  Log-linear plot of Fermi level of p-doped MoS2 as a function of dopant density at 300 K. Blue 

and red solid lines represent the Fermi level and the valence band edge of a thin MoS2 layer used in this 

study. 
 The hole tunneling current is now recalculated by considering p-doped MoS2 layers, 

and results are shown in Fig. 4s for different amounts of dopant density. For more dopants, 

larger current density is expected because the height of tunnel barrier is reduced by effects of 

p-doping. Of course, p-doping of MoS2 layers causes reduction in the electron tunneling 

current because Fermi level of p-doped MoS2 gets farther from the conduction band edge. 
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Figure 4s  Hole tunneling current density as a function of gate voltage for different dopant densities of 

MoS2 layers. Compared to the undoped MoS2 layer (black), current density through p-doped MoS2 

layers is larger.  
 

4. Electronic states of armchair graphene nanoribbons 

 The armchair graphene nanoribbons considered in this study is characterized by the 

number of carbon dimer lines as illustrated in Fig. 5s. By following the definition in Ref. 4, 

Na-AGNR is metallic or semiconducting depending on their ribbon width. The density of 

states of Na-AGNR in this study is 

D�E� � 	 |E|π��v<�L d 1��E �v<⁄ �� 
 k5�
�e

5f	�e , 
where k5 � 	 �4π 3a ⁄ �ij3n 
 �N[ 
 1�k �N[ 
 1�⁄ l are eigenmodes of Na-AGNR with the 

lattice constant of graphene a0. Figure 6s(a) and (b) show the density of states for 

semiconducting and metalling AGNRs, respectively. There are van Hove singularities 

corresponding to the subbands of AGNRs, exhibiting the one-dimensional nature. The main 

difference between metallic and semiconducting AGNR is the existence of an energy gap. 

Here, let us note that it is not necessary to investigate both type of AGNRs because, in this 

study, an energy range of tunneling Dirac fermions, that we take into account (from μ 
 eV( 2⁄  to μ % eV( 2⁄ ) is not close to the energy gap. Thus, the calculation of the 

tunneling current density does not produce distinct features between metallic and 

semiconducting AGNRs. 
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Figure 5s  Schematic diagram of armchair graphene nanoribbon (AGNR). mn is the number of carbon 

dimer lines (dashed lines) and W is the ribbon width of mn-AGNR. Green and pink solid dots represent 

sublettices of mn-AGNR, respectively. no 	≅ p. q	r is the distance between adjacent carbon atoms. 

 
Figure 6s Density of states of (a) 801-AGNR (semiconducting) and (b) 802-ANGR (metallic). The widths 

of those AGNRs are (a) 98.91 nm and (b) 98.67 nm, respectively. The parameters in use are so �pqp	tGH and uo � q. vq	Jt. 

 

5. Trigonal warping in graphene 

 Electronic structure of graphene is constructed with tight-binding approach, and the 

low-energy approximation allows us to have special band structures at edges of 1
st
 Brillouin 

zone in k-space. These are called ‘Dirac cone’, leading to massless and chiral characters of 

quasi-particles, so-called Dirac fermions. In the low-energy approximation, Dirac fermions 

are governed by Dirac fermions instead of Schrödinger equation. The energy dispersion of 

Dirac fermions is solved as εO � 3a t2 ykz� % k{�, 
which is isotropic near K-valleys. 

 On the other hand, we cannot neglect high-order terms when energy is not 

sufficiently small. In this case, energy dispersion relation is different from the low-energy 
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approximation as below (Ref. 5) 

εO � 3a t2 A=kz� % k{�> % a �16 =kzS % k{S> % a 2 ξ=kzY 
 3kzk{>, 
where ξ=±1 represent different K-valleys. The resulting dispersion is anisotropic and 

nonequivalent for each valley. The energy range for this case is about several 100 meV, so 

that it is not negligible in practice. 

 Figure 7s shows band structure of grpahene in k-space including only nearest 

neighbor hoppings. One can easily see that there are six points where the conduction and the 

valence bands tough each other, resulting in a zero band gap. At low-energy, we can see that  

Fermi surface is circular and equivalent near Dirac points. However, at higher energy (not too 

high), Fermi surface is round triangular and nonequivalent for each valley. Due to the shape 

of Fermi surface, this effect is named ‘Trigonal warping’. 

 
Figure 7s  Contour plot of energy bands of graphene. Bright and dark colors correspond to high and low 

energy. Six darks points are six Dirac points with zero energy. Away from Dirac points, contour lines 

become triangular. The trigonal warping is valid for this energy range.... 
 In the present study, the energy range of tunneling Dirac fermions is also several 100 

meV. For example, chemical potential of the bottom graphene layer is ~282 meV for Vg = 

150 V. Therefore, in our case, effects of the trigonal warping can be considered. As a 

consequence of the trigonal warping, in-plane current through graphene layers can be valley-

polarized. 

 Note that the tunneling current through the spin-split direct gap dear K(K’)-valley of 

MoS2 is spin-up(down)-polarized. This means that we can obtain spin-up(down)-polarized 

current if we have K(K’)-valley-polarization. Indeed, a valley-filter, which produces fully 

valley-polarized electron beams, has been proposed by J. L. Garcia-Pomar et al.
6
 The valley-

filter is set at the end of one graphene electrode, separated from the tunneling region as 

shown in Fig. 8s. 
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Fig. 8s  (a) Schematics of idea for achieving non-zero spin-polarization. The valley-filter should be 

separated from the tunneling region because the top-gate may affects on vertical tunneling. (b) Spin-

polarized current can be achieved by the valley-filter because most of the spin-up(down) Dirac fermions 

near K(K’)-valley. 
 Finally, we can conclude that it is possible to achieve the spin-polarized tunneling 

current through the graphene heterostructure in practice, taking into account the trigonal 

warping. 
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