Shaping Crystals with Light: Crystal-to-Crystal Isomerization and Photomechanical Effect in Fluorinated Azobenzenes

Oleksandr S. Bushuyev, Anna Tomberg, Tomislav Friščić* and Christopher J. Barrett*
Department of Chemistry and FRQNT Centre for Self-Assembled Chemical Structures, McGill University, 8o1 Sherbrooke St. W., H3A oB8, Montreal, Canada

Table of Contents

1. Experimental S2
1.1 Materials S2
1.2 Syntheses S2
1.3 UV-Vis spectra S4
1.4 Photomechanical motion measurements S6
2. Videos and images of photomechanical crystal motion S6
3. Single crystal X-ray diffraction data measurements and crystallographic summary S7
3.1 Description of crystal structures S8
3.2 Summary of indexing the crystal of cis-1 after irradiation S10
4. Powder X-ray diffraction data S11
5. Theoretical calculations S12
6. References S16

1. Experimental

1.1 Materials

4-Bromo-2,3,5,6-tetrafluoroaniline, 2,3,5,6-tetrafluoroaniline and mercury oxide were obtained from Sigma Aldrich and used without purification. Activated manganese dioxide was obtained in house from potassium permanganate and manganese sulfate utilizing a published procedure.

1.2 Syntheses

4,4'-dibromooctafluoroazobenzene (1)

600 mg of 4-Bromo-2,3,5,6-tetrafluoroaniline was mixed with 8.2 g of activated manganese dioxide in 100 ml of petroleum ether. After 6 days of stirring at room temperature the slurry was filtered, washed until clear washings with petroleum ether and then with dichloromethane (DCM). All fractions were combined, and solvent was removed on rotary evaporator. Product was purified on CombiFlash automated silica column, using 95\% hexane 5\% ethyl acetate gradient solvent system. Yield 182 mg of cis (30.5\%) and 80 mg trans (13.4\%).*

4-iodo-2,3,5,6-tetrafluoroaniline

400 mg of yellow (1.84 mmol) HgO was added to a solution of $450 \mathrm{mg}(2.45 \mathrm{mmol})$ of 2,3,5,6tetrafluoroaniline in 20 ml of ethanol. Mixture was stirred for 30 minutes, and then 620 mg (2.44 mmol) of I_{2} was added. Mixture was stirred overnight and then filtered over celite. Solvent was removed on rotary evaporator, then product redissolved in ca. 40 ml of DCM and washed several times with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and dried over MgSO_{4}. Product was purified by sublimation yielding long needles 605 mg , (85\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$: broad signal at 4.1 ppm .

4,4'-diiodooctafluoroazobenzene(2)

600 mg of previously synthesized 4-iodo-2,3,5,6-tetrafluoroaniline was mixed with 8.0 g of activated manganese dioxide in 100 ml of petroleum ether. After 3 days of stirring at room temperature the slurry was filtered, washed until clear washing with petroleum ether and then with dichloromethane (DCM). All fractions were combined, and solvent was removed on rotary evaporator. Product was purified on CombiFlash automated silica column, using 95% hexane 5% ethyl acetate gradient solvent system. Yield 120 mg of cis-2 (20\%) and 70 mg trans-2 (11.7\%).*

Chemical identities of the prepared compounds were confirmed by single crystal X-ray diffraction, powder X -ray diffraction (e.g. see Figure S 7) and absence of proton signals in ${ }^{1} \mathrm{H}$-NMR spectrum.
*Yield of trans-form can be enhanced by refluxing the mixture. However, upon refluxing the amount of isolated cis-isomer drops significantly.

1.3 Uv-Vis spectra

UV-Vis studies of cis-trans isomerization were performed using a Cary 300 Bio UV-Vis spectrometer. For the thermal relaxation study absorption was monitored at 320 nm for 1 and 330 nm for $\mathbf{2}$. K-values and $\mathrm{t}_{1 / 2}$ were obtained for $\mathbf{1}$ in hexanes, THF, and DCM; for $\mathbf{2}$ in hexanes and are summarized in Table S1. Example UV-Vis spectra are given in Figure S1, compositions of the photostationary state and thermal cis-trans relaxation are given in Figure 2S. Molar extinction coefficients (ε) were determined to be 12200 $\mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$ for cis-1 at $\lambda=420 \mathrm{~nm}$ and $8000 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}$ at $\lambda=460 \mathrm{~nm}$ for trans-1.

Figure S1.(left) UV-Vis profile of cis-1 (red) and trans-1 (blue) in hexanes; (right)n- π^{*} transitions for cis-1 (red) and trans-1 (black)

Figure S2. (left) Photostationary states (PSS) for 1. Red - near 100\% of cis-1 achieved by 10 mW (532 nm) laser irradiation for 60 minutes. Blue - PSS containing 90\% trans-1 achieved by $1 \mathrm{~mW}(405 \mathrm{~nm}$) laser irradiation for 140 minutes. (right) UV-Vis trace of cis-1 relaxation in hexanes over 3 weeks of experiment at $0,72,166,242,362$ and 504 hours.

Table S1Half-lives of cis-isomers and reaction constants for $\mathbf{1}$ and $\mathbf{2}$.

compound (solvent)	cis-1 (hexanes)	cis-1 (THF)	cis-1(DCM)	cis-2 (hexanes)
$K,\left(\mathrm{~s}^{-1}\right)$	2.75×10^{-7}	1.93×10^{-7}	1.34×10^{-7}	2.23×10^{-7}
$t_{1 / 2}$, days	29	42	60	36

The lack of back (trans \rightarrow cis) isomerization in the solid in the current system may be explained by nearly coincident absorption/transmission maxima for both cis- and trans-isomers as shown in Figure S3:

Figure S3.Solid-state spectra of cis- and trans- isomers of 1.

1.4 Photomechanical motion measurements

Needle-like crystals of 1 and 2 of approximately $10-20 \mu \mathrm{~m}$ thickness were selected and subjected to irradiation on the tip of the Mitegen ${ }^{\oplus} 75 \mu \mathrm{~m}$ aperture micromounts with the nominal tip thickness of 10 $\mu \mathrm{m}$. Irradiation was achieved by linearly polarized variable power Ar+-ion laser at 457 nm wavelength. Beam power used for experiments was $1-5 \mathrm{~mW}$, with beam diameter slightly less than $1 \mathrm{~mm}^{2}$. Photomechanical motion was recorded by the Infinity-1 CMOS microscopy camera fitted with a zoom lens.

2. Videos and images of photomechanical crystal motion

All videos are recorded and presented in real time.
Video S1.Bending of the cis-1 crystal when subjected to 457 nm blue laser light at power equal to 5 mW . The crystal curls, reaching tip deflection of nearly 180° and remains stationary after the end of irradiation.

Video S2. Upon the irradiation of the crystal from Video S1from the opposite side, the crystal first straightens and then curls in a backward direction. After two opposite faces were irradiated in such a fashion the crystal becomes completely inactive in the laser light.

Video S3.S-shaping by irradiating a section of the crystal on one face, then rotating the mount, raising the crystal and irradiating the section on the opposite face.

Figure S4. Permanent photomechanical modification of cis-2 crystal aggregate by irradiation: (a) crystal before irradiation and (b) after irradiation. Direction of irradiation is indicated by the white arrow.

Figure S5. Permanent S-shape photomechanical modification of cis-1 crystal by irradiation: (a) crystal before irradiation; (b) crystal after irradiation; (c) crystal after rotation by $180^{\circ} \mathrm{C}$ around its long axis and (d) crystal after second turn of irradiation. Direction of irradiation is indicated by the white arrow.

3. Single crystal X-ray diffraction measurements and crystallographic summary

X-ray diffraction data was obtained on Bruker D8 single-crystal X-ray diffractometer equipped with a MoK ${ }_{\alpha}$ X-ray source and a graphite monochromator. Multi-scan absorption correction (SADABS) was applied. Structures were solved by direct methods and refined using SHELX-97 software. ${ }^{1}$ Data summary is presented in Tables S1 and S2.

Table S2.General and crystallographic data for compounds 1 and 2.

compound	cis-1	cis-1a	trans-1	cis-1, irradiated	cis-2	trans-2
formula	$\mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{~F}_{8} \mathrm{Br}_{2}$	$\mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{~F}_{8} \mathrm{l}_{2}$	$\mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{~F}_{8} \mathrm{l}_{2}$			
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.368	2.373	2.470	2.333	2.668	2.625
crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
T (K)	150	100	100	293	100	100
space group	C2/c	C2/c	$P 2_{1} / \mathrm{C}$	$P 2_{1} / \mathrm{C}$	C2/c	$P 2_{1} / n$
unitcell parameters	$\begin{aligned} & a=23.402(2) \AA \\ & b=5.3155(5) \AA \\ & c=11.676(1) \AA \\ & B=110.802(1)^{\circ} \\ & \hline \end{aligned}$	$\begin{gathered} a=13.707(3) \AA \\ b=5.597(1) \AA \\ c=18.138(3) \AA \\ B=103.254^{\circ} \end{gathered}$	$\begin{gathered} a=10.250(2) \AA \\ b=7.636(1) \AA \\ c=8.742(1) \AA \\ B=108.010(2)^{\circ} \end{gathered}$	$\begin{gathered} a=8.89(2) \AA \\ b=7.79(2) \AA \\ c=10.57(2) \AA \\ B=109.55(2)^{\circ} \end{gathered}$	$\begin{aligned} & a=24.454(2) \AA \\ & b=5.3242(5) \AA \\ & c=11.826(1) \AA \\ & B=109.769(1)^{\circ} \end{aligned}$	$\begin{aligned} & a=10.324(1) \AA \\ & b=5.9680(6) \AA \\ & c=24.112(2) \AA \\ & B=100.176(1)^{\circ} \end{aligned}$
unitcell volume (\AA^{3})	1357.7(2)	1354.5(4)	650.7(2)	690(2)	1448.9(2)	1462.3(2)
z	4	4	2	2	4	4
resolution (${ }^{\circ}$)	25.00	26.73	26.01	17.27	26.73	25.00
completeness (\%)	99.7	99.6	99.9	40.7	99.8	99.7
collected/independent reflections	7084/1441	5029/1433	6538/1289	984/172	7508/1538	8044/3303
data/parameters/restraints	1441/109/0	1433/109/0	1289/109/0	172/36/	1538/109/0	3303/398/307
s	1.60	1.063	1.073	1.287	1.047	1.035
$R_{1}[$ for $/ \geq 4 \sigma())$]	0.0200	0.0183	0.0175	0.1169	0.0219	0.0270
$R_{1}, \mathrm{w} R_{2}$ (for all data)	0.0216, 0.0520	0.0210, 0.0455	0.0191, 0.0462	0.1293, 0.3035	0.0266, 0.0563	0.0367, 0.0601
largest diff. peak, hole (e \AA^{-3})	$0.443,-0.484$	$0.345,-0.343$	0.556, -0.315	0.872,-1.031	0.674, -0.440	$0.362,-0.724$

3.1 Description of crystal structures

For all the crystal structures, see the CIF files also provided in the Supplementary Information. The transisomers of 1 and 2 in the solid state assemble into different motifs: trans-1 forms π-stacks composed of identically oriented molecules, while trans-2, probably due to a larger radius of the iodine atom adopts a herringbone structure with two distinct orientations for the azo molecules. In both structures the fluorinated phenyl rings are coplanar, despite possible repulsive interactions between ortho-fluorine atoms. Both $\mathbf{1}$ and $\mathbf{2}$ in the trans-form exhibit pedaling motion observed as a disorder of the azo group.

Crystal structures of cis-1 and cis-2 contain alternately-oriented stacks of V-shaped molecules parallel to the crystallographic b-axis. A distinct difference in intramolecular angles between the phenyl planes can be seen when comparing to the parent azobenzene molecule. The angle between the phenyl rings opens up from 64° in the parent azobenzene to 81° and 74° in cis- 1 and cis-1a, respectively, and 82° in cis- $\mathbf{2}$ (Figures S6 and S7). Such a difference is significant as the effective volume change upon azo isomerization is likely to be determined by the relative positioning of the phenyl rings and distance between the termini of the azo molecules. In most previous investigations, and angle of 64° between phenyl planes is quoted even for molecules significantly different than parent azobenzene.

Figure S6. Molecular geometries for: (a) cis-1; (b) cis-1a and (c) cis-2 in corresponding single crystal structures. The depicted planes (red and green) correspond to best planes drawn through the benzene rings of the 4-bromo- and 4-iodotetrafluorophenyl groups. Figures drawn using Mercury CSD.

Figure S7. Crystal packing of: (top) cis-1 viewed perpendicular to the crystallographicab-plane; (middle) cis-1a viewed down crystallographic a-axis and (bottom) cis-2 viewed perpendicular to the crystallographic $a b$-plane. Note the isostructural nature of cis-1 (top) and cis-2 (bottom). Figures were drawn using Mercury CSD.

3.2 Summary of indexing the crystal of cis-1 after irradiation

Majority of the reflections (903 out of 1125) could be fitted to five major domains ${ }^{2}$, described below:
Domain 1: 446 reflections out of 1125
Domain 2: rotated by 178.8 degrees about reciprocal 1.000; -0.182; -0.515; 382 reflections, (204 exclusively)
Domain 3: rotated by 7.0 degrees about reciprocal 1.000; -0.240; -0.178; 286 reflections (129 exclusively)
Domain 4: rotated by 103.1 degrees about reciprocal 0.024; 0.009; 1.000; 318 reflections (69 exclusively)
Domain 5: rotated by 174.1 degrees about reciprocal 1.000; -0.184; -0.508; 337 reflections (55 exclusively)

The remaining 222 reflections are all fitted if a total of 16 domains are considered. All 16 domains exhibit the same unitcell (identical to the second decimal) resembling that of trans-1: $a=8.894 \AA, b=7.790 \AA, c=$ 10.572 Å, $B=109.55^{\circ}$.

Figure S8. Composite diffraction images for the hkO diffracting plane of: (a) cis-1; (b) cis-1 irradiated at 457 nm for 4 hours; (c) trans-1 and the 0kl diffracting plane of: (d) cis-1; (e) cis-1 irradiated at 457 nm for 4 hours; (f) trans-1. The d-spacings measured for images (b) and (e) clearly matched those in images (c) and (f), respectively.

4. Powder X-ray diffraction data

Position [TTheta]
Figure S9. Powder X-ray diffraction patterns for the bulk irradiation experiment. From top to bottom: sample of cis-1after irradiation; sample of cis-1 before irradiation; simulated pattern of trans-1;simulated patternsfor the two polymorphs o cis-1.

5. Theoretical calculations

All calculations were performed using the Gaussian package ${ }^{3}$ and Avogadro ${ }^{4}$ was used as visualization software. The basis set a level of theory were chosen based on the results of a validation study for azobenzene trans- and cis-conformations. As shown in Table S3, the best compromise between accuracy and time was a DFT hybrid method B3LYP yielding the right geometry. Also, Pople's 6-31G(d) basis set was found to be suitable for azobenzene parent molecules as well as for 1, while $\mathbf{2}$ required a bigger basis set to suite lodine, and DGDZVP was used.

The accuracy of the theoretical model was based on the best structural geometry obtained compared to experimental results for cis and trans azobenzene molecules. In order to effectively cover the various possibilities, a variety of theoretical model types were used: a semi-empirical PM6 method, two ab initio methods (HF, MP2), and a density functional method (B3LYP). Basis sets used in combination with these models had different levels of polarizability and different number of diffuse functions so that the impact of the size of basis set on the accuracy of results could be monitored.

As shown in Table S4, the MP2/6-31+G(d) combination displays the smallest average percent error, making it the most accurate. However, this computation is the only one that predicted a non-planar geometry for trans-azobenzene (torsion angle of 17.5°), which makes its geometry optimization unacceptable. The next best combination was found to be MP2/6-311+G(d,p), yet computational time significantly exceeded the desired threshold of 2 hours. For these reasons, the third best combination, B3LYP/6-31G(d), was selected for geometry optimization of subsequent trans-azobenzene derivatives. Notably, polarization and the increased number of diffuse functions in the orbital approximation of basis sets yielded equivalent or worse results than the normal 6-31G(d) basis set. Other, least successful combinations were attempted but are not shown in Table S3.

Figure S10.Molecular model of trans-azobenzene (atoms are labeled as in Table S3).

Table S3.Geometry optimization of trans-azobenzene.

Bond lengths (\AA)						
	Atom 1	Atom 2	MP2/6-31+G(d)	MP2/6-311+G(d,p)	B3LYP/6-31G(d)	Experimental ${ }^{5}$
	N (1)	N (2)	1.279	1.271	1.261	1.243
	C (1)	N (1)	1.423	1.423	1.419	1.433
	C (1)	C (2)	1.402	1.403	1.401	1.384
	C (1)	C (6)	1.405	1.407	1.406	1.385
	C (2)	H (2)	1.088	1.087	1.086	1.102
	C (6)	H (6)	1.087	1.085	1.084	1.102
Bond angles (degrees)						
Atom 1	Atom 2	Atom 3	MP2/6-31+G(d)	MP2/6-311+G(d,p)	B3LYP/6-31G(d)	
C (1)	N (1)	N (2)	113.4	113.9	114.8	113.6
C (2)	C (1)	N(1)	115.3	114.9	115.3	115.5
C (6)	C (1)	N (1)	124.0	124.7	124.8	
C (2)	C (1)	C (6)	120.7	120.4	119.9	120.3
C (1)	C (6)	C (5)	119.1	119.2	119.6	119.6
C (1)	C (2)	C (3)	119.7	120.0	120.2	119.6
C (1)	C (6)	H (6)	119.5	119.4	118.8	
C (1)	C (2)	H (2)	118.7	118.4	118.2	
Torsion angles:		$\begin{aligned} & \mathrm{D}\left(\mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{~N}_{1}\right. \\ & \left., \mathrm{N}_{2}\right) \end{aligned}$	162.5	180.0	180.0	180.0
		$\begin{aligned} & \mathrm{D}\left(\mathrm{C}_{1}^{\prime}, \mathrm{N}_{2}, \mathrm{~N}\right. \\ & \left.{ }_{1}, \mathrm{C}_{1}\right) \end{aligned}$	177.6	180.0	180.0	
\%error (average on 4 references) ${ }^{6}$:			1.02	1.04	1.07	

Using the optimal B3LYP/6-31G(d) combination, the geometry of cis-azobenzene was also computed and the bond lengths, bond angles and the $\mathrm{C}-\mathrm{N}=\mathrm{N}-\mathrm{C}$ torsion angle were compared with experimental values taken from the literature. The results were collected in Table S4, where the atoms are labeled as in Figure S11.

Figure S11. Molecular model for cis-azobenzene, atoms are labeled as in Table S4.

Table S4. Optimized geometry of cis-azobenzene using B3LYP/6-31G(d).

Bond lengths (\AA)					\%error
	Atom 1	Atom 2	B3LYP/6-31G(d)	Experimental ${ }^{[7]}$	
	N(1)	N(2)	1.243	1.253	0.8
	C (1)	N(1)	1.436	1.448	0.9
	C (1)	C (2)	1.401	1.385	1.2
	C (2)	C (3)	1.391	1.377	1.0
	C (3)	C (4)	1.394	1.389	0.4
	C (4)	C (5)	1.395	1.374	1.5
	C (5)	C (6)	1.390	1.378	0.9
	C (6)	C (1)	1.398	1.401	0.2
Bond angles (degrees)					
Atom 1	Atom 2	Atom 3			
C (1)	N(1)	N (2)	124.2	121.9	1.8
C (2)	C (1)	N (1)	122.9	122.5	0.3
C (1)	C (2)	C (3)	120.1	120.8	0.6
C (2)	C (3)	C (4)	120.5	119.0	1.2
C (3)	C (4)	C (5)	119.8	121.7	1.6
C (4)	C (5)	C (6)	120.1	118.7	1.2
C (5)	C (6)	C (1)	120.0	119.8	0.2
C (2)	C (1)	C (6)	119.9	120.0	0.1
Torsion angle:		D(6,7,5,14)	51.0	53.0	3.7
			Total \%error:		1.0

The values obtained were in agreement with literature displaying a similar percent error as the one for trans-azobenzene. Especially, the torsion angle of the $\mathrm{C}-\mathrm{N}=\mathrm{N}-\mathrm{C}$ bond was found to be 51°, which was shown to be the correct geometry of cis-azobenzene in several studies. ${ }^{8}$ It was concluded that B3LYP/6$31 \mathrm{G}(\mathrm{d})$ is the optimal combination for computations on trans-azobenzeneand cis-azobenzene molecules and their derivatives.

To ensure that the results obtained for 1 and 2 were realistic, their geometry was compared to the parent azobenzene molecule. For all structures, first a geometry optimization was performed, followed by a vibrational analysis, were no imaginary frequencies were found, meaning that the geometries obtained correspond to the ground state structures in gas phase. In order to compare the isomers of each compound, the difference in their single point energies were computed. The result obtained for azobenzene corresponds to the values seen in literature. ${ }^{9}$ Energy differences between cis- and transisomers of $\mathbf{1}$ and $\mathbf{2}$ are very similar, approximately half the value for azobenzene. All these results are summarized in Table S5.

Table S5.Results of DFT calculations.

Structure		1		2		Parent azobenzene	
Method		B3LYP/6-31G(d)		B3LYP/DGDZVP		B3LYP/6-31G(d)	
	Units	cis	trans	cis	ns	cis	
$\Delta \mathrm{SP}$ (trans-cis)	kcal/mol	8.84		8.88		15.26	
Dipole moment	Debye	1.74	0.06	2.52	0.10	3.21	0.00
\triangle LUMO-HOMO	eV	3.78	3.55	3.66	3.40	3.76	3.95
$\mathrm{CN}=$ NC Torsion angle	0	10.58	178.18	9.97	177.07	9.36	179.97
N=NCC Torsion angle	0	56.37	23.21	57.57	23.21	51.03	0.01

Finally the molecular orbitals of all isomers were computed. The corresponding figures of HOMO and LUMO orbitals are shown below:

6. References

[1] Sheldrick, G. M. Acta Cryst., 2008, A64, 112.
[2] Sheldrick, G. M. (2004). CELL_NOW. University of Göttingen, Germany.
[3]Gaussian, Inc., Gaussian 09, Revision B-0.1.
[4] Hanwell, M.D., et al., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform, 2012,4, 17.
[5] Chen, P.C.; Chieh, Y.C. J.Mol.Struc, 2003, 624, 191.
[6] (a) Fliegl H. et al. J. Am. Chem. Soc.2003, 125, 9821 ; (b) Biswas N.; Umapathy S. J. Phys. Chem. A, 1997, 101, 5555.
[7] Armstrong, D. R. et al. J. Phys. Chem. 1995, 99, 17825.
[8] (a) Kurita, N. et al. Chem. Phys. Lett. 2002, 360, 349; (b) Sauer, P.; Allen, R.E. Chem.Phys.Lett. 2008, 450, 192.
[9] Crecca, C.R.; Roitberg, A.E. J. Phys.Chem. A, 2006,110, 8188.

