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I. ATR-FTIR: Determination of chemical stability of the polyurea treated at different 

temperatures 

Unannealed P1000 films were heated in an oven at ambient atmosphere to selected 

temperatures, and cooled naturally to room temperature. ATR-FTIR measurements were then 

conducted at room temperature using 200 scans and resolution of 2 cm
-1

. ATR-FTIR spectra of 

the thermally treated samples are displayed in Figure S1. 

 

Figure S1. ATR-FTIR spectra of the mMDI – P1000 polyurea treated at different heating and 

cooling temperatures. 

Average integral ratios of AC-O-C/ACH2 were evaluated by curve fitting the FTIR spectra in 

Figure S1. A plot of AC-O-C/ACH2 as a function of treatment temperature is displayed in Figure 
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S2. Taking into consideration experimental uncertainties associated with the curve fitting, we 

estimate the uncertainty of the points in Figure S2 to be ~12% of the reported values. 

 

Figure S2. Plot of AC-O-C/ACH2 as a function of treatment temperature on heating and cooling. 

 

II. SAXS: Calculation of boundary and intermixing effects  

The contribution of interface boundary diffuseness and unlike segment mixing is 

determined from absolute SAXS intensity. Assuming a sigmoidal-gradient profile for the 

interfacial boundary, the background corrected scattering intensity can be written, at large q:
43,44

  

 
    

(S1) 

where  is the ideal scattering intensity,  is the Fourier transform of a smoothing 

function characterizing the shape and size of the diffuse boundaries, and is the width of the 

boundary layer. From Porod’s Law,
43

 eqn (S1) can be written as:
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where K and σ are estimated from intercept and slope the of plot between I(q)q
4
 and q

2
 at large 

q.
45

 

An additional electron density variance ( ''2 ) can also be determined, which removes 

the scattering contribution from diffuse interfacial boundaries:
9,12
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where . It follows that 2"2'2 / c   represents the scattering 

contribution from boundary diffuseness, and 22''2 / cc    is a measure of the influence of 

intermixed segments on overall phase separation. The electron density variance ''2 , boundary 

effect, and intermixing contribution to the experimental scattering at different annealing 

temperatures are summarized in Table S1. 
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Table S1 

''2 , boundary effect, and intermixing contribution for mMDI – P1000 polyureas before and 

after annealing 

P1000 Polyurea 

''2  

x10
-3

 

Boundary effect 

2"2'2 / c  ×100 

(%) 

Intermixing effect 

22''2 / cc   × 100 

(%) 

Unannnealed 3.36 21 40 

Annealed at 120 ˚C 3.08 16 45 

Annealed at 150 ˚C 3.45 17 38 

Annealed at 170 ˚C 2.94 13 48 

*The units of electron density variances are (mol e
-
 cc

-1
)
2
 and the ideal electron density variance 

(  ) is 5.6 x 10
3 

(mol e
-
 cc

-1
)
2
 for all materials. 
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