Supporting Information

Structural Coupling of Extrinsic Proteins with the Oxygen Evolving Center in Red Algal Photosystem II As Revealed by Light-induced FTIR Difference Spectroscopy

Chihiro Uno, Ryo Nagao, Hiroyuki Suzuki, Tatsuya Tomo, and Takumi Noguchi

MATERIALS AND METHODS

Samples. Cells of *Cyanidium caldarium* RK-1 were cultured as described previousely.¹ Preparation of the PSII core complexes from *C. caldarium* was performed following the mothods by Adachi et al.² with some modification. Briefly, thylakoid membranes suspended in a buffer (pH 6.0) containing 40 mM Mes, 10 mM CaCl₂, and 25% (w/v) glycerol (buffer A) was solubilized with 1.2% *n*-dodecyl- β -D-maltoside (DM). The sample was diluted with an equivolume of buffer A and centrifuged at 40,000 × *g* for 10 min at 273 K. The supernatant was loaded onto a DEAE TOYOPEARL 650 M anion-exchange column. PSII complexes were eluted with a buffer (pH 6.0) containing 40 mM Mes, 190 mM NaCl, 3 mM CaCl₂, 25% (w/v) glycerol, and 0.03% DM. The resulting PSII fraction was centrifuged at 40,000 × *g* for 10 min at 277 K after addition of 10% (w/v) polyethylene glycol (PEG) 6000. The precipitate was suspended in buffer A.

Reconstitution experiments were performed according to Enami et al.³ and Okumura et al.⁴ The PSII complexes were treated with 1 M CaCl₂ for 30 min on ice in the dark to remove all of the four extrinsic proteins (PsbO, PsbQ', PsbV, and PsbU). The extrinsic proteins were purified as described previously.³ The PSII complexes were reconstituted with various combinations of the extrinsic proteins by incubating the mixture of CaCl₂-treated PSII complexes and extrinsic proteins with the molar ratio of 1:3 for 30 min on ice in the dark. The reconstituted PSII complexes were centrifuged at 40,000 × g for 20 min at 277 K after addition of 10% (w/v) PEG 6000. The precipitation was suspended in buffer A.

FTIR measurements. For FTIR measurements, PSII core complexes in buffer A in the presence of 10% PEG 10,000 were centrifuged at 174,000 × g for 5 min and the precipitate was washed once with buffer A without PEG by centrifugation. The suspension of the PSII complexes in buffer A in the presence of 45 mM potassium ferrocyanide and 5 mM potassium ferricyanide was centrifuged at 174,000 × g for 35 min. The resultant pellet was loaded on a CaF₂ plate (25 mm in diameter) and sealed with another CaF₂ plate using silicone grease as described previously.⁵ A piece of aluminum foil (~1 mm ×~1 mm; ~15 µm in thickness) was placed as a spacer in the outer part of the infrared cell.

FTIR spectra were recorded using a Bruker IFS-66/S spectrophotometer equipped with an MCT detector (InfraRed D316/8). The sample temperature was adjusted to 10 °C by circulating cold water in a copper holder and the sample was stabilized for 2 h before starting measurements. Flash illumination was performed using a Q-switched Nd:YAG laser (Quanta-Ray GCR-130; wavelength, 532 nm; pulse width, ~7 ns fwhm; intensity, ~7 mJ pulse⁻¹ cm⁻² at the sample surface). Single-beam spectra were recorded twice before and once after single-flash illumination, followed by dark adaptation, and this cycle was repeated to increase the signal-to-noise ratio of the spectra. The scan time for one single-beam spectrum, the duration of dark adaptation, and the number of repetition (summarized in Table S1) were determined for each sample taking account of the relaxation time of the S₂ state. The difference between the two spectra before and after the flash provides an S₂-minus-S₁ difference spectrum, while the difference between the two spectra before and after the spectral resolution provides a dark-minus-dark spectrum representing a noise level. The spectral resolution was 4 cm⁻¹.

Spectral fitting was performed using Igor Pro (WaveMetrics Inc.). The S_2 -minus- S_1 difference spectra PSII complexes depleted of all the extrinsic proteins and then reconstituted with various combinations of the extrinsic proteins (Figure 1a,c, red and blue lines; Figure S2, red lines) were normalized to minimize the difference from the spectrum of untreated PSII in the 1450–1350 cm⁻¹ region (symmetric COO⁻ stretching

region). The double difference spectra (Figures 2 and S3) were calculated by subtracting these normalized spectra from the untreated spectra.

	scans (s)	dark adaptation (min)	repetition (times)
untreated	50	120	4
all depleted	10	5	108
+PsbQ'	10	10	54
+PsbO	10	15	36
+PsbO/Q'	10	10	36
+PsbO/Q'/U	30	30	10
+PsbO/Q'/V	20	20	15
+PsbO/V/U	50	120	4
+PsbO/Q'/V/U	50	120	4

Table S1: Conditions for measurements of S_2 -minus- S_1 FTIR difference spectra of the PSII complexes from *Cyanidium caldarium*

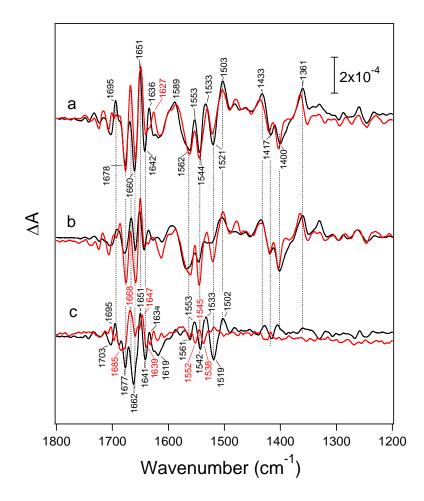


Figure S1. FTIR spectra of of PSII core complexes from *C. caldarium* (black lines) compared with the corresponding spectra of PSII membranes from spinach⁶ (red lines). (a) S_2 -minus- S_1 FTIR difference spectra of untreated PSII preparations. (b) S_2 -minus- S_1 FTIR difference spectra of PSII preparations depleted of all the extrinsic proteins (PsbO, PsbQ', PsbV, and PsbU for *C. caldarium* and PsbO, PsbP, and PsbQ for spinach). (c) Double difference spectra between the spectra of PSII complexes untreated and depleted of all the extrinsic proteins (untreated-minus-all-depleted).

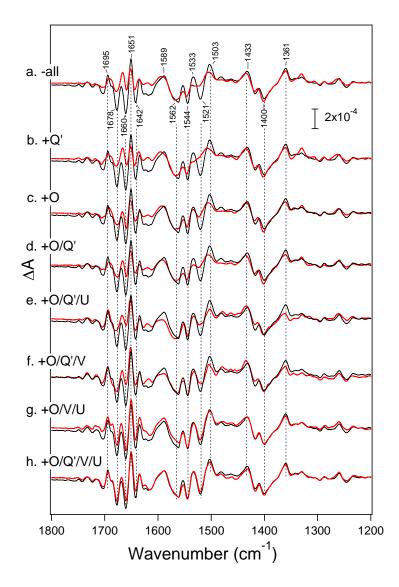


Figure S2. (a) S₂-minus-S₁ FTIR difference spectra of PSII core complexes from *C*. *caldarium* (red lines) depleted of all the four extrinsic proteins (a), and then reconstituted with PsbQ' (b), PsbO (c), PsbO/Q' (d), PsbO/Q'/U (e), PsbO/Q'/V (f), PsbO/V/U (g), and PsbO/Q'/VU (h), in comparison with the spectrum of untreated PSII (black lines).

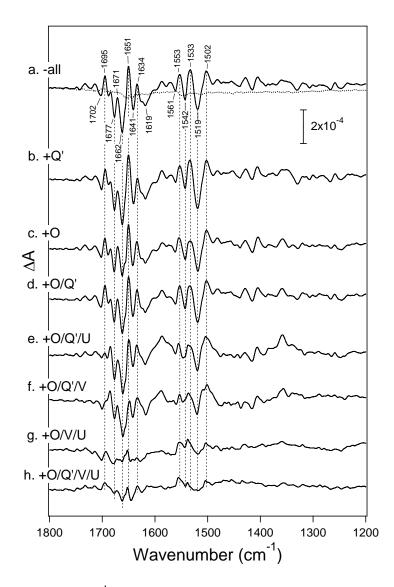


Figure S3. The 1800–1200 cm⁻¹ region of untreated-minus-treated double difference spectra between the S₂-minus-S₁ spectrum of untreated PSII and that of PSII depleted of all the four extrinsic proteins (a), then reconstituted with PsbQ' (b), PsbO (c), PsbO/Q' (d), PsbO/Q'/U (e), PsbO/Q'/V (f), PsbO/V/U (g), and PsbO/Q'/V/U (h). The dotted line in panel a is a double difference spectrum of dark-minus-dark spectra representing a noise level.

References

 Enami, I., Murayama, H., Ohta, H., Kamo, M., Nakazato, K., and Shen J.-R. (1995)
Isolation and characterization of a photosystem II complex from the red alga *Cyanidium caldarium*: association of cytochrome c-550 and a 12 kDa protein with the complex, *Biochim. Biophys. Acta 1232*, 208–216.

(2) Adachi, H., Umena, Y., Enami, I., Henmi, T., Kamiya, N., and Shen J.-R. (2009) Towards structural elucidation of eukaryotic photosystem II: Purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga, *Biochim*. *Biophys. Acta 1787*, 121–128.

(3) Enami, I., Kikuchi, S., Fukuda, T., Ohta, H., and Shen, J.-R. (1998) Binding and functional properties of four extrinsic proteins of photosystem II from a red alga, *Cyanidium caldarium*, as studied by release-reconstitution experiments, *Biochemistry 37*, 2787–2793.

(4) Okumura, A., Sano, M., Suzuki, T., Tanaka, H., Nagao, R., Nakazato, K., Iwai, M., Adachi, H., Shen, J.-R., and Enami, I. (2007) Aromatic structure of Tyrosine-92 in the extrinsic PsbU protein of red algal photosystem II is important for its functioning, *FEBS Lett.* 581, 5255–5258.

(5) Noguchi, T., and Sugiura, M. (2001) Flash-induced Fourier transform infrared detection of the structural changes during the S-state cycle of the oxygen-evolving complex in photosystem II, *Biochemistry 40*, 1497–1502.

(6) Tomita, M., Ifuku, K., Sato F., and Noguchi, T. (2009) FTIR evidence that the PsbP extrinsic protein induces protein conformational changes around the oxygen-evolving Mn cluster in photosystem II, *Biochemistry* 48, 6318–6325.