Supporting Information

Biomimetic Synthesis of ent-(-)-Azonazine and Stereochemical Reassignment of Natural Product

Ji-Chen Zhao, Shun-Ming Yu, Yun Liu, Zhu-Jun Yao*
State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
Email: yaoz@sioc.ac.cn

List of contents

1. Experimental procedures and characterizations of new compounds S2
2. X-ray single crystal structures of compounds $\mathbf{1 b}, \mathbf{1 1 a}$ and 11b; and representative unusual structural factors of $\mathbf{1 b}$. S11
3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds. S13
4. NMR data comparison of synthetic $\mathbf{1 b}$ with natural azonazine. S30

1. Experimental procedures and characterizations of new compounds

General: All reactions were carried out in flame-dried glassware with magnetic stirring and monitored by thin-layer chromatography (TLC). THF was distilled from sodium; dichloromethane was distilled from CaH_{2}; and ethyl acetate was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and distilled. All melting points were uncorrected. ${ }^{1} \mathrm{H}$ NMR was recorded on a Varian instrument (300 or 500 MHz) and a Bruker instrument (400 or 600 MHz); ${ }^{13} \mathrm{C}$ NMR were recorded on a Varian instrument (75 or 125 MHz) and a Bruker instrument (100 or 150 MHz). IR spectra were recorded on Nicolet 380 FT-IR instrument. Optical rotations were measured on a Jasco P-1030 digital polarimeter. High resolution mass spectra (HRMS) were measured on an IonSpec 4.7 Tesla FTMS spectrometer. Flash column chromatographies were performed on silica gel H (10-40 $\mu \mathrm{m}$). MPLC purification was performed using a Biotage Isolera system and KP-SIL SNAP flash cartridge column packed with silica gel (particle size 50-60 micron, $50-52 \AA$ pore size). Microwave reactions were run on a CEM Discover S Microwave Synthesizer. X-ray intensity data were collected on a Bruker APEX-II CCD area detector employing graphite-monochromated $\mathrm{Cu}-\mathrm{Ka}$ radiation ($l=1.54178 \AA$) at a temperature of $296(2) \mathrm{K}$.

1.1 d-N-Me-Tyr(OMe)-OMe HCl (7)

To a solution of d-Boc-Tyr-OH (5) ($50.0 \mathrm{~g}, 178 \mathrm{mmol}$) in 500 mL of dry THF under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$ was added sodium hydride (60% oil dispersion, $35.6 \mathrm{~g}, 890 \mathrm{mmol}, 5 \mathrm{eq}$) in portions. The resulting reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , and methyl iodide (44.3 $\mathrm{mL}, 712 \mathrm{mmol}, 4 \mathrm{eq}$) was then added. The reaction was stirred overnight at room temperature. The excess sodium hydride was quenched by the careful addition of water, and the solvents were removed in vacuo. The residue was diluted with 300 mL of water and washed with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous phase was then acidified with KHSO_{4} (to pH 3) and was extracted with EtOAc. The combined extracts were successively washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting crude compound $\mathbf{6}$ was used directly for the next step.

The above crude product was dissolved in methanol (400 mL) and cooled down to $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. Thionyl chloride ($14.3 \mathrm{ml}, 196 \mathrm{mmol}, 1.1 \mathrm{eq}$) was slowly added to the reaction system. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h , and then refluxed for 2 h . The solvents were removed in vacuo to give 7 as white solid ($45.3 \mathrm{~g}, 174 \mathrm{mmol}, 98 \%$ for two steps). Mp: $152-155^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25.2}-31.3$ (c 1.0, MeOH); IR (KBr): 3417, 2954, 2834, 2691, 2433, 1745, 1612, $1514,1249,1029,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }^{6}$) $\delta 9.88$ (brs, 2H), 7.22 and 7.16 (two d, $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.87 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.22 and 4.08 (two dd, J = $7.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.54$ and 2.52 (two s, 3 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d^{6}) $\delta 169.45$ and 168.62 (1C), 158.48 and 158.44 (1C), 130.61 and 130.47 (2C), 126.55 and $126.18(1 \mathrm{C}), 114.00$ and $113.91(2 \mathrm{C}), 61.39$ and $61.20(1 \mathrm{C}), 55.07,52.59,33.91$ and 33.84 (1C), 31.79 and 31.52 (1C); ESI-MS (m / z): 224 (M-HCl+ H^{+}); HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3}$ (M-HCl+ H^{+}) 224.1287, found 224.1281.

To a solution of $7(12.7 \mathrm{~g}, 49.0 \mathrm{mmol}, 1.05 \mathrm{eq}), \mathrm{N}-\mathrm{Boc}-\mathrm{D}-\mathrm{Trp}-\mathrm{OH}(8)(14.2 \mathrm{~g}, 46.7 \mathrm{mmol}, 1 \mathrm{eq})$ and $\operatorname{BEP}(16.6 \mathrm{~g}, 60.6 \mathrm{mmol}, 1.3 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$ under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$ was added N-ethyldiisopropylamine ($24.3 \mathrm{ml}, 140 \mathrm{mmol}, 3 \mathrm{eq}$) slowly via a syringe pump (flow rate $25 \mathrm{ml} / \mathrm{h}$). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h and then stirred at room temperature overnight. The organic solvent was removed in vacuo, and the resulting mixture was diluted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by MPLC on silica gel (MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 0 \sim 5 \%$) to give 9 (18.0 g , $76 \%)$ as a white foam. $[\alpha]_{\mathrm{D}}{ }^{25.8}+48.0\left(c 1.02, \mathrm{CHCl}_{3}\right)$. IR (KBr): 3337, 3005, 2976, 2952, 2834, $1738,1701,1641,1513,1247,1032,747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34-8.20(\mathrm{~m}, 1 \mathrm{H})$, $7.68-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=9.9$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.78(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.59(\mathrm{~m}, 6 \mathrm{H}), 3.29-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 1 \mathrm{H})$, $2.87-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.88$ and 2.66 (two s, 3 H$), 1.43-1.33(\mathrm{~d}, J=21.6 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.17$ and 172.75 (1C), 171.10 and 170.57 (1C), 158.63 and 158.48 (1C), 155.30 and $155.12(1 \mathrm{C}), 136.28,130.15$ and 129.97 (2C), 128.97, 127.93, 123.44 and 122.67 (1C), 122.12 and $122.09(1 \mathrm{C}), 119.69$ and $119.60(1 \mathrm{C}), 119.03$ and $118.93(1 \mathrm{C}), 114.25$ and 114.03 $(2 \mathrm{C}), 111.28$ and $111.06(1 \mathrm{C}), 110.52$ and $110.15(1 \mathrm{C}), 79.73,61.19$ and $59.64(1 \mathrm{C}), 55.31,52.56$ and $52.32(1 \mathrm{C}), 50.90$ and $50.47(1 \mathrm{C}), 34.61$ and $33.92(1 \mathrm{C}), 33.39,29.18$ and $29.11(1 \mathrm{C}), 28.49$ and 28.41 (3C); ESI-MS (m / z): $532\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 532.2427, found 532.2418.

1.3 Diketopiperazine 4

To a solution of 3 M HCl in EtOAc (100 mL) was added $9(17.9 \mathrm{~g}, 35.1 \mathrm{mmol})$ at rt . The mixture was stirred at rt for 2 h . The solvent was removed in vacuo. The resulting residue was diluted with EtOAc , and the organic layer was successively washed with aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product $\mathbf{1 0}$ was used directly for the next step without further purification.

To a solution of crude $\mathbf{1 0}(13.0 \mathrm{~g}, 34.4 \mathrm{mmol}, 1 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml})$ was added $\mathrm{BBr}_{3}(1.9$ M in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \mathrm{~mL}, 171 \mathrm{mmol}, 5 \mathrm{eq}\right)$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature overnight. Water was slowly added at $0{ }^{\circ} \mathrm{C}$ to quench the reaction. The resulting solution was filtered, and the solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phases were concentrated (to remove $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and then diluted with EtOAc . The organic layer was washed with aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue combined with the previously filtered solid was purified by MPLC on silica gel $\left(\mathrm{MeOH}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $0 \sim 5 \%$) to give $4\left(11.3 \mathrm{~g}, 90 \%\right.$ for two steps) as a white solid. Mp: $128-132^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{25}+157.1$ (c $0.65, \mathrm{CH}_{3} \mathrm{CN}$); IR (KBr): 3291, 2926, 2685, 2600, 2261,1664, 1632, 1516, 1458, 1233, 1100, 746
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.81(\mathrm{~m}, 5 \mathrm{H}), 2.73(\mathrm{dd}$, $J=14.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dd}, J=14.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 167.00$, $166.96,157.28,137.63,132.25$ (2C), 128.14, 128.05, 125.12, 122.51, 119.89, 119.50, 116.41 (2C), $112.35,110.48,64.09,56.45,36.91,33.41,31.75$; ESI-MS $(\mathrm{m} / \mathrm{z}): 364\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 364.1648$, found 364.1656 .

1.4 Ketals 11a and 11b

To a solution of $\mathrm{PhI}(\mathrm{OAc})_{2}(3.86 \mathrm{~g}, 12.0 \mathrm{mmol}, 2 \mathrm{eq})$ and $\mathrm{LiOAc}(2.38 \mathrm{~g}, 6 \mathrm{eq})$ in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ $(550 \mathrm{~mL})$ was added $4(2.18 \mathrm{~g}, 6.0 \mathrm{mmol})$ in $50 \mathrm{ml} \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ slowly at $-15^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min and quenched with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$. The solvents were removed, and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 20)$ was added. The sediment was filtered and washed three times with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:20). The filtrates were concentrated in vacuo. The resulting residue was purified by MPLC on silica gel (MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 0 \sim 5 \%$) to give a mixture of $\mathbf{1 1 a} / \mathbf{b}$, which was further purified by preparative TLC (EtOAc) to give 11a ($535 \mathrm{mg}, 16 \%$) and 11b ($401 \mathrm{mg}, 12 \%$) as slightly yellow solids.

11a: Single crystal for X-ray analysis was prepared by slow evaporation from DMSO. Mp: >270 ${ }^{\circ} \mathrm{C}$ (decomposition); $[\alpha]_{\mathrm{D}}{ }^{28.0}-56.0$ (c 1.0, THF). IR (KBr): 3445, 3218, 2945, 1678, 1621, 1580, 1483, 1282, 1170, 1107, $992 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=10.2,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.00(\mathrm{~m}, 6 \mathrm{H}), 3.30(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H})$, 2.89 (dd, $J=14.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=16.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=16.2,3.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 168.76,165.87,164.86,158.89,148.41,139.26,133.55,133.25$, $128.13,127.52,126.05,125.33(\mathrm{q}, ~ J=275 \mathrm{~Hz}, 1 \mathrm{C}), 125.28$ (q, $J=275 \mathrm{~Hz}, 1 \mathrm{C}), 122.28,116.86$, $111.37,98.84,66.32,62.08(\mathrm{q}, J=34.6 \mathrm{~Hz}, 2 \mathrm{C}), 57.42,56.12,38.38,37.60,33.86$; ESI-MS $(\mathrm{m} / \mathrm{z})$: $558\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~F}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right) 558.1469$, found 558.1458.

11b: Single crystals for X-ray analysis was prepared by vapor diffusion (THF/hexanes). Mp: >250 ${ }^{\circ} \mathrm{C}$ (decomposition); $[\alpha]_{\mathrm{D}}{ }^{25.1}-20.4$ (c 1.02, THF). IR (KBr): 3260, 2933, 1682, 1655, 1579, 1484, 1287, 1155, 1112, 988, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.97$ (dd, $J=8.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=10.2$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.17-3.99(\mathrm{~m}, 6 \mathrm{H}), 3.48(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{dd}, J=14.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=16.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 169.87,165.19,164.78,159.56,149.67,139.18$, $132.92,132.31,129.16,127.40,126.46,125.37(\mathrm{q}, J=275 \mathrm{~Hz}, 1 \mathrm{C}), 125.23(\mathrm{q}, J=275 \mathrm{~Hz}, 1 \mathrm{C})$, $121.23,110.86,118.18,98.71,66.84,62.25(\mathrm{q}, J=35 \mathrm{~Hz}, 1 \mathrm{C}), 62.10(\mathrm{q}, J=35 \mathrm{~Hz}, 1 \mathrm{C}), 57.17$, 55.62, 39.29, 38.66, 32.93; ESI-MS (m / z): $558\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~F}_{6}(\mathrm{M}$ $+\mathrm{H}^{+}$) 558.1472, found 558.1458.

Ketal 11a ($60 \mathrm{mg}, 0.108 \mathrm{mmol})$, HOAc $(4.5 \mathrm{~mL})$ and water $(0.03 \mathrm{~mL})$ were introduced into an oven-dried 20 mL CEM® vial. The vial was then sealed with a Teflon-lined septum. The resulting mixture was irradiated by microwave (50 W) at $50{ }^{\circ} \mathrm{C}$ for 15 min . Solvents were removed in vacuo, and the residue was diluted with EtOAc. The organic layer was washed by aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by MPLC on silica gel (MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 0 \sim 5 \%$) to give 12a ($24 \mathrm{mg}, 59 \%$) as a yellow solid. Mp : $135 \sim 137^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24.8}-197.3$ (c 0.50, THF); IR (KBr): 3244, 3062, 2922, 2851, 1679, 1638, 1481, 1235, 1030, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.03$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H})$, $5.39(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.10-$ $3.01(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.94,166.97,166.32$, $165.74,157.75,154.02,137.33,133.39,133.15,131.76,125.79,125.17,123.85,115.62,111.61$, 65.35, 57.18, 54.95, 37.69, 36.08, 33.83; ESI-MS $(\mathrm{m} / \mathrm{z}): 376\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$376.1298; Found 376.1292.

1.6 Quinone 12b

Ketal 11b ($40 \mathrm{mg}, 0.072 \mathrm{mmol}$), HOAc (1 mL) and dioxane (1 mL), water (0.1 mL) were introduced into an oven-dried 10 mL CEM® vial. The vial was then sealed with a Teflon-lined septum. The resulting mixture was irradiated by microwave (50W) at $65^{\circ} \mathrm{C}$ for 1.2 h . Solvent was removed in vacuo, and the residue was diluted with EtOAc. The organic layer was washed by aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by MPLC on silica gel (MeOH in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: 0 \sim 5 \%\right)$ to give $\mathbf{1 2 b}(13 \mathrm{mg}, 48 \%)$ as a yellow solid. Mp: $160 \sim 165^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25.6}-1.72\left(c 0.275, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3473, 3223, 2928, 1672, 1637, 1483, 1274, 1027, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=$ $14.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=16.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{dd}, J=16.3,3.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 187.77,170.58,165.65,163.93,158.51,155.48,136.79,133.65$, $131.31,131.28,126.34,125.12,122.11,116.32,110.58,65.84,56.86,54.34,38.54,36.19,32.62$; ESI-MS (m / z): $376\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$376.1295; Found 376.1292.
1.7 Phenol 13a

To a solution of $\mathbf{1 2 a}(86 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(10 \mathrm{mg}, 0.26$ mmol, 1.14 eq$)$ at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC until the starting material was consumed. Silica gel was added and the solvent was removed in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 1 \sim 20: 1\right)$ to give $13 \mathrm{a}(58 \mathrm{mg}, 67 \%)$ as a white solid. Mp: $>240{ }^{\circ} \mathrm{C}$ (decomposition); $[\alpha] \mathrm{D}^{29}+193.7$ (c 0.108, MeOH); IR (KBr): 3350, 2970, 2937, 2835, 1661, 1635, 1481, 1236, 1058, $925 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.52$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.44(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H})$, $5.27(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}$, $J=16.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=14.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 168.18,165.84,158.50,151.61,142.54,133.81,132.57,132.46,130.61,125.53$, $115.18,113.25,110.87,110.73,110.32,65.97,59.95,56.18,41.15,38.15,33.86$; ESI-MS $(\mathrm{m} / \mathrm{z})$: $378\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$378.1459; Found 378.1448.

1.8 Phenol 13b

To a solution of $\mathbf{1 2 b}(110 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(12 \mathrm{mg}, 0.32$ mmol, 1.1 eq) at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC until consumption of the starting material. Silica gel was added and the solvent was removed in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 1 \sim 20: 1\right)$ to give $\mathbf{1 3 b}(88 \mathrm{mg}, 80 \%)$ as a white solid. $\mathrm{Mp}:>220^{\circ} \mathrm{C}$ (decomposition); $[\alpha]_{\mathrm{D}}{ }^{24}-253.6$ (c 0.33, MeOH); IR (KBr): 3336, 2935, 2852, 1662, 1632, 1482, 1454, 1200, 1019, $819 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.33(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.48(\mathrm{~m}, 4 \mathrm{H})$, $6.17(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J$ $=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=14.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=16.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ 169.94, 165.32, 159.23, 151.88, 142.32, 134.20, 132.19, $131.81,130.82,126.00,115.60,111.53,111.00,110.74,110.12,66.52,59.88,55.18,42.19,38.92$, 32.76; ESI-MS (m/z): $378\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$378.1455; Found 378.1448.

1.9 Triflate 14a

To a solution of 13a $(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in dry EtOAc $(8 \mathrm{~mL})$ under N_{2} atmosphere was added triethylamine $(0.3 \mathrm{~mL})$. The solution was cooled down to $-15^{\circ} \mathrm{C}$ for 10 min , and $\mathrm{Tf}_{2} \mathrm{O}(48 \mu \mathrm{l}, 0.28$ mmol, 2.15 eq) was slowly added. The solution was stirred for 3 h at $-15{ }^{\circ} \mathrm{C}$ until aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The resulting mixture was diluted with EtOAc and washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by flash column chromatograph $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 1 \sim 20: 1\right)$ to give $14 \mathrm{a}(36 \mathrm{mg}, 53 \%)$ as a white solid. $\mathrm{Mp}:>270^{\circ} \mathrm{C}$ (decomposition); $[\alpha]_{\mathrm{D}}{ }^{28}+217.0(c 0.16, \mathrm{MeOH}) ;$ IR (KBr): 3285, 3053, 2928, 2845, 1673, 1654, 1488, 1418, 1213, 1060, $893 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}$) $\delta 8.03$ (d, $J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}$, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=6.1,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{dd}, J=$ $14.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=16.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}\right) \delta 167.41,164.24,156.49,148.89,141.32,132.82,131.60,131.50,128.47$, $123.91,121.09,118.38(\mathrm{q}, ~ J=319 \mathrm{~Hz}, 1 \mathrm{C}), 117.26,109.93,108.68,107.95,64.43,58.13,54.20$, 39.09, 36.71, 32.67; ESI-MS (m/z): $510\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 510.0957; Found 510.0941.

1.10 Triflate 14b

To a solution of $\mathbf{1 3 b}(28 \mathrm{mg}, 0.074 \mathrm{mmol})$ in dry EtOAc $(2 \mathrm{~mL})$ under N_{2} atmosphere was added triethylamine $(0.05 \mathrm{~mL})$. The solution was cooled down to $-15^{\circ} \mathrm{C}$ for 10 min , and $\mathrm{Tf}_{2} \mathrm{O}(25$ $\mu 1,0.15 \mathrm{mmol}, 2 \mathrm{eq}$) was slowly added. The solution was stirred for 1 h at $-15^{\circ} \mathrm{C}$ until aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The resulting mixture was diluted with EtOAc and washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by flash column chromatograph $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 1 \sim 20: 1\right)$ to give $\mathbf{1 4 b}(26.5 \mathrm{mg}, 70 \%)$ as a white solid. $\mathrm{Mp}:>250{ }^{\circ} \mathrm{C}$ (decomposition); $[\alpha]{ }_{\mathrm{D}}{ }^{25}-368.4$ (c 0.115, MeOH); IR (KBr): 3444, 2934, 2848, 1673, 1636, 1490, 1419, 1217, 1137, $884 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }^{6}$) $\delta 8.83(\mathrm{~s}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.6,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.9,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{dd}, J=16.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }^{6}$) δ $168.19,164.00,157.60,148.64,141.29,133.21,130.74,130.15,129.93,124.52,120.89,118.28$ (q, $J=319 \mathrm{~Hz}, 1 \mathrm{C}), 116.78,109.16,108.58,108.01,64.83,58.04,53.41,39.59$ (DEPT, HMQC), 37.55, 31.62; ESI-MS $(\mathrm{m} / \mathrm{z}): 510\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 532.0760; Found 532.0761.

1.11 Compound 15a

A mixture of 14a ($35 \mathrm{mg}, 0.069 \mathrm{mmol}$), triethylamine ($30 \mu \mathrm{l}, 0.22 \mathrm{mmol}$) and $15 \mathrm{mg} \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ $(20 \% \mathrm{Pd})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ and $\mathrm{EtOAc}(1.5 \mathrm{~mL})$ was stirred at room temperature under hydrogen atmosphere (1 atm) at rt for 2 h . The reaction mixture was filtered through a pad of Celite. The solid was washed with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 100:1~20:1) to afford 15a ($20 \mathrm{mg}, 80 \%$) as a white solid. $\mathrm{Mp}:>300^{\circ} \mathrm{C}$ (decomposition); $[\alpha]_{\mathrm{D}}{ }^{29}+$ 154.8 (с 0.14, CHCl_{3}); IR (KBr): 3330, 2925, 2848, 1670, 1650, 1485, 1316, 1233, 1057, 944, 752 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.89$ $(\mathrm{m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$, $3.02(\mathrm{dd}, J=14.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=16.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.95,165.57,156.95,147.47,131.93,131.39,130.82,129.55,128.51,124.82,124.75,120.59$, $110.94,109.20,109.07,65.35,58.93,55.48,40.58,37.61,33.84$; ESI-MS $(\mathrm{m} / \mathrm{z}): 362\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 362.1496$; Found 362.1499.

1.12 Compound 15b

A mixture of $\mathbf{1 4 b}(62.6 \mathrm{mg}, 0.123 \mathrm{mmol})$, triethylamine ($34 \mu \mathrm{l}, 0.246 \mathrm{mmol}$) and 15 mg $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \% \mathrm{Pd})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{EtOAc}(1 \mathrm{~mL})$ was stirred at room temperature under hydrogen atmosphere (1 bar) at rt for 2 h . The reaction mixture was filtered through a pad of Celite. The solid was rinsed with 5% methanol/dichloromethane. The combined filtrates were concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 100:1~20:1) to afford $\mathbf{1 5 b}(43.0 \mathrm{mg}, 96 \%)$ as a white solid. $\mathrm{Mp}:>300{ }^{\circ} \mathrm{C}($ dec. $) ;[\alpha]{ }_{\mathrm{D}}{ }^{28.7}-416.2$ (c $0.125, \mathrm{MeOH}$); IR (KBr): 3430, 2979, 2858, 1664, 1634, 1479, 1055, 1012, 810, $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{td}, J=$ $7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 2.99$ (dd, $J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ $168.28,164.18,157.70,148.45,131.67,131.11,130.30,129.66,127.96,124.51,122.92,118.20$, 108.87, 108.58, 108.06, 64.92, 58.02, 53.60, 40.47, 37.49, 31.63; ESI-MS $(\mathrm{m} / \mathrm{z}): 362\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 362.1504$; Found 362.1499.
1.13 Azonazine diastereomer 1a (The originally proposed structure)

To a solution of $\mathbf{1 5 a}(14 \mathrm{mg}, 0.039 \mathrm{mmol})$ in $\mathrm{HOAc}(2 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(0.01 \mathrm{~mL}, 0.106$ mmol) at rt . The resulting mixture was stirred at rt for 6 h . The solvent was removed, and the residue was diluted by EtOAc. The organic layer was washed with aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by preparative TLC (EtOAc/MeOH, 50:1) to afford 1a (10.5 mg, 67%) as a white solid. $\mathrm{Mp}:>300^{\circ} \mathrm{C}(\mathrm{dec}.) ;[\alpha]_{\mathrm{D}}{ }^{28.2}$ + 342.7 (c $0.175, \mathrm{MeOH}$); IR (KBr): 3518, 3232, 3012, 2928, 2848, 1677, 1649, 1485, 1391, 1241, $971,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.13 (dd, $J=16.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=14.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.18$ (dd, $J=16.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 171.74,168.24,165.77,157.67,142.95$, $134.78,133.77,132.82,130.35,129.28,125.35$ (2C), 124.95, 116.52, 111.25, 107.01, 65.97, 58.79, 56.18, 40.98, 38.20, 33.94, 24.37; ESI-MS (m / z): $404\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$426.1429; Found 426.1424.

1.14 ent-(-)- Azonazine (1b)

To a solution of $\mathbf{1 5 b}(13 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{HOAc}(1.5 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(0.01 \mathrm{ml}, 0.106$ mmol) at rt . The resulting mixture was stirred at rt for 4 h . The solvent was removed and the residue was diluted by EtOAc. The organic layer was washed with aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by preparative TLC ($\mathrm{EtOAc} / \mathrm{MeOH}, 50: 1$) to afford $\mathbf{1 b}(13 \mathrm{mg}, 89 \%)$. The single crystal for X-ray analysis was prepared by slow evaporation from $\mathrm{CH}_{3} \mathrm{CN} . \mathrm{Mp}:>350{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;[\alpha]_{\mathrm{D}}{ }^{26.5}-299.3$ (c 0.11, MeOH); IR (KBr): 3430, 3219, 2926, 2849, 1661, 1626, 1485, 1394, 1283, 1027, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=$ $7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}$, $1 \mathrm{H}), 4.27(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=$ $14.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=16.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=16.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 171.29,169.43,165.49,159.05,142.52,135.37$, $133.22,132.02,131.51,129.62,126.46,125.71,124.15,117.31,110.84,106.98,66.32,59.08$, 54.84, 43.41, 39.24, 32.83, 24.17; ESI-MS (m / z): $404\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$404.1610; Found 404.1605 .

To a solution of $\mathbf{1 1 b}(26 \mathrm{mg}, 0.047 \mathrm{mmol})$ in THF (3 mL) was added Zn powder $(9.0 \mathrm{mg}, 0.14$ mmol), $\mathrm{Et}_{3} \mathrm{SiH}(29 \mu \mathrm{l}, 0.19 \mathrm{mmol})$ and $\mathrm{AcOH}(30 \mu \mathrm{l}, 0.52 \mathrm{mmol})$ at rt under N_{2} atmosphere. The reaction mixture was stirred at rt until consumption of the starting material (monitored by TLC). The reaction mixture was diluted with EtOAc and filtered through a pad of Celite. The solid was washed with EtOAc. The organic layers were washed with aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was directly used for the next step without further purification.

The above crude product was treated with HOAc $(1.5 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.01 \mathrm{~mL}, 0.106 \mathrm{mmol})$, and the resulting mixture was stirred at rt for 10 h . The mixture was concentrated in vacuo, and the residue was then diluted by EtOAc. The solution was washed with aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by preparative TLC (EtOAc/MeOH, 50:1) to afford 16 ($16 \mathrm{mg}, 68 \%$ for two steps) as a white solid. Mp : $>270{ }^{\circ} \mathrm{C}$ (dec.); $[\alpha]_{\mathrm{D}}{ }^{26}-251.4$ (c 0.725, THF); IR (KBr): 3451, 2964, 2917, 2844, 1673, 1656, 1492, 1391, 1259, 1154, 1077, 1018, $797 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}$) $\delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.68$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.87-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=14.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=16.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38$ (s, 3H), 2.35 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 169.64,168.07,164.17,157.14,153.98$, $135.95,135.82,131.76,130.44,129.98,124.92,124.02$ ($\mathrm{q}, ~ J=277 \mathrm{~Hz}, 1 \mathrm{C}), 116.20,113.55$, $110.82,109.49,105.49,65.13$ (q, $J=34 \mathrm{~Hz}, 1 \mathrm{C}), 64.73,57.37,53.33,40.64,37.73,31.67,23.36$; ESI-MS (m/z): $502\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calc'd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~F}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$502.1576; Found 502.1584.
2. X-ray single crystal structures of compounds $\mathbf{1 b}, 11 \mathrm{a}$ and $11 \mathrm{~b} .{ }^{1}$

2-1. XRD structure of $\mathbf{1 b}$

2-2. XRD structure of 11a

2-3. XRD structure of 11b

[^0]

2-4. Table S1. Representative unusual structural factors of compound $\mathbf{1 b}$.

Bond angles	Observed	Normal	Dihedral angles	Observed	Normal
$\angle \mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	117.2°	120°	<C3-C4C9-C8	$145.6{ }^{\circ}$	180°
$\angle \mathrm{C} 8$--7-O	112.5°	108°	<C3-C4C5-C6	$154.3{ }^{\circ}$	180°
$\angle \mathrm{C} 12-\mathrm{C} 10-\mathrm{C} 11$	102.7°	108°	$\angle \mathrm{C} 2-\mathrm{N}(\mathrm{CH} 3) \mathrm{C} 20-\mathrm{O}$	160.1°	180°
$\angle \mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 10$	$122.6{ }^{\circ}$	109.5°	$\angle \mathrm{C} 6-\mathrm{C} 7 \mathrm{C} 8-\mathrm{C} 10$	163.6°	180°
$\angle \mathrm{C} 1-\mathrm{NH}-\mathrm{C} 19$	127.1°	120°	$\angle \mathrm{C} 21-\mathrm{N}(\mathrm{CH} 3) \mathrm{C} 20-\mathrm{C} 19$	165.0°	180°
$\angle \mathrm{NH}-\mathrm{C} 19-\mathrm{C} 20$	$113.4{ }^{\circ}$	109.5°	$\angle \mathrm{C} 20-\mathrm{C} 19 \mathrm{NH}-\mathrm{C} 18$	136.5°	120°
			$\angle \mathrm{C} 8-\mathrm{C} 10 \mathrm{C} 18-\mathrm{C} 12$	$132.5{ }^{\circ}$	120°

3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds

14b: 125 MHz, DMSO-d ${ }^{6}$

[^1]

ジロ
本本お筑

4. NMR data comparison of synthetic 1 b with natural azonazine ${ }^{2}$

No.	$\delta_{\text {H }}(J)$		$\delta_{\text {C }}(J)$	
	Natural	Synthetic	Natural	Synthetic
1			169.49	169.43
2	4.09 d (7.2)	4.09 d (6.5)	66.26	66.32
3	$\begin{gathered} \text { a } 3.08 \mathrm{dd}(14.4,7.2) \\ \text { b } 3.49 \mathrm{~d}(14.4) \end{gathered}$	$\begin{gathered} \text { a } 3.08 \mathrm{dd}(14.2,6.9) \\ \text { b } 3.50 \mathrm{~d}(14.2) \end{gathered}$	39.21	39.24
4			133.20	133.22
5	$6.95 \mathrm{dd}(7.8,1.2)$	6.96 dd ($7.8,1.7$)	131.51	131.51
6	6.67 d (8.4)	6.67 d (8.1)	110.83	110.84
7			158.99	159.05
8			131.98	132.02
9	7.50 s	7.51 d (1.6)	126.42	126.46
10			59.06	59.08
11	6.58 s	6.59 s	106.95	106.98
12			135.34	135.37
13	$7.59 \mathrm{~d}(7.2)$	$7.60 \mathrm{dd}(7.5,0.8)$	124.13	124.15
14	7.19 t (7.8)	$7.19 \mathrm{td}(7.5,1.1)$	125.72	125.71
15	7.29 t (7.8)	7.29 td (7.8, 1.3)	129.61	129.62
16	$8.13 \mathrm{brs}(\mathrm{w} 1 / 2 \approx 7.8)$	8.13 brs	117.29	117.31
17			142.48	142.52
18	a 2.49 dd (16.8, 1.8)	a $2.49 \mathrm{dd}(16.5,2.2)$	43.35	43.41
	b 2.84 dd ($16.8,5.4$)	b 2.84 dd ($16.5,5.8$)		
19	4.26 d (5.4)	4.27 d (5.1)	54.80	54.84
20			165.51	165.49
21	2.40 s	2.40 s	32.83	32.83
22			171.34	171.29
23	2.42 s	2.42 s	24.16	24.17
NH	7.04 brs	6.96 br (overlapped with H5)		

[^2]
[^0]: ${ }^{1}$ The CIF files were provided as separated files in the Supporting Information.

[^1]:

[^2]: ${ }^{2}$ Wu, Q. X.; Crews, M. S.; Draskovic, M.; Sohn, J.; Johnson, T. A.; Tenney, K.; Valeriote, F. A.; Yao, X. J.; Bjeldanes, L. F.; Crews, P. Org. Lett. 2010, 12, 4458; and its Supporting Information.

