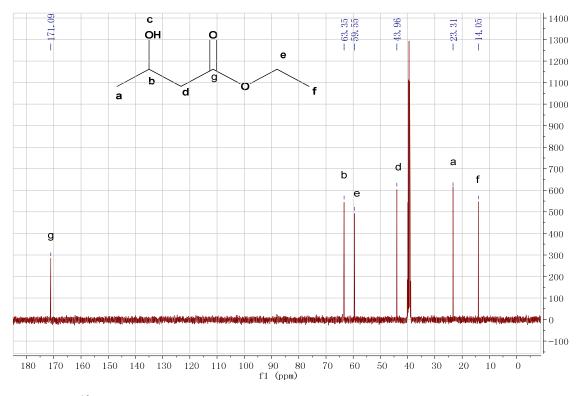
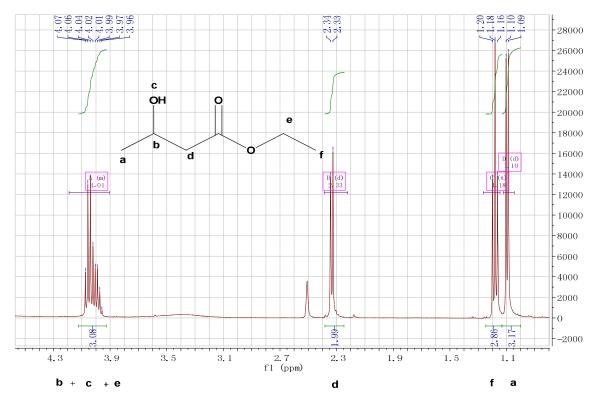
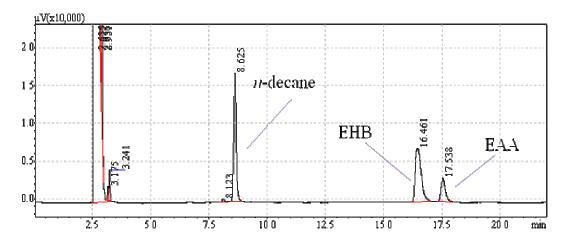
Supporting Information


Use of Ionic Liquid to Significantly Improve Asymmetric Reduction of Ethyl Acetoacetate Catalyzed by *Acetobacter sp.* CCTCC M209061 Cells

Xiao-Ting Wang^a, Dong-Mei Yue^a, Min-Hua Zong^b, Wen-Yong Lou^{*, a,b}


^aLaboratory of Applied Biocatalysis, School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong, China
^bState Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China

Ionic liquid	Structure	Abbreviation
1-butyl-3-methylimidazolium	F	
hexafluorophosphate	N + N F F F	C ₄ mim·PF ₆
1-pentyl-3-methylimidazolium	F F	C5mim·PF6
hexafluorophosphate		
1-hexyl-3-methylimidazolium	F F	C ₆ mim·PF ₆
hexafluorophosphate		
1-heptyl-3-methylimidazolium	F F	C7 mim·PF6
hexafluorophosphate	H H H H H H H H H H	
1-isobutyl-3-methylimidazolium	F F	iC ₄ mim·PF ₆
hexafluorophosphate		
1-butyl-3-methylimidazolium		$C_4 \operatorname{mim} Tf_2 N$
bis(trifluoromethanesulfonyl)imide	N + N C4H9 F3C S CF3	
1-hexyl-3-methylimidazolium		C ₆ mim·Tf ₂ N
bis(trifluoromethanesulfonyl)imide	N H N C ₆ H ₁₃ F ₃ C S CF ₃	
N-butyl-N-methylpiperidinium		PP_{14} ·Tf ₂ N
bis(trifluoromethanesulfonyl)imide	N C4H9 F3C CF3	
N-butyl-N-methylpyrrolidinium		Py_{14} ·Tf ₂ N
bis(trifluoromethanesulfonyl)imide	F ₃ C	


Table S1. Water-immiscible ILs used for the biocatalytic reduction of EAA and their abbreviations

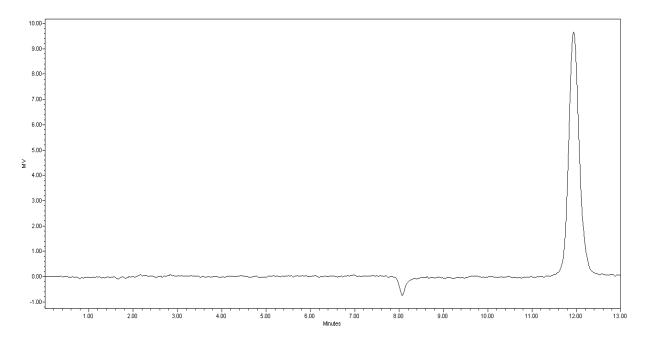

Figure S1. ¹³C-NMR spectrum of the isolated product EHB in the preparative scale bioreduction. The NMR spectrum of the product was obtained on a Bruker AMX300 NMR Spectrometer (Bruker Co., Germany) operating at 101 MHz for ¹³C NMR in DMSO. ¹³C NMR δ 171.09, 63.35, 59.55, 43.96, 23.31, 14.05.

Figure S2. ¹H-NMR spectrum of the isolated product EHB in the preparative scale bioreduction. The NMR spectrum of the product was achieved on a Bruker AMX300 NMR Spectrometer (Bruker Co., Germany) operating at 400 MHz for ¹H NMR. ¹H NMR δ 4.19 – 3.90 (m, 1H), 2.33 (d, *J* = 6.5, 1H), 1.18 (t, *J* = 7.1, 1H), 1.10 (d, *J* = 6.2, 1H).

Figure S3. Gas chromatogram of EAA, EHB and *n*-decane (as internal standard). The reaction mixtures were analyzed by a Shimadzu GC2010 model with a flame ionization detector and a HP chiral column (10% permethylated β -cyclodextrin 30 m × 0.25 mm × 0.25 μ m) (USA). The split ratio was 50:1. The injector and the detector were both kept at 250 °C. The column temperature was held at 75 °C constant for 20 min. The carrier gas was nitrogen and its flow rate in the column was 2.0 mL/min.

Figure S4. High-performance liquid chromatography (HPLC) of glucose. The glucose concentration was determined by HPLC (515 pump and 2410 differential refraction detector, Waters Cop., USA) using an Aminex HPX-87H column (7.8 mm \times 300 mm) under the following conditions: mobile phase, 5.0 mmol/L H₂SO₄; flow rate, 0.5 mL/min; column temperature, 65 °C; detector temperature, 50 °C.