Supporting Information for:

Importance of Optimal Composition in Random Terpolymer Based Polymer Solar Cells

Tae Eui Kang, ^a Han-Hee Cho, ^a Hyeong-jun Kim, ^a Wonho Lee, ^a Hyunbum Kang, ^a and

Bumjoon J. Kim^{a,}*

^a Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea

*Electronic mail: <u>bumjoonkim@kaist.ac.kr</u>

Table of contents

Supplementary Figures S1-10

¹ H NMR of copolymers (P1-P7)	S 1
TGA plots of P1-P7 with a heating rate of 10 $^{\circ}C$ /min under nitrogen	S2
UV-vis absorption spectra for P1-P7 in thin films	S 3
CV curves of P1-P7 with an Ag quasi-reference electrode	S 4
SCLC <i>J</i> - <i>V</i> characteristics of P1 , P3 , P4 , P5 , and P7	S5
J-V characteristics of P2 and P6	S 6
The calculated HOMO and LUMO orbitals for (BDTT-DPP) ₃ and (BDTT-TPD) ₃	S 7
GIXS patterns of pristine films of P1, P3, P4, P5, and P7	S 8
TEM images of P1 and P5 films blend with PCBM.	S 9
EQEs of PSCs based on P1-P7 devices	S10

(b) PBDTT-DPP90-TPD10 (**P2**)

(a) PBDTT-DPP100 (**P1**)

(d) PBDTT-DPP50-TPD50 (P4)

(f) PBDTT-DPP10-TPD90 (P6)

Figure S1. ¹H NMR of (a) PBDTT-DPP100 (**P1**), (b) PBDTT-DPP90-TPD10 (**P2**), (c) PBDTT-DPP75-TPD25 (**P3**), (d) PBDTT-DPP50-TPD50 (**P4**), (e) PBDTT-DPP25-TPD75 (**P5**), (f) PBDTT-DPP10-TPD90 (**P6**), and (g) PBDTT-TPD100 (**P7**).

Figure S2. TGA plots of P1-P7 with a heating rate of 10 °C/min under nitrogen.

Figure S3. UV-vis absorption spectra for P1-P7 in thin films.

Figure S4. Cyclic voltammograms of (a) PBDTT-DPP100 (**P1**), (b) PBDTT-DPP90-TPD10 (**P2**), (c) PBDTT-DPP75-TPD25 (**P3**), (d) PBDTT-DPP50-TPD50 (**P4**), (e) PBDTT-DPP25-TPD75 (**P5**), (f) PBDTT-DPP10-TPD90 (**P6**), and (g) PBDTT-TPD100 (**P7**).

Figure S5. Measured space-charge-limited J-V characteristics of the **P1**, **P3**, **P4**, **P5**, and **P7** blends with PC₇₁BM (or PC₆₁BM) devices under dark conditions (a) for hole-only devices (b) for electron-only devices.

Figure S6. *J-V* characteristics of PBDTT-DPP90-TPD10 (**P2**):PC₇₁BM and PBDTT-DPP10-TPD90 (**P6**):PC₆₁BM.

Figure S7. Calculated HOMO and LUMO orbitals for (BDTT-DPP)₃ ((a) and (b)) and (BDTT-TPD)₃((c) and (d)).

Figure S8. GIXS patterns of pristine films of (a) **P1**, (b) **P3**, (c) **P4**, (d) **P5**, and (e) **P7**. (f) Inplane line and (g) out-of-plane line cuts of GIXS.

Figure S9. TEM images of the blend films of (a) PBDTT-DPP100 (**P1**) and (b) PBDTT-DPP25-TPD75 (**P5**). The scale bar is 200 nm.

Figure S10. External quantum efficiencies (EQEs) of PSCs based on P1-P7 devices under AM 1.5 illumination at 100 mW cm^{-2}