Supporting Information

Focused Fluorescent Probe Library for Metal Cations and Biological Anions

Hyun-Woo Rhee, ${ }^{\dagger \ddagger \pi}$ Sang Wook Lee, ${ }^{\dagger \ddagger}$ Jun-Seok Lee, ${ }^{\S}$ Young-Tae Chang, ${ }^{*}{ }^{\S}$ and Jong-In Hong* ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, Seoul National University, Seoul 151-747 (Korea)
ๆ Current Address: School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST),
Ulsan 689-798, Korea
${ }^{\text {§ }}$ Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore 117543 (republic of Singapore)
Index Page

1. Prepartion of combinatorial building blocks 2-3
2. Characterization of probes (1 A to 7 E) 4-38
3. Fluorescence Excitation and Emission spectra 39-42
4. Binding affinity of probes to each metal cations 43
5. Fluorescence spectrum change of 5A and 5D upon addition of $\mathrm{Hg}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I})$ 44
6. Metal probes' fluorescence response to pH change from pH 2 to 11 45
7. Fluorescence cellular imaging of 6A 45
8. Expanded version of Figure 1 46-47
9. Job's plot between dTTP and $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ 48
10. NMR spectra of the $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ - thymidine complex 49
11. Absorption spectra of the $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ - thymidine complex 50
12. Fluorescence spectra of $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ in presence of DNA 51

1. Preparation of combinatorial building blocks.

Building blocks \mathbf{A} and \mathbf{B} were purchased and C, D, E blocks were prepared by following the reported procedure. ${ }^{1}$ Building blocks 1, 2, 5,6 , and 7 blocks were prepared by following the published reports. ${ }^{2}$
(1) Rosania, G. R. ; Lee, J. W.; Ding, L.; Yoon, H. S.; Chang, Y. T. J. Am. Chem. Soc. 2003, 125, 1130-1131.
(2) (a) Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. J. Am. Chem. Soc. 2007, 129, 1500-1501. (b) Coskun, A.; Deniz, E.; Akkaya, E. U. Tetrahedron Lett. 2007, 48, 5359-5361. (c) Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 10-11. (d) Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968-969. (e) Yuan, M.; Li, Y.; Li, J.; Li, C.; Liu, X.; Lv, J.; Xu, J.; Liu, H.; Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313-2316. (f) Lee, S. J.; Jung, J. H.; Seo, J.; Yoon, I.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Org. Lett. 2006, 8, 1641-1643. (g) Massin, J.; Dayoub, W.; Mulatier, J. C.; Aronica, C.; Bretonniere, Y.; Andraud, C. Chem. Mater. 2011, 23, 862-873.

Synthesis of building block 3

Scheme 1. Synthesis of building block 3

Synthesis of compound $3 a$ To a solution of N -(2-hydroxyethyl)aniline ($3.0 \mathrm{~g}, 21.8 \mathrm{mmol}$) in dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(10 \mathrm{~mL})$ was added dropwise phosphorous tribromide $(22.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 hr at room temperature. Checked by TLC, if N-(2-hydroxyethyl)aniline was totally consumed, the reaction mixture was added 20 mL of water and stirred 5 min more. Decanted the organic layer carefully and dried over sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removed organic solvent in low pressure and remained residue was directly used in the next step without further purification. The residue was solvated in dimethyl sulfoxide (DMSO) (2 mL) and which was stirred at room temperature. Sodium azide ($5.2 \mathrm{~g}, 80 \mathrm{mmol}$) in DMSO (2 mL) was added to the solution, the reaction mixture was heated up to $80^{\circ} \mathrm{C}$ and stirred for 1 hr . The reaction mixture was poured into ethyl acetate (EA) (20 mL) and water (20 mL). Organic layer was washed with water three times. Decanted organic layer carefully and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtrated organic solvent was condensed in low pressure. Remained crude compounds were purified by silica-gel column chromatography (hexane: EA = 10:1) to afford light brown solid, $3 \mathrm{a}\left(3.21 \mathrm{~g}, 19.8 \mathrm{mmol}, 91 \%\right.$ yield ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.38(2 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}$), $3.55(2 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}$), $3.90(1 \mathrm{H}, \mathrm{s}), 6.68-6.71(2 \mathrm{H}, \mathrm{m}), 6.80(1 \mathrm{H}, \mathrm{m}), 7.25(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 43.134,50.596,76.786,77.209,77.633$, 113.144, 118.168, 129.464, 147.349.

Synthesis of compound $3 b$ 2-bromomethylprydine hydrobromide ($3.18 \mathrm{~g}, 12.6 \mathrm{mmol}$) was solvated in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, then $3 \mathrm{a}(1.70 \mathrm{~g}$, $10.5 \mathrm{mmol}), 5 \mathrm{~N} \mathrm{NaOH}(3 \mathrm{~mL})$ and tetrabutylammonium bromide (15 mg) were added under N_{2}. Reaction mixture was stirred for 24 h at room temperature. Resulting solution was extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was washed with $\mathrm{H}_{2} \mathrm{O}$. Decanted organic solvent and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtrated organic solvent was condensed in low pressure. Remained residue was purified by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: EA = 4:1) yielded brown compound $3 \mathrm{~b}\left(1.57 \mathrm{~g}, 6.19 \mathrm{mmol}, 59 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 3.50(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.66(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 4.73(2 \mathrm{H}, \mathrm{s}), 6.72-6.76(3 \mathrm{H}, \mathrm{m}), 7.11-7.23(4 \mathrm{H}, \mathrm{m}), 7.51-7.56(1 \mathrm{H}, \mathrm{m}), 8.59-8.60(1 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 49.018,50.864,57.118,112.608,117.458,120.837,122.060,129.476,136.728,147.490,149.661$, 158.861.

Synthesis of compound $3 \mathbf{c}$ The azide of $\mathbf{3 b}(1.0 \mathrm{~g}, 3.9 \mathrm{mmol})$ was hydrogenated using MeOH as solvent and $\mathrm{Pd} / \mathrm{C}(10 \%, 0.2 \mathrm{~g})$ as catalyst
with hydrogen gas bubbling. The mixture was stirred at room temperature for 24 h which was qualitatively monitored by TLC (n-hexane: $\mathrm{EtOAc}=2: 1$). When 3 b was consumed totally, Pd / C was removed by filtration and the solvent was evaporated in vacuo. The product (N^{1}-phenyl- N^{1}-(pyridin-2-ylmethyl) ethane-1,2-diamine) was directly used in the next step. N^{1}-phenyl- N^{1}-(pyridin-2-ylmethyl)ethane-1,2diamine ($0.89 \mathrm{~g}, 3.9 \mathrm{mmol}$) was added to a stirred solution of 2-pyridinecarboxaldehyde ($0.88 \mathrm{~g}, 8.22 \mathrm{mmol}$) in 1,2-dicholroethane (60 mL). After 30 min , sodium triacetoxyborohydride ($2.5 \mathrm{~g}, 12 \mathrm{mmol}$) was added to the mixture. The reaction mixture was stirred for overnight. After then, the solution was extracted with EA which was washed with water three times. Decanted organic layer carefully and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtrated organic solvent was condensed in low pressure. Remained crude compounds were purified by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give sticky brown compound $3 \mathrm{c}\left(0.80 \mathrm{~g}, 1.95 \mathrm{mmol}, 50 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.88(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.64(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.92(4 \mathrm{H}, \mathrm{s}), 4.59(2 \mathrm{H}, \mathrm{s}), 6.52(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{t}, J$ $=5.6 \mathrm{~Hz}), 7.06-7.16(6 \mathrm{H}, \mathrm{m}), 7.50-7.52(3 \mathrm{H}, \mathrm{m}), 7.62-7.64(2 \mathrm{H}, \mathrm{m}), 8.53-8.55(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 49.664,50.807$, $56.845,60.820,111.856,116.233,120.561,121.718,121.988,122.937,129.073,136.311,136.513,147.661,148.904,149.312,159.100$, 159.168.

Synthesis of compound $3 \mathrm{POCl}_{3}(1 \mathrm{~mL}, 17 \mathrm{mmol})$ was added dropwise to a stirring solution of DMF ($2 \mathrm{~mL}, 26 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. Stirred for 30 min , then $3 \mathrm{c}(0.50 \mathrm{~g}, 1.22 \mathrm{mmol}$) in dimethyl formamide (DMF) (1 mL) was slowly added dropwise. The reaction mixture was warmed to room temperature and stirred overnight. The reaction mixture was poured into ice cool water (15 mL), and the pH was adjusted to $\mathrm{pH} 7-8$ with saturated $\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. Combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtrated organic solvent was condensed in low pressure. Remained crude reaction mixture was purified by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $7 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the product 3 (sticky brown compound) ($0.28 \mathrm{~g}, 0.64 \mathrm{mmol}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.88(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$), $3.69(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.93(4 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{s}), 6.56(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})$, $7.05(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 7.17-7.19(3 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.58-7.65(5 \mathrm{H}, \mathrm{m}), 8.55-8.56(3 \mathrm{H}, \mathrm{m}), 9.70(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $\delta 49.779,50.285,56.723,60.918,111.302,120.360,122.212,123.137,125.562,131.912,136.449,136.818,149.098$, 149.738, 152.634, 157.504, 158.777, 189.996 HRMS (FAB): m/e calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 438.2294$, found 438.2290 .

Synthesis of building block 4

Scheme 2. Synthesis of building block 4

Synthesis of compound $4 b$ With compound $4 \mathrm{a}^{2(f),(\mathrm{g})}$ the synthesis procedure is similar to that of 3 C . The crude product was purified by column chromatography (silica gel, CH 2 Cl 2 to $5 \% \mathrm{MeOH}$ in CH 2 Cl 2) to obtain sticky brown compound. (48% yield) ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.65(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.35(4 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 3.85(8 \mathrm{H}, \mathrm{s}), 6.36(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.99(2 \mathrm{H}$, $\mathrm{t}, J=7.4 \mathrm{~Hz}), 7.11-7.16(4 \mathrm{H}, \mathrm{m}), 7.45-7.47(4 \mathrm{H}, \mathrm{m}), 7.58-7.64(4 \mathrm{H}, \mathrm{m}), 8.52\left(4 \mathrm{H}, \mathrm{q}, J_{1}=4.1 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 49.110$, 50.832, 60.865, 111.268, 115.310, 121.970, 122.843, 129.008, 136.302, 147.377, 148.941, 159.301.

Synthesis of compound 4 The synthesis procedure is similar to that of 3 . The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $7 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain sticky brown compound. (45% yield) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.65(4 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.41(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.85(8 \mathrm{H}, \mathrm{s}), 6.33(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.11-7.15(4 \mathrm{H}, \mathrm{m}), 7.40-7.47(6 \mathrm{H}$, m), $7.56-7.62(4 \mathrm{H}, \mathrm{m}), 8.50(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}), 9.62(1 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 49.837,50.181,60.700,110.528,122.199$, 123.012, 124.533, 131.847, 136.513, 148.876, 152.223, 158.773, 189.871. HRMS (FAB): m/e calcd. for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 572.3138$, found 572.3141.

1. Characterization of fluorescent probes

Characteristics of 1A

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) \delta 4.17(3 \mathrm{H}, \mathrm{s}), 4.93(4 \mathrm{H}, \mathrm{s}), 6.76(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.27-7.32(4 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}$, d, $J=15.2 \mathrm{~Hz}), 7.74-7.75(2 \mathrm{H}, \mathrm{m}), 7.82(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 8.01(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 8.55(2 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 8.67(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz})$. ${ }^{13}$ C NMR (125 MHz, DMSO-d $_{6}$) $\delta 46.396,56.635,112.508,117.700,121.191,122.244,122.315,123.245,129.985,136.851,141.461$, 144.387, 149.371, 150.162, 153.186, 158.119. HRMS (FAB): m/e calcd. For $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{4}\left[\mathrm{M}^{+}\right] 393.2079$, found 393.2086.

Characteristics of 1B
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 4.26(3 \mathrm{H}, \mathrm{s}), 4.95(4 \mathrm{H}, \mathrm{s}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{m}), 7.32(2 \mathrm{H}, \mathrm{d}, J$ $=7.7 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 8.33(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz})$, $8.40(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.56(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 8.76(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 45.704,56.753,111.327$, 112.421, 121.244, 122.335, 123.090, 123.269, 123.701, 130.525, 136.864, 143.225, 143.702, 145.352, 149.371, 150.405, 153.033, 158.107. HRMS (FAB): m/e calcd. For $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{4}\left[\mathrm{M}^{+}\right]$393.2079, found 393.2073.

Characteristics of 1C
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 4.42(3 \mathrm{H}, \mathrm{s}), 4.99(4 \mathrm{H}, \mathrm{s}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.96 \mathrm{~Hz}), 7.29-7.31(2 \mathrm{H}, \mathrm{m}), 7.34(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.51(1 \mathrm{H}$, d, $J=15.5 \mathrm{~Hz}$), $7.75-7.78(4 \mathrm{H}, \mathrm{m}), 7.85(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 8.19(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 8.26(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.48-$ $8.52(2 \mathrm{H}, \mathrm{m}), 8.57-8.58(2 \mathrm{H}, \mathrm{m}), 8.81(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 41.646,56.715,112.624,118.878,120.251$, 121.309, 121.902, 122.399, 123.249, 126.935, 128.153, 128.699, 129.808, 130.771, 134.234, 136.892, 139.195, 148.376, 149.411, 151.422, 156.284, 157.885. HRMS (FAB): m/e calcd. For $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4}\left[\mathrm{M}^{+}\right] 443.2236$, found 443.2236.

Characteristics of 1D
${ }^{1} H$ NMR (500 MHz, DMSO-d $_{6}$): $\delta 4.44(3 \mathrm{H}, \mathrm{s}), 4.98(4 \mathrm{H}, \mathrm{s}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.89 \mathrm{~Hz}), 7.28-7.31(2 \mathrm{H}, \mathrm{m}), 7.34(2 \mathrm{H}, \mathrm{d}, J=7.75 \mathrm{~Hz})$, $7.75-$ $7.78(4 \mathrm{H}, \mathrm{m}), 7.95-7.98(2 \mathrm{H}, \mathrm{m}), 8.07(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 8.19(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 8.32-8.34(2 \mathrm{H}, \mathrm{m}), 8.57(2 \mathrm{H}, \mathrm{d}, J=3.87 \mathrm{~Hz}), 8.97(1 \mathrm{H}, \mathrm{d}$, $J=8.45 \mathrm{~Hz}), 9.12-9.13(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 44.080,56.767,112.574,113.877,114.222,119.044,121.269$, 122.357, 123.848, 125.800, 126.223, 128.635, 131.031, 134.633, 136.878, 138.750, 144.101, 146.966, 149.390, 150.644, 153.012, 158.080. HRMS (FAB): m/e calcd. For $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4}\left[\mathrm{M}^{+}\right] 443.2236$, found 443.2233.

Characteristics of 1E
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right): \delta 3.95(3 \mathrm{H}, \mathrm{s}), 4.40(3 \mathrm{H}, \mathrm{s}), 4.97(4 \mathrm{H}, \mathrm{s}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.96 \mathrm{~Hz}), 7.28-7.31\left(2 \mathrm{H}, \mathrm{q}, J_{1}=4.85 \mathrm{~Hz}, J_{2}=1.9\right.$ $\mathrm{Hz}), 7.33(2 \mathrm{H}, \mathrm{d}, J=7.76 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 7.71-7.72(4 \mathrm{H}, \mathrm{m}), 7.75-7.78(2 \mathrm{H}, \mathrm{m}), 8.03(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 8.35-8.42(2 \mathrm{H}, \mathrm{m})$, $8.56-8.57(2 \mathrm{H}, \mathrm{m}), 8.70(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 40.102,56.134,56.766,108.729,112.574,112.890$, $120.707,120.751,121.316,122.415,123.319,125.094,128.825,131.267,134.437,136.923,141.238,146.799,149.168,149.422$, 151.037, 153.888, 158.252. HRMS (FAB): m/e calcd. For $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}\left[\mathrm{M}^{+}\right] 473.2341$, found 473.2349.

Characterization of 2A

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 2.62(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}$), $2.92(3 \mathrm{H}, \mathrm{s}), 3.55(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.81(4 \mathrm{H}, \mathrm{s}), 4.17(3 \mathrm{H}, \mathrm{s}), 6.62(2 \mathrm{H}, \mathrm{d}, J$ $=8.6 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 7.22-7.25(2 \mathrm{H}, \mathrm{m}), 7.45-7.50(4 \mathrm{H}, \mathrm{m}), 7.69(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 8.02(2 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}), 8.48(2 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 8.65(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 38.368,46.333,49.436,49.882,59.987$, $111.560,116.789,122.032,122.142,122.655,130.165,136.452,141.864,144.217,148.719,150.686,153.366,159.024$. HRMS (FAB): m / e calcd. For $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{5}\left[\mathrm{M}^{+}\right] 450.2658$, found 450.2661.

Characterization of 2B

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 2.65(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 2.95(3 \mathrm{H}, \mathrm{s}), 3.57(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.83(4 \mathrm{H}, \mathrm{s}), 4.28(3 \mathrm{H}, \mathrm{s}), 6.67(2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 7.23-7.25(2 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.60(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.69-7.71(3 \mathrm{H}, \mathrm{m}), 7.86(1 \mathrm{H}, \mathrm{d}$, $J=15.7 \mathrm{~Hz}), 8.33(1 \mathrm{H}, \mathrm{m}), 8.42(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.49(2 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 8.73(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d d_{6}): $\delta 38.369,45.581,49.407,49.965,59.955,110.242,111.446,121.954,122.112,122.616,122.872,123.476,130.719,136.411,142.986$, 144.138, 145.229, 148.727, 151.000, 153.239, 159.025. HRMS (FAB): m/e calcd. For $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{5}\left[\mathrm{M}^{+}\right] 450.2658$, found 450.2663.

1	1	1	1	1	1	1	1	1	1	1	
200	180	160	140	120	100	80	60	40	20	0	ppm

Characterization of 2C

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6}): $\delta 2.68(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.00(3 \mathrm{H}, \mathrm{s}), 3.61-3.65(2 \mathrm{H}, \mathrm{m}), 3.84(4 \mathrm{H}, \mathrm{s}), 4.43(3 \mathrm{H}, \mathrm{s}), 6.72(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 7.23-7.26(2 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 7.70-7.77(4 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{m}), 8.21(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 8.41$ $(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 8.48-8.50(3 \mathrm{H}, \mathrm{m}), 8.78(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d d_{6}): $\delta 38.535,49.473,50.068,59.941$, 111.574, 111.679, 118.769, 120.167, 122.143, 122.223, 122.658, 126.749, 127.958, 129.765, 132.014, 134.098, 136.436, 139.225, 141.796, 148.756, 148.887, 151.957, 156.332, 158.998 HRMS (FAB): m/e calcd. For $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{5}\left[\mathrm{M}^{+}\right] 500.2814$, found 500.2818.

1	1	16	1		10	1	1	10	1		
200	180	160	140	120	100	80	60	40	20	0	pp

Characterization of 2E

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$): $\delta 2.66(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 2.97(3 \mathrm{H}, \mathrm{s}), 3.59(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.83(4 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 4.42(3 \mathrm{H}, \mathrm{s})$, $6.68(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.23\left(2 \mathrm{H}, \mathrm{q}, J_{1}=5.21 \mathrm{~Hz}\right), 7.45(3 \mathrm{H}, \mathrm{m}), 7.69-7.74(6 \mathrm{H}, \mathrm{m}), 8.07(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 8.35(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz})$, $8.45(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 8.49(2 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 8.68(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 38.484,49.458,50.034$, 56.098, 59.962, 108.808, 111.589, 111.726, 120.598, 120.656, 122.166, 122.236, 122.672, 124.827, 128.612, 131.562, 134.408, 136.469, 140.858, 147.305, 148.764, 151.574, 154.010, 158.143, 159.016. HRMS (FAB): m/e calcd. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}$ [M ${ }^{+}$] 530.2920, found 530.2911 .

Characterization of 3A

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6}): $\delta 2.73(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.70(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.85(4 \mathrm{H}, \mathrm{s}), 4.17(3 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{s}), 6.61(2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}), 7.09-7.12(2 \mathrm{H}, \mathrm{m}), 7.23-7.26(3 \mathrm{H}, \mathrm{m}), 7.42(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.72-7.74(3 \mathrm{H}, \mathrm{m}), 7.82(1 \mathrm{H}, \mathrm{d}, J=15$ $\mathrm{Hz}), 8.02(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 8.49-8.52(3 \mathrm{H}, \mathrm{m}), 8.68(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 46.350,49.158,50.122$, $55.917,60.043,111.865,117.194,120.811,122.134,122.589,122.754,130.058,136.457,136.747,141.619,144.308,148.740,149.306$, 149.858, 153.275, 158.144, 159.025. HRMS (FAB): m/e calcd. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{6}\left[\mathrm{M}^{+}\right] 527.2923$, found 527.2916.

Characterization of 3B

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }_{6}$): $\delta 2.75(2 \mathrm{H}, \mathrm{t}, J=6.99 \mathrm{~Hz}), 3.72(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.85(4 \mathrm{H}, \mathrm{s}), 4.25(3 \mathrm{H}, \mathrm{s}), 4.69(2 \mathrm{H}, \mathrm{s}), 6.62(2 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}), 7.12-7.18(2 \mathrm{H}, \mathrm{m}), 7.23-7.26(3 \mathrm{H}, \mathrm{m}), 7.50-7.55(4 \mathrm{H}, \mathrm{m}), 7.68-7.75(4 \mathrm{H}, \mathrm{m}), 7.81(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 8.39(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 8.48-8.52(3 \mathrm{H}, \mathrm{m}), 8.72(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 45.619,49.225,50.255$, 55.991, 60.043, 110.754, 111.816, 120.888, 122.179, 122.229, 122.451, 122.777, 123.084, 123.587, 130.627, 136.502, 136.789, 143.135, 143.900, 145.317, 148.772, 149.334, 150.177, 153.160, 158.147, 159.034. HRMS (FAB): m/e calcd. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{6}\left[\mathrm{M}^{+}\right] 527.2923$, found 527.2924.

Characterization of 3C

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6}): $\delta 2.77(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}$), $3.76(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.86(4 \mathrm{H}, \mathrm{s}), 4.42(3 \mathrm{H}, \mathrm{s}), 4.74(2 \mathrm{H}, \mathrm{s}), 6.68(2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}$), $7.15(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.24-7.26(3 \mathrm{H}, \mathrm{m}), 7.51-7.52(3 \mathrm{H}, \mathrm{m}), 7.69-7.74(4 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{m}), 8.10(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 8.18$ $(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 8.50-8.53(4 \mathrm{H}, \mathrm{m}), 8.80(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, DMSO- d_{6}): $\delta 49.240,50.237,55.965,59.996,112.010,112.123,118.814,120.208,120.954,122.161,122.279,122.666,122.766$, 126.827, 128.037, 129.773, 131.826, 134.152, 136.478, 136.810, 139.193, 141.999, 148.565, 148.763, 149.345, 151.161, 156.278, 157.851, 158.976. HRMS (FAB): m/e calcd. for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{6}\left[\mathrm{M}^{+}\right] 577.3080$, found 577.3074.

Characterization of 3D

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6}): $\delta 2.82(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}$), 3.78 ($2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}$), $3.90(4 \mathrm{H}, \mathrm{s}), 4.44$ ($3 \mathrm{H}, \mathrm{s}$), 4.74 ($2 \mathrm{H}, \mathrm{s}$), 6.68 ($2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.25-7.27(3 \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.70-7.76(5 \mathrm{H}, \mathrm{m}), 7.97-7.98(2 \mathrm{H}, \mathrm{m}), 8.08(1 \mathrm{H}, \mathrm{d}, J=15$ $\mathrm{Hz}), 8.13(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 8.31-8.35(2 \mathrm{H}, \mathrm{m}), 8.50-8.53(3 \mathrm{H}, \mathrm{m}), 8.99(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d d_{6}): $\delta 41.597,44.005,50.276,55.993,59.879,111.978,113.366,114.025,119.028,120.947,122.250,122.864,123.292$, 125.763, 126.256, 128.577, 131.188, 134.606, 136.554, 136.827, 138.773, 144.334, 146.841, 148.774, 149.317, 150.388, 153.086, 158.067. HRMS (FAB): m/e calcd. for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{6}\left[\mathrm{M}^{+}\right] 577.3080$, found 577.3087.

Characterization of 3E

${ }^{1}$ H NMR (500 MHz, DMSO-d d_{6}): $\delta 2.85(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}$), $3.80(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}$), 3.93-4.00 ($7 \mathrm{H}, \mathrm{m}$), 4.41 ($3 \mathrm{H}, \mathrm{s}$), 4.73 ($2 \mathrm{H}, \mathrm{s}$), 6.67 $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.25-7.28(3 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 7.51-7.52(2 \mathrm{H}, \mathrm{m}), 7.65-7.75(8 \mathrm{H}, \mathrm{m}), 8.04(1 \mathrm{H}$, d, $J=15 \mathrm{~Hz}$), $8.35(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.42(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 8.49-8.52(3 \mathrm{H}, \mathrm{m}), 8.70(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 48.995,50.248,55.959,56.093,59.733,108.742,111.960,112.352,120.651,120.690,120.994,122.284,122.331,122.777$, 122.965, 124.950, 128.710, 131.366, 134.409, 136.622, 136.870, 141.041, 146.949, 148.759, 149.300, 149.603, 150.693, 153.918, 157.932, 158.183. HRMS (FAB): m/e calcd. for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~N}_{6} \mathrm{O}\left[\mathrm{M}^{+}\right] 607.3185$, found 607.3179.

Characterization of 4A

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 2.55(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.46(4 \mathrm{H}$, covered with DMSO peak), $3.79(8 \mathrm{H}, \mathrm{s}), 4.17(3 \mathrm{H}, \mathrm{s}), 6.41(2 \mathrm{H}, \mathrm{d}, J$ $=8.9 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 7.22-7.25(4 \mathrm{H}, \mathrm{m}), 7.35(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.47-7.48(4 \mathrm{H}, \mathrm{m}), 7.70-7.73(4 \mathrm{H}, \mathrm{m}), 7.80(1 \mathrm{H}, \mathrm{d}, J=15$ $\mathrm{Hz}), 8.01(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 8.47(4 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 8.64(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 46.304,48.439$, $50.017,60.024,111.211,116.643,121.888,122.000,122.175,122.683,130.147,136.482,141.742,144.167,148.715,149.476,153.346$, 158.978. HRMS (FAB): m/e calcd. for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{8}\left[\mathrm{M}^{+}\right] 661.3767$, found 661.3772.

Characterization of 4B

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 2.57(4 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$), $3.46(4 \mathrm{H}$, covered with DMSO peak), $3.79(8 \mathrm{H}, \mathrm{s}), 4.28(3 \mathrm{H}, \mathrm{s}), 6.46(2 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 7.22-7.25(4 \mathrm{H}, \mathrm{m}), 7.46-7.49(6 \mathrm{H}, \mathrm{m}), 7.70-7.73(4 \mathrm{H}, \mathrm{m}), 7.80(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 8.30(1 \mathrm{H}, \mathrm{t}, J=$ $7.9 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.47-8.48(4 \mathrm{H}, \mathrm{m}), 8.71(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 45.615,48.440,50.107$, 60.015, 110.081, 111.140, 121.759, 122.181, 122.674, 122.849, 123.489, 130.725, 136.489, 142.974, 144.008, 145.171, 148.727, 149.797, 153.202, 158.970. HRMS (FAB): m/e calcd. for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{8}\left[\mathrm{M}^{+}\right] 661.3767$, found 661.3773.

Characterization of 4C

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 2.64(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.52(4 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.81(8 \mathrm{H}, \mathrm{s}), 4.43(3 \mathrm{H}, \mathrm{s}), 6.54(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, 7.23-7.26 ($4 \mathrm{H}, \mathrm{m}$), $7.45-7.48(5 \mathrm{H}, \mathrm{m}), 7.63-7.65(2 \mathrm{H}, \mathrm{m}), 7.71-7.74(4 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{d}$, $J=15 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 8.40(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.47-8.50(6 \mathrm{H}, \mathrm{m}), 8.77(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSOd_{6}): $\delta 48.555,48.612,50.206,60.035,111.479,118.786,120.202,122.122,122.232,122.731,126.777,129.810,132.047,134.153$, $136.525,139.268,141.804,148.813,150.920,156.338,159.014$. HRMS (FAB): m/e calcd. For $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{~N}_{8}\left[\mathrm{M}^{+}\right] 711.3924$, found 711.3925 .

$200 \quad 180$

Characterization of 4D

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 2.61(4 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.49(4 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.82(8 \mathrm{H}, \mathrm{s}), 4.43(3 \mathrm{H}, \mathrm{s}), 6.53(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, $7.23-7.25(4 \mathrm{H}, \mathrm{m}), 7.48(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.65(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.71-7.74(4 \mathrm{H}, \mathrm{m}), 7.95-7.97(2 \mathrm{H}, \mathrm{m}), 8.08(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 8.20$ $(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 8.30-8.34(2 \mathrm{H}, \mathrm{m}), 8.49(4 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 8.99(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, DMSO-d $_{6}$): $\delta 43.926,48.461,50.162,60.010,111.338,112.699,113.772,118.973,122.159,122.661,125.684,126.279,128.484$, 131.382, 134.550, 136.449, 138.771, 144.581, 146.636, 148.765, 150.130, 153.121, 158.998. HRMS (FAB): m/e calcd. For $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{~N}_{8}$ [M^{+}] 711.3924, found 711.3925.

200	180	160	140	120	100	80	60	40	20	0

Characterization of 4E

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 2.60(4 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.50(4 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.82(8 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 4.42(3 \mathrm{H}, \mathrm{s}), 6.53(2 \mathrm{H}, \mathrm{d}, J$ $=8.9 \mathrm{~Hz}), 7.23-7.26(4 \mathrm{H}, \mathrm{m}), 7.47-7.49(5 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.71-7.74(6 \mathrm{H}, \mathrm{m}), 8.02(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 8.38(1 \mathrm{H}, \mathrm{d}, J=9.8$ $\mathrm{Hz}), 8.43(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.49-8.50(4 \mathrm{H}, \mathrm{m}), 8.70(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 48.465,50.144,56.075$, 59.988, 108.797, 111.322, 111.614, 120.583, 120.633, 122.074, 122.164, 122.667, 124.797, 128.579, 131.545, 134.406, 136.454, 140.804, $147.174,148.758,150.462,153.976,158.120$, 158.972. HRMS (FAB): m/e calcd. For $\mathrm{C}_{47} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{O}\left[\mathrm{M}^{+}\right] 741.4029$, found 741.4043.

| | 18 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Characterization of 5A

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 1.16(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$), 2.52-2.56 (4H, m), 2.71-2.72 (4H, m), 2.75-2.80 (8H, m), $3.61(4 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 4.18(3 \mathrm{H}, \mathrm{s}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.58(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 8.05(2 \mathrm{H}, \mathrm{d}, J=6.7$ $\mathrm{Hz}), 8.69(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$): $\delta 14.754,24.930,28.405,31.162,31.533,46.382,50.561,111.725$, 117.386, 122.190, 122.838, 130.385, 141.552, 144.342, 148.876, 153.269. HRMS (FAB): m/e calcd. For $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{~S}_{4}\left[\mathrm{M}^{+}\right] 507.1996$ found 507.2001.

1									
200	180	160	140	120	100	80	60	40	20

Characterization of 5B

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.16(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$), 2.52-2.57 ($4 \mathrm{H}, \mathrm{m}$), 2.71-2.79 ($12 \mathrm{H}, \mathrm{m}$), $3.62(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.29(3 \mathrm{H}, \mathrm{s})$, $6.78(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 7.70-7.73(3 \mathrm{H}, \mathrm{m}), 7.90(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 8.33(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 8.45(1 \mathrm{H}, \mathrm{d}, J=$ $8.3 \mathrm{~Hz}), 8.76(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 14.756,24.938$, 28.432, 31.160, 31.559, 45.676, 50.537, 110.960, 111.602, 122.689, 123.154, 123.655, 130.958, 143.148, 143.817, 145.333, 149.181, 153.136. HRMS (FAB): m/e calcd. For $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{~S}_{4}$ [M^{+}] 507.1996, found 507.1999.

Characterization of 5C

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 1.16-1.19(6 \mathrm{H}, \mathrm{m}), 2.53(4 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 2.72-2.81(12 \mathrm{H}, \mathrm{m}), 3.68(4 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 4.45(3 \mathrm{H}, \mathrm{s})$, $6.82(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{m}), 7.84-7.86(3 \mathrm{H}, \mathrm{m}), 8.09(1 \mathrm{H}, \mathrm{m}), 8.23-8.26(2 \mathrm{H}, \mathrm{m}), 8.42(1 \mathrm{H}, \mathrm{d}, J=8.9$ $\mathrm{Hz}), 8.50(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.82(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 14.751,24.837,28.455,31.150,31.566$, $45.637,50.542,111.810,112.385,118.848,120.253,123.628,126.879,128.096,129.795,132.139,134.197,139.206,142.100,148.488$, 150.168, 156.320. HRMS (FAB): m/e calcd. For $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{~S}_{4}\left[\mathrm{M}^{+}\right] 557.2153$, found 557.2148.

Characterization of 5D

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 1.17(6 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 2.50(4 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 2.72(4 \mathrm{H}, \mathrm{t}, J=3.9 \mathrm{~Hz}), 2.78-2.82(8 \mathrm{H}, \mathrm{m}), 3.65(4 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}), 4.45(3 \mathrm{H}, \mathrm{s}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.85(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.96-7.99(2 \mathrm{H}, \mathrm{m}), 8.14-8.20(2 \mathrm{H}, \mathrm{m}), 8.33-8.35(2 \mathrm{H}, \mathrm{m})$, $8.99(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 9.12(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 14.757,24.950,28.487,31.167,31.578,44.059$, $50.578,111.744,113.512,114.121,119.026,123.487,125.765,126.273,128.592,131.525,134.610,138.752,144.255,146.847,149.400$, 153.064. HRMS (FAB): m/e calcd. For $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{~S}_{4}\left[\mathrm{M}^{+}\right]$557.2153, found 557.2156.

1	1	1	1	1	1	1	1	1	1	,	
200	180	160	140	120	100	80	60	40	20	0	ppm

Characterization of 5E

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 1.16-1.22(6 \mathrm{H}, \mathrm{m}), 2.50-2.58(4 \mathrm{H}, \mathrm{m}), 2.70-2.74(4 \mathrm{H}, \mathrm{m}), 2.77-2.82(8 \mathrm{H}, \mathrm{m}), 3.65(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $3.96(3 \mathrm{H}, \mathrm{s}), 4.44(3 \mathrm{H}, \mathrm{s}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 7.68-7.73(2 \mathrm{H}, \mathrm{m}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=$ $15.4 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 8.46(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.72(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 14.762,24.953$, 28.457, 31.167, 31.573, 50.553, 56.111, 108.740, 111.691, 112.444, 120.648, 120.706, 122.913, 124.947, 128.722, 131.703, 134.386, 141.034, 146.894, 149.753, 153.893, 158.175. HRMS (FAB): m/e calcd. For $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{OS}_{4}\left[\mathrm{M}^{+}\right] 587.2258$, found 587.2265

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$): $\delta 2.74-2.84(16 \mathrm{H}, \mathrm{m}), 3.61(4 \mathrm{H}, \mathrm{t}, J=16.3 \mathrm{~Hz}), 4.18(3 \mathrm{H}, \mathrm{s}), 6.73(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=$ $16.1 \mathrm{~Hz}), 7.58(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 8.05(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 8.68(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125MHz}$, DMSO- ${ }_{6}$): $\delta 27.116,31.468,31.846,32.115,46.365,51.045,111.455,117.270,122.170,122.733,130.544,141.592,144.314,148.768$, 153.276. HRMS (FAB): m/e calcd. For $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{~S}_{4}\left[\mathrm{M}^{+}\right]$477.1527, found 477.1533.

Characterization of 6B

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }_{6}$): $\delta 2.74-2.83(16 \mathrm{H}, \mathrm{m}), 3.61(4 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 4.28(3 \mathrm{H}, \mathrm{s}), 6.73(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{d}, J=$ $15.7 \mathrm{~Hz}), 7.68-7.72(3 \mathrm{H}, \mathrm{m}), 7.88(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 8.32-8.36(1 \mathrm{H}, \mathrm{m}), 8.43(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.74(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}){ }^{13} \mathrm{C} \mathrm{NMR}$ (125 MHz, DMSO-d D $_{6}$): $\delta 27.114,31.468,31.829,32.102,45.617,51.041,110.853,111.474,122.594,123.128,123.628,131.096$, $143.138,143.865,145.331,149.070,153.156$. HRMS (FAB): m/e calcd. For $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{~S}_{4}\left[\mathrm{M}^{+}\right] 477.1527$, found 477.1529

| 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 | $p p m$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^0]

 แाแะ

$200 \quad 180$
80

Characterization of 6D

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $)$: $\delta 2.78-2.81(16 \mathrm{H}, \mathrm{m}), 3.64(4 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 4.45(3 \mathrm{H}, \mathrm{s}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.85(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}), 7.96-8.01(2 \mathrm{H}, \mathrm{m}), 8.14-8.22(2 \mathrm{H}, \mathrm{m}), 8.33-8.35(2 \mathrm{H}, \mathrm{m}), 8.99(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 9.12(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz})^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d ${ }_{6}$): $\delta 27.159,31.477,31.831,32.107,44.038,51.089,111.514,113.435,114.106,119.043,123.411,125.769,126.260,128.609$, 131.681, 134.621, 138.768, 144.317, 146.856, 149.289, 153.092. HRMS (FAB): m/e calcd. For $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{~S}_{4}\left[\mathrm{M}^{+}\right] 527.1683$, found 527.1675.

| 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Characterization of 6E

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d): $\delta 2.76-2.82$ ($16 \mathrm{H}, \mathrm{m}$), $3.65(4 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}$), $3.97(3 \mathrm{H}, \mathrm{s}), 4.44(3 \mathrm{H}, \mathrm{s}), 6.77(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 7.50$ ($1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}$), $7.71-7.74(2 \mathrm{H}, \mathrm{m}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 8.45(1 \mathrm{H}, \mathrm{d}, J=9.3$ Hz), $8.71\left(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}\right.$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d d_{6}): $\delta 27.126,31.471,31.825,32.102,51.076,56.091,108.736,111.498$, $112.395,120.656,120.717,122.848,124.967,128.729,131.851,134.413,141.056,146.941,149.636,153.935,158.195$. HRMS (FAB): m / e calcd. For $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{OS}_{4}\left[\mathrm{M}^{+}\right] 557.1789$, found 557.1796.

Characterization of 7A
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}$): $\delta 2.73(4 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}$), 2.81 ($4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$), $3.57(4 \mathrm{H}, \mathrm{s}), 3.68-3.70(8 \mathrm{H}, \mathrm{m}), 4.17$ ($3 \mathrm{H}, \mathrm{s}$), 6.70 $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.57(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 8.04(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 8.67(2 \mathrm{H}, \mathrm{d}, J=$ $6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$): $\delta 29.053,30.752,46.362,51.239,69.977,72.869,111.765,117.265,122.157,122.680$, 130.448, 141.623, 144.312, 148.900, 153.281. HRMS (FAB): m/e calcd. For $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right] 445.1983$, found 445.1977.

Characterization of 7B

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}): $\delta 2.74$ ($4 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}$), 2.82 ($4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$), 3.56-3.58 ($4 \mathrm{H}, \mathrm{m}$), 3.67-3.71 ($8 \mathrm{H}, \mathrm{m}$), 4.28 (3 H , s), $6.72(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 7.69-7.72(3 \mathrm{H}, \mathrm{m}), 7.88(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 8.43(1 \mathrm{H}, \mathrm{d}, J=$ 8.0 Hz), $8.74(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 29.069,30.779,45.632,51.256,69.978,72.877,110.832$, 111.663, 122.528, 123.097, 123.613, 130.996, 143.122, 143.874, 145.310, 149.201, 153.149. HRMS (FAB): m/e calcd. For $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right]$ 445.1983, found 445.1988.

Characterization of 7C

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 2.75(4 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}$), $2.86(4 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}$), 3.56-3.58 (4H, m), 3.69-3.75 (8H, m), 4.44 (3H, s), $6.78(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 7.84-7.86(3 \mathrm{H}, \mathrm{m}), 8.07(1 \mathrm{H}, \mathrm{t}, J=16.3 \mathrm{~Hz}), 8.22(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 8.42(1 \mathrm{H}, \mathrm{d}, J=$ $9.0 \mathrm{~Hz}), 8.50(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 29.161,30.888,51.358,69.988$, 72.866, 111.917, 112.277, 118.847, 120.255, 122.776, 126.879, 128.089, 129.09, 132.210, 134.201, 139.230, 142.078, 148.572. HRMS (FAB): m / e calcd. For $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right] 495.2140$, found 495.2139.

Characterization of 7D

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 2.75(2 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}$), $2.84(6 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.55(4 \mathrm{H}, \mathrm{s}), 3.63-3.73(8 \mathrm{H}, \mathrm{m}), 4.44(3 \mathrm{H}, \mathrm{s}), 6.75$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.96-8.01(2 \mathrm{H}, \mathrm{m}), 8.13-8.22(2 \mathrm{H}, \mathrm{m}), 8.33(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 8.99(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $9.10(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 30.428,30.809,50.929,51.312,69.979,72.872,111.816,113.406$, 114.064, 119.020, 123.333, 125.761, 126.242, 128.595, 131.568, 134.611, 138.763, 144.323, 146.835, 149.428, 153.078. HRMS (FAB): m/e calcd. For $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right]$495.2140, found 495.2139 .

Characterization of 7E

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 2.79(4 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.90(4 \mathrm{H}, \mathrm{s}), 3.68(8 \mathrm{H}, \mathrm{m}), 3.83(4 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 3.99(3 \mathrm{H}, \mathrm{s}), 4.60(3 \mathrm{H}, \mathrm{s}) 6.58$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz}), 7.73-7.84(3 \mathrm{H}, \mathrm{m}), 7.79(1 \mathrm{H}, \mathrm{t} J=15.3 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz})$, $8.31(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.63(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d $\left.{ }_{6}\right): \delta 29.104,30.818,51.308,56.089,69.980,72.881$, $108.743,111.776,112.337,120.641,120.694,122.769,124.933,128.708,131.748,134.400,141.015,146.967,149.770,153.914$, 158.178. HRMS (FAB): m/e calcd. For $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right] 525.2246$, found 525.2248.

3. Fluorescence excitation and emission spectra of the probes

All the metal cation screening and titration experiments were performed in HEPES buffer solution (10 mM, $\mathrm{pH} 7.4,25^{\circ} \mathrm{C}$).

Figure S1. Fluorescence excitation spectra (emission at 580 nm) and emission spectra (excitation at 400 nm) of probe 1 series (each $5 \mu \mathrm{M}, 10 \mathrm{mM}$ HEPES buffer, pH 7.4) before (A, B) and after (C, D) addition of each target metal cation ($50 \mu \mathrm{M}$). Graphs (B) and (D) for comparison of quinolinium products’ spectral changes.

Figure S2 Fluorescence excitation spectra (emission at 580 nm) and emission spectra (excitation at 400 nm) of probe 2 series (each $5 \mu \mathrm{M}, 10 \mathrm{mM}$ HEPES buffer, pH 7.4) before (A, B) and after (C,D) addition of each target metal cation ($50 \mu \mathrm{M}$). Graphs (B) and (D) for comparison of quinolinium products' spectral changes.

Figure S3 Fluorescence excitation spectra (emission at 580 nm) and emission spectra (excitation at 400 nm) of probe 3 series (each $5 \mu \mathrm{M}, 10 \mathrm{mM}$ HEPES buffer, pH 7.4) before (A, B) and after (C, D) addition of target metal cation ($50 \mu \mathrm{M}$). Graphs (B) and (D) for comparison of quinolinium products' spectral changes.

Figure S4 Fluorescence excitation spectra (emission at 580 nm) and emission spectra (excitation at 400 nm) of probe 4 series (each $5 \mu \mathrm{M}, 10 \mathrm{mM}$ HEPES buffer, pH 7.4) before (A, B) and after (C, D) addition of target metal cation ($50 \mu \mathrm{M}$). Graph (B) and (D) for comparison of quinolinium products' spectral changes.

Figure S5 Fluorescence excitation spectrum (emission at 580 nm) and emission spectrum (excitation at 400 nm) of probe 5 series (each $5 \mu \mathrm{M}, 10 \mathrm{mM}$ HEPES buffer, pH 7.4) before (A, B) and after (C,D) addition of target metal cation ($50 \mu \mathrm{M}$). Graphs (B) and (D) for comparison of quinolinium products' spectral changes.

Figure S6 Fluorescence excitation spectrum (emission at 580 nm) and emission spectrum (excitation at 400 nm) of probe 6 series (each $5 \mu \mathrm{M}, 10 \mathrm{mM}$ HEPES buffer, pH 7.4) before (A,B) and after (C,D) addition of target metal cation ($50 \mu \mathrm{M}$). Graphs (B) and (D) for comparison of quinolinium products' spectral changes.

Figure $S 7$ Fluorescence excitation spectrum (emission at 580 nm) and emission spectrum (excitation at 400 nm) of probe 7 series (each $5 \mu \mathrm{M}, 10 \mathrm{mM}$ HEPES buffer, pH 7.4) before (A, B) and after (C,D) addition of target metal cation ($50 \mu \mathrm{M}$). Graph (B) and (D) for comparison of quinolinium products' spectral changes
4. Binding affinity of probes to metal cations

Table S1. Dissociation constants (K_{d}) between probes and metal ions

$K_{d}(\mu \mathrm{M})$	Zn^{2+}	Cd^{2+}	Pb^{2+}	Hg^{2+}	Ag^{+}
1D	.	.	.	235	.
2A	0.0319	.	.	0.0103	.
2B	0.274	0.649	0.816	0.0888	33.6
2D	.	.	.	0.281	.
3A	0.406	0.191	0.506	2.36	.
3B	0.0951	0.0170	0.158	0.00108, (1.77) ${ }^{* *}$	-
3C	0.378	0.947	2.31	7.25	.
3D	0.511	0.879	5.06	.	.
3E	0.734	0.685	2.85	.	.
4A	0.292, (2.93)	0.000211	20.6	0.205	.
4B	0.375	0.567	5.21	0.776	.
4C	0.00180, (12.8)	0.205	4.65	0.0448	.
4D	0.0505	0.259	6.02	6.69	.
4E	0.00977, (12.1)	0.0399	4.03	4.48	.
5A	,	.	.	5.90	2.80
5B	.	.	.	3.29	2.74
5C	.	.	.	4.84	0.710
5D	.	.	.	5.49	8.11
5E	.	.	.	11.9	15.3
6A	.	.	.	15.4	11.8
6B	.	.	.	0.298, (13.2)	3.86
6C	.	.	.	27.0	5.22
6D	.	.	.	37.3	13.6
6E	.	.	.	26.2	10.1
7A	7.42
7B	16.2
7C	.	.	.	859	26.7
7D	.	.	.	16.0	17.1
7E	49.3

*n.d. (not determined).
** Values in parentheses were obtained when the second metal ion was added to the 1:1 complex of the probe and metal ion (in other words, when one metal ion was removed from the 1:2 complex of the probe and metal ion).
5. Changes in the fluorescence spectral changes of 5 A and 5 D upon addition of $\mathrm{Hg}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I})$

Figure S8. Distinct fluorescence changes of the excitation and emission spectra of 5A and 5D (each $5 \mu \mathrm{M}$) upon addition of $\operatorname{Ag}(\mathrm{I})$ and $\mathrm{Hg}(\mathrm{II})$. All the em. specs. were collected for a fixed excitation wavelength of 400 nm , and all the ex. specs were collected for a fixed emission wavelength of 580 nm .

6. The fluorescence response of selected metal ion probes to pH changes from pH 2 to 11

(A)

Figure S9. Fluorescence changes in the excitation and emission spectrum of selected metal ion probes (each $5 \mu \mathrm{M}$) in sodium phosphate buffer solution ($10 \mathrm{mM}, \mathrm{pH} 2,3,4,5,6,7,8,9,10,11$, left to right on the graph) are compared with fluorescence response upon the addition of a specific metal cation ($50 \mu \mathrm{M}$) to each selected metal ion probe. (A) For the excitation spectrum: 300-550 nm. (B) For the emission spectrum: 450 (500 for 7 series)- 750 nm . The fluorescence intensity can be known from the color scale, which is shown on the right side of the figure. The highest and lowest values of the fluorescence intensity were determined from the total values for each probe.

7. The fluorescence cellular imaging of 6A

Figure S10. Fluorescence cellular imaging of $6 \mathrm{~A}(5 \mu \mathrm{M})$ in NIH3T3 cells incubated with (A) $\mathrm{Zn}^{2+}(\mathrm{B}) \mathrm{Cd}^{2+}(\mathrm{C}) \mathrm{Pb}^{2+}$ (D) $\mathrm{Ag}^{+}(\mathrm{E}) \mathrm{Hg}^{2+}$ $(50 \mu \mathrm{M})(\mathrm{F}) \mathrm{Hg}^{2+}(100 \mu \mathrm{M})(\mathrm{G})$ TPEN $(50 \mu \mathrm{M})$ after incubation of $\mathrm{Hg}^{2+}(100 \mu \mathrm{M})$, (H) is control picture of $6 \mathrm{~A}(5 \mu \mathrm{M})$ in the cell. All the incubated metal concentration is $100 \mu \mathrm{M}$ except Hg^{2+}.
8. Expanded version of Figure 2

sensor, $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Nr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cu}^{+}, \mathrm{Zn}^{2+}, \mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}$, sensor

9. Job's plot between $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ and dTTP

Job's plot

Figure S11. Job's plot between $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ and dTTP , $\left[6 \mathrm{~A}-\mathrm{Hg}^{2+}\right]+[\mathrm{dTTP}]=10 \mu \mathrm{M}$
10. NMR spectra of $6 \mathrm{~A}-\mathrm{Hg}^{2+}$-thymidine complex

B

D

Figure S12. NMR spectra of $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ complex in a mixture of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{DMSO}-\mathrm{d}_{6}(\mathrm{v} / \mathrm{v}, 9: 1)$. Figure A shows NMR spectrum of 6A. A part of aromatic protons $\left(\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{f}}\right.$, and $\mathrm{H}_{\mathrm{g}}: 6.5 \sim 8.5 \mathrm{ppm}$) exhibited changes in the chemical shifts and aliphatic protons in the azathia crown ether ring (H_{h} and H_{i} : $3.2 \sim 3.8 \mathrm{ppm}$) were broadened after 1 eq of Hg^{2+} was added to $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ complex (Figure B). Broadened peaks of the azathia crown ether ring were split slightly after addition of 1 eq of thymidine (Figure C). Figure D shows the NMR spectrum of thymidine in $\mathrm{D}_{2} \mathrm{O}$.

11. Absorption spectra of $6 \mathrm{~A}-\mathrm{Hg}^{2+}$-thymidine complex

Figure S13. Absorption spectra of $6 \mathrm{~A}(5 \mu \mathrm{M})$ in the presence of Hg^{2+} and thymidine. All these data were recorded in 10 mM HEPES buffer (pH 7.4).

12. Fluorescence spectra of $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ in the presence of DNAs

Figure S14. Fluorescence spectra of $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ (sensor, $5 \mu \mathrm{M}$) in the presence of DNA. Upon the addition of $10 \mu \mathrm{M}$ of ssDNA (sequence: $5^{\prime}-(\mathrm{TC})_{5} \mathbf{- 3}^{\prime}$), fluorescence of $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ was enhanced with its maximum intensity at 568 nm (blue line). Fluorescence of $6 \mathrm{~A}-\mathrm{Hg}^{2+}$ was also increased in the presence of dsDNA ($0.2 \mathrm{mg} / \mathrm{mL}$). All these data were recorded in 10 mM HEPES buffer (pH 7.4) with excitation at 425 nm .

Figure S15. Fluorescence spectra of $6 \mathrm{~A}-\mathrm{Hg}^{2+}(5 \mu \mathrm{M})$ in the presence of various DNAs $(10 \mu \mathrm{M})$. All these data were acquired in 10 mM HEPES buffer (pH 7.4) with excitation at 425 nm . More intense fluorescence was detected with thymine rich DNAs.

[^0]: Characterization of 6C
 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 2.77-7.84(16 \mathrm{H}, \mathrm{m}), 3.67(4 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 4.45(3 \mathrm{H}, \mathrm{s}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=$ $15.5 \mathrm{~Hz}), 7.83-7.85(3 \mathrm{H}, \mathrm{m}), 8.09(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}), 8.23-8.26(2 \mathrm{H}, \mathrm{m}), 8.42(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.50(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 8.83(1 \mathrm{H}, \mathrm{d}, J$ $=9.1 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 27.132,31.489,31.835,32.114,51.098,54.867,111.609,112.304,118.847,120.255$, $122.843,126.877,128.094,129.799,132.295,134.194,139.210,142.085,148.530,150.036,156.328$. HRMS (FAB): m/e calcd. For $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{~S}_{4}\left[\mathrm{M}^{+}\right] 527.1683$, found 527.1686.

