Performance of density functional theory for second row (4*d*) transition metal thermochemistry

Marie L. Laury and Angela K. Wilson*

Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, USA

^{*} Author to whom correspondence should be addressed: akwilson@unt.edu.

Atom	$\Delta H_{f}(0K)$
Ag	67.982
Br	28.18
С	170.112
Cd	26.73
Cl	28.59
F	18.47
Η	51.63
Mo	156.517
Nb	171.958
0	58.99
Pd	88.8
Rh	132.7
Ru	156.6
Y	100.887
Zr	143.093

Table 1S. Atomic enthalpies of formation at 0 K.¹ Units are in kcal mol⁻¹.

Molecule	BLYP	BP86	PBEPBE	TPSSKCIS	M06L	Experiment
AgH	64.17	61.48	64.82	65.28	65.49	66.30
Cd_2	53.38	52.72	52.16	52.61	51.17	51.40
CdBr	22.87	17.39	16.03	15.93	20.21	15.89
CdBr ₂	-24.40	-35.36	-38.05	-36.42	-32.45	-33.45±1.1
CdCl	17.79	12.19	10.54	10.28	9.71	6.55
CdCl ₂	-36.32	-47.39	-50.56	-49.04	-55.89	-46.50±1.1
CdH	73.77	68.89	71.80	69.92	74.41	62.30
MoCO ₅	-192.29	-239.57	-252.02	-193.83	-184.66	-157.50±5.0
MoCO ₆	-255.68	-313.06	-328.40	-259.61	-246.83	-218.95±1.1
MoF	54.91	56.08	56.48	57.74	61.73	67.60±3.0
MoF ₂	-52.70	-51.25	-50.30	-47.10	-39.59	-38.90±4.0
MoF ₆	-432.94	-441.92	-443.87	-426.46	-406.00	-372.30±2.2
MoO ₂	-31.51	-34.00	-32.31	-20.49	-10.16	-1.98±3.0
MoO ₂ Cl ₂	-175.18	-187.37	-188.13	-171.23	-172.63	-151.60±3.5
MoO ₃	-112.67	-118.12	-117.54	-99.42	-86.16	-86.70±5.0
MoOCl ₄	-151.79	-170.23	-173.05	-158.62	-171.56	-135.90±1.4
NbO	41.00	39.02	39.77	46.63	48.75	47.50±5.0
NbO ₂	-64.53	-68.43	-67.93	-54.97	-50.97	-47.80±5.0
RhC	154.84	147.07	145.07	156.84	158.90	164.10±2.3
RhCl ₂	30.22	20.97	17.77	27.07	17.17	30.00±3.0
RhO	76.51	72.36	70.68	82.15	86.55	95.00±10.0
RuO ₄	-138.85	-160.14	-163.78	-129.17	-93.13	-46.03±1.0
YO	-15.15	-21.60	-21.59	-14.47	-3.75	-11.00±2.5
ZrBr	73.41	69.05	65.01	66.88	72.50	71.90±0.5
ZrBr ₄	-155.01	-176.00	-181.18	-173.45	-165.74	-166.00±2.0
ZrCl	62.17	57.11	55.46	58.00	55.02	67.59±5.7
ZrCl ₂	-29.63	-41.44	-44.59	-42.28	-43.76	<i>-34.</i> 87±3.6
ZrCl ₄	-201.86	-222.00	-228.05	-220.71	-235.34	-208.03±0.6
ZrO	13.42	7.75	6.67	17.32	25.72	21.80
ZrO ₂	-85.79	-98.18	-101.02	-86.68	-73.33	-68.40±11.0

Table 2S. The enthalpies of formation $(\Delta H_f s)$ for the TM-4d set as determined by the Generalized Gradient Approximation (GGA) functionals. See Reference 2 for more details about the experimental data and uncertainties. Units are in kcal mol⁻¹.

Molecule	B3P86	B3LYP	B971	X3LYP	PBE1PBE	mPW1LYP	B1LYP	M06	BMK	M062X	Experiment
AgH	63.83	66.16	65.72	66.30	68.66	67.40	67.89	67.26	66.99	72.57	66.30
Cd_2	52.47	53.14	52.07	52.96	52.29	52.92	53.31	51.06	52.41	52.15	51.40
CdBr	15.32	20.68	18.71	20.20	14.39	20.69	21.39	25.32	22.06	17.41	15.89
CdBr ₂	-39.11	-28.72	-36.47	-29.80	-39.99	-28.54	-26.80	-25.47	-33.39	-34.75	-33.45±1.1
CdCl	10.11	15.65	13.02	15.21	9.15	15.81	16.51	16.44	13.72	9.45	6.55
CdCl ₂	-50.95	-40.31	-49.68	-41.31	-51.68	-39.78	-38.03	-45.89	-52.16	-51.68	-46.50±1.1
CdH	66.97	71.50	74.91	71.48	69.80	72.04	72.12	78.64	76.06	73.21	62.30
MoCO ₅	-187.07	-139.26	-183.02	-140.23	-149.89	-116.21	-100.30	-174.45	-184.14	-142.93	-157.50±5.0
MoCO ₆	-254.26	-196.51	-246.14	-198.08	-211.76	-170.12	-151.10	-238.41	-248.00	-201.43	-218.95±1.1
MoF	61.75	61.34	58.74	61.08	66.65	62.38	64.07	63.77	50.22	58.83	67.60±3.0
MoF ₂	-39.83	-40.16	-43.93	-40.68	-29.88	-37.91	-34.57	-37.10	-58.29	-44.10	-38.90±4.0
MoF ₆	-394.38	-383.82	-399.34	-383.99	-365.01	-370.64	-360.67	-392.14	-397.87	-361.96	-372.30±2.2
MoO ₂	-3.43	-0.08	-12.12	1.06	14.07	8.49	12.47	-3.04	-16.15	8.12	-1.98±3.0
MoO ₂ Cl ₂	-151.98	-139.79	-163.33	-139.26	-131.47	-128.84	-122.47	-157.79	-166.27	-131.37	-151.60±3.5
MoO3	-76.56	-69.88	-88.32	-68.24	-52.95	-57.22	-51.51	-74.37	-83.73	-54.99	-86.70±5.0
MoOCl ₄	-137.99	-120.66	-149.65	-121.18	-120.61	-111.20	-103.84	-152.08	-153.14	-117.26	-135.90±1.4
NbO	52.07	54.09	49.59	54.71	60.31	57.88	59.97	47.78	54.58	53.65	47.50±5.0
NbO ₂	-42.30	-37.89	-49.32	-36.78	-26.60	-29.95	-25.92	-47.25	-40.32	-32.50	-47.80±5.0
RhC	166.05	175.90	166.81	174.60	173.24	180.26	181.99	154.68	198.36	175.83	164.10±2.3
RhCl ₂	29.52	44.94	33.01	44.14	39.83	46.91	49.50	28.48	40.28	46.03	30.00±3.0
RhO	90.94	95.34	90.06	96.25	98.46	101.25	103.12	82.49	115.12	101.65	95.00±10.0
RuO ₄	-87.10	-66.28	-83.67	-62.22	-56.91	-42.47	-23.72	-59.58	-38.95	-9.71	-46.03±1.0
YO	-12.14	-5.31	-4.57	-4.56	-7.35	-1.18	0.01	0.63	2.57	-0.22	-11.00±2.5
ZrBr	70.57	84.73	72.61	78.74	80.62	85.91	87.15	78.89	90.17	84.86	71.90±0.5
ZrBr ₄	-173.66	-153.44	-167.03	-154.71	-169.93	-149.95	-145.80	-156.90	-148.21	-151.80	-166.00±2.0

Table 3S. The enthalpies of formation (ΔH_f 's) for the TM-4*d* set as determined by the hybrid GGA (HGGA) functionals. See Reference 2 for more details about the experimental data and uncertainties. Units are in kcal mol⁻¹.

4

ZrCl	58.69	63.68	60.06	63.37	59.76	64.78	66.03	56.27	64.61	59.43	67.59±5.7
ZrCl ₂	-15.17	-30.13	-32.19	-30.58	-40.53	-28.12	-26.35	-30.17	-30.34	-34.82	-34.87±3.6
ZrCl ₄	-219.82	-200.00	-215.67	-201.18	-215.79	-196.17	-191.89	-220.34	-209.03	-208.47	-208.03±0.6
ZrO	20.45	26.19	23.91	26.81	27.17	31.18	32.95	18.41	37.90	29.57	21.80
ZrO ₂	-78.84	-64.85	-71.07	-63.32	-66.50	-55.26	-52.38	-67.39	-44.60	-56.47	-68.40±11.0

Molecule	ωB97XD	ωB97X	CAM-B3LYP	ω B97	LC-ωPBE	Experiment
AgH	65.22	63.66	66.01	62.68	68.19	66.30
\mathbf{Cd}_2	51.40	51.30	53.05	51.07	52.74	51.40
CdBr	19.85	19.66	18.76	20.09	11.74	15.89
CdBr ₂	-35.59	-37.95	-33.30	-38.88	-43.23	-33.45±1.1
CdCl	13.18	12.78	12.97	12.80	4.72	6.55
CdCl ₂	-50.25	-53.13	-46.08	-54.88	-57.81	-46.50±1.1
CdH	72.64	72.23	68.37	71.81	62.81	62.30
MoCO ₅	-149.50	-149.76	-138.59	-153.80	-132.64	-157.50±5.0
MoCO ₆	-209.59	-209.53	-198.62	-213.60	-194.74	-218.95±1.1
MoF	61.17	55.67	57.96	51.04	59.26	67.60±3.0
MoF ₂	-24.31	-50.34	-28.43	-58.69	-43.81	-38.90±4.0
MoF ₆	-385.25	-400.39	-391.69	-417.26	-382.37	-372.30±2.2
MoO ₂	0.07	-5.80	2.59	-12.30	10.46	-1.98±3.0
MoO ₂ Cl ₂	-149.21	-155.07	-136.17	-161.87	-126.20	-151.60±3.5
MoO ₃	-73.04	-79.78	-66.37	-87.94	-57.22	-86.70±5.0
MoOCl ₄	-133.15	-137.10	-114.45	-141.27	-102.72	-135.90±1.4
NbO	26.63	24.18	54.39	21.95	58.23	47.50±5.0
NbO ₂	-67.11	-71.67	-36.13	-76.01	-28.43	-47.80±5.0
RhC	173.71	170.77	179.91	171.83	182.49	164.10±2.3
RhCl ₂	36.73	29.06	43.84	30.21	44.07	30.00±3.0
RhO	94.61	88.68	97.35	88.47	96.80	95.00±10.0
RuO ₄	-60.11	-55.33	-53.81	-54.58	-74.53	-46.03±1.0
YO	-3.90	-0.67	-5.95	0.08	-13.02	-11.00±2.5
ZrBr	70.87	71.40	72.77	71.58	82.54	71.90±0.5
ZrBr ₄	-167.17	-163.35	-156.12	-160.24	-157.88	-166.00±2.0
ZrCl	67.27	57.59	70.01	66.73	60.02	67.59±5.7
ZrCl ₂	-36.40	-33.69	-35.72	-31.29	-42.17	-34.87±3.6
ZrCl ₄	-218.46	-217.07	-205.51	-216.07	-210.04	-208.03±0.6
ZrO	21.02	21.92	23.99	21.39	26.38	21.80
ZrO ₂	-70.46	-67.87	-67.01	-68.55	-73.59	-68.40±11.0

Table 4S. The enthalpies of formation $(\Delta H_f s)$ for the TM-4*d* set as determined by the range-separated (RS) and range-separated hybrid (RSH) functionals. See Reference 2 for more details about the experimental data and uncertainties. Units are in kcal mol⁻¹.

Molecule	mPW2-PLYP	B2GP-PLYP	Experiment
AgH	67.72	68.44	66.30
Cd_2	52.61	52.67	51.40
CdBr	18.20	17.78	15.89
CdBr ₂	-35.48	-36.80	-33.45±1.1
CdCl	13.34	12.90	6.55
CdCl ₂	-46.29	-47.47	-46.50±1.1
CdH	71.77	71.92	62.30
MoCO ₅	-152.29	-154.43	-157.50±5.0
MoCO ₆	-214.20	-217.54	-218.95±1.1
MoF	61.48	62.35	67.60±3.0
MoF ₂	-40.33	-38.89	-38.90±4.0
MoF ₆	-383.01	-380.25	-372.30±2.2
MoO ₂	-5.50	-5.82	-1.98±3.0
MoO ₂ Cl ₂	-152.89	-155.72	-151.60±3.5
MoO ₃	-79.86	-82.02	-86.70±5.0
MoOCl ₄	-134.61	-136.65	-135.90±1.4
NbO	50.70	50.53	47.50±5.0
NbO ₂	-45.55	-46.73	-47.80±5.0
RhC	161.93	157.62	164.10±2.3
RhCl ₂	44.64	46.26	30.00±3.0
RhO	94.43	116.59	95.00±10.0
RuO ₄	-47.45	-68.61	-46.03±1.0
YO	-6.71	-7.34	-11.00±2.5
ZrBr	86.77	86.76	71.90±0.5
ZrBr ₄	-162.50	-165.37	-166.00±2.0
ZrCl	66.34	66.71	67.59±5.7
ZrCl ₂	-30.56	-31.69	-34.87±3.6
ZrCl ₄	-205.45	-207.26	-208.03±0.6
ZrO	27.16	23.07	21.80
ZrO ₂	-65.98	-71.18	-68.40±11.0

Table 5S. The enthalpies of formation $(\Delta H_f s)$ for the TM-4*d* set as determined by the double hybrid (DH) functionals. See Reference 2 for more details about the experimental data and uncertainties. Units are in kcal mol⁻¹.

Diatomic Tetrahedral AgH r(Ag-H)1.619 MoO₂Cl₂ r(Mo-O)1.677 Cd2 r(Cd-Cd)4.077 r(Mo-Cl)2.266 CdBr r(Cd-Br)2.537 A(O-Mo-O)107.0 CdCl 2.397 r(Cd-Cl)A (Cl-Mo-Cl) 111.4 CdH r(Cd-H)1.518 A (O-Mo-Cl)109.6 MoF 1.904 r(Mo-F)RuO₄ *r* (*Ru-O*) 1.682 NbO 1.687 A(O-Ru-O)109.5 r(Nb-O)RhC r(Rh-C)1.604 ZrBr₄ r(Zr-Br)2.491 r (Rh-O) RhO 1.709 A (Br-Zr-Br)109.5 YO r(Y-O)1.802 ZrCl₄ r(Zr-Cl)2.342 ZrBr r(Zr-Br)2.590 A(Cl-Zr-Cl)109.5 ZrCl 2.304 r(Zr-Cl)ZrO r(Zr-O)1.857 Linear Square pyramidal r(Cd-Br)2.419 r(Mo-C)1.950 CdBr₂ Mo(CO)5 A (Br-Cd-Br)180.0 r(C-O)1.150 CdCl₂ r(Cd-Cl)2.286 A(C-Mo-C)89.8 A (Cl-Cd-Cl)180.0 A(O-C-Mo)178.1 r(Mo-F)1.904 MoOCl₄ r(Mo-O)1.652 MoF₂ A(F-Mo-F)180.0 r(Mo-Cl)2.304 RhCl₂ r(Rh-Cl)2.211 A (O-Mo-Cl)104.2 A (Cl-Rh-Cl) 180.0 A (Cl-Mo-Cl) 86.6 D(Cl-Mo-O-Cl)90.0 Bent Octahedral 1.699 MoO₂ r(Mo-O) $Mo(CO)_6$ r(Mo-C)2.075 A(O-Mo-O)115.1 r(C-O)1.140 NbO₂ r(Nb-O)1.712 A(C-Mo-C)90.0 A(O-Nb-O)105.4 A (O-C-Mo)180.0 ZrCl₂ 2.378 r(Mo-F)1.834 r(Zr-Cl)MoF6 A(Cl-Zr-Cl)154.5 A(F-Mo-F)180.0 ZrO₂ r(Zr-O)1.776 A(O-Zr-O)108.5 Triagonal pyramidal MoO₃ r(Mo-O)1.713 A(O-Mo-O)120.0 D(O-Mo-O-O)180.0

Table 6S. Ground state geometries for the TM-4*d* set as determined by B3LYP/cc-pVTZ-PP. Radii (r) are reported in Angstrom, bond angles (A) and dihedral angles (D) are reported in degrees.

Diatomic	Experiment	Theory
AgH	1.618 ^a	1.5635 ^b
Cd_2	4.070 ^c , 4.380 ^d , 3.770 ^e , 3.760 ^f	3.961 ^g
CdBr		2.563 ^h , 2.466 ⁱ
CdCl		2.413 ^h , 2.333 ⁱ
CdH	1.761 ^j	1.752 ⁱ
MoF		1.935 ^h , 2.000 ^h
NbO	1.690 ^k	1.710 ^m , 1.709 ⁿ
RhC	1.613 ^a	1.623 ^p
RhO		$1.740^{\text{m}}, 1.739^{\text{n}}$
YO	1.790 ^a	1.820 ^m , 1.830 ⁿ
ZrBr		2.463 ^h
ZrCl	2.284 ^q	2.351 ^h
ZrO	1.712 ^k	1.740 ^m , 1.761 ⁿ

Table 7S. Experimental and previous theoretically-determined geometries for the diatomics of the TM-4*d* molecule set.

^a From Ref. 3. ^b From Ref. 4.

^c From Ref. 5.

^d From Ref. 6.

^e From Ref. 7.

^f From Ref. 8.

^g From Ref. 9.

^h From Ref. 10.

ⁱ From Ref. 11.

^j From Ref. 12.

^k From Ref. 13.

^m From Ref. 14.

ⁿ From Ref. 15.

^p From Ref. 16.

^q From Ref. 17.

Linear	Experiment	Theory	
CdBr ₂	2.386^{a} , 2.372^{b} , 2.394^{c}	$2.405^{\text{d}}, 2.381^{\text{d}}, 2.377^{\text{d}}$	
CdCl ₂	2.266 ^a , 2.210 ^c , 2.266 ^f , 2.282 ^g	2.273 ^d , 2.254 ^d , 2.249 ^d	
Bent		Theory	
		r _e	Angle
MoO ₂		1.720 ^h	132.2
NbO ₂		1.740 ^h	111.8
ZrO ₂		1.797 ⁱ	109.6
		1.816 ⁱ	109.4
		1.806 ⁱ	108.0
		1.780 ^h	112.3
Triagonal pyramidal		Theory	
		r _e	Symmetry
MoO ₃		1.700 ^h	(C _{3v})

Table 8S. Experimental and previous theoretically-determined geometries for the tri- and tetraatomics of the TM-4*d* molecule set.

^a From Ref. 18. ^b From Ref. 19.

^c From Ref. 20. ^d From Ref. 21.

^f From Ref. 22.

^g From Ref. 23. ^h From Ref. 24. ⁱ From Ref. 25.

Tetrahedral		Experiment	Theory
MoO ₂ Cl ₂	Mo-O		1.698 ^a
	Mo-Cl		2.259 ^a
	∠ OMCl		104 +/- 2 ^a
	∠ ClMCl		112 ^a
ZrBr ₄		2.465 ^b	2.525 °, 2.556 °
ZrCl ₄		2.323 ^d , 2.328 ^b	2.302 ^e , 2.369 ^d , 2.396 ^d
Square pyramidal		Experiment	$\boldsymbol{Theory}^{\mathrm{f}}$
Mo(CO) ₅	Mo-C _{ax}		1.947
	Mo-C _{eq}		2.066
	Co-O _{ax}		1.197
	Co-O _{eq}		1.185
	$\angle C_{ax}MoC_{eq}$		88.2
Octahedral		Experiment	Theory
Mo(CO) ₆	Mo-C	2.063 ^g	2.116 ^f
	C-O	1.145 ^g	1.136 ^f
	Mo-CO		2.064 ^h
	Mo-Cax		2.064 ^h
	Mo-Ceq		2.064 ^h
MoF ₆		1.817 ⁱ , 1.809 ^j	1.825 ^k

Table 9S. Experimental and previous theoretically-determined geometries for molecules with greater than 4 atoms from the 4d-TM molecule set.

^a From Ref. 26. ^b From Ref. 27.

^c From Ref. 28. ^d From Ref. 29.

^e From Ref. 30.

^f From Ref. 31.

^g From Ref. 32.

^h From Ref. 33.

ⁱ From Ref. 34. ^j From Ref. 35.

^k From Ref. 36.

References

- 1. Dasent, W. E., *Inorganic Energetics*. 2 ed.; Cambridge University Press: New York, 1982.
- 2. Laury, M. L.; DeYonker, N. J.; Jiang, W.; Wilson, A. K., J. Chem. Phys. 2011, 134, 214103.
- 3. Huber, K. P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of
- Diatomic Molecules. Van Nostrand Reinhold Company Inc.: New York, 1979.
- 4. Lo, J. M. H.; Klobukowski, M., Theor. Chem. Acc. 2007, 118, 607.
- 5. Czajkowski, M. A.; Koperski, J., J. Spectrochim. Acta A 1999, 55, 2221.
- 6. Ceccherini, S.; Moraldi, M., Chem. Phys. Lett. 2001, 337, 386.
- 7. Łukomski, M.; Strojecki, M.; Ruszczak, M.; Koperski, J., J. Chem. Phys. Lett. 2007, 434, 171.
- 8. Strojecki, M.; Ruszczak, M.; Łukomski, M.; Koperski, J., J. Chem. Phys. 2007, 340, 171.
- 9. Dolg, M.; Yu, M., Chem. Phys. Lett. 1997, 273, 329.
- 10. Cheng, L.; Wang, M. Y.; Wu, Z. J.; Su, Z. M., J. Comp. Chem. 2007, 28, 2190.
- 11. Shepler, B. C.; Peterson, K. A., J. Phys. Chem. A 2006, 110, 12321.
- 12. Urban, R. D.; Magg, U.; Birk, H.; Jones, H., J. Chem. Phys. 1990, 92, 14.
- 13. CRC Handbook of Chemistry and Physics. CRC Press LLC: Florida.
- 14. Siegbahn, P. E. M., Chem. Phys. Lett. 1993, 201, (1-4), 15.
- 15. Song, P.; Guan, W.; Yao, C.; Su, Z. M.; Wu, Z. J.; Feng, J. D.; Yan, L. K., *Theor. Chem. Acc.* **2007**, *117*, 407.
- 16. Wang, J.; Sun, X.; Wu, Z., Chem. Phys. Lett. 2006, 426, 141.
- 17. Ram, R. S.; Bernath, P. F., J. Mol. Spec. 1997, 186, 335.
- 18. Hargattai, M., Chem. Rev. 2000, 100, 2233.
- 19. Kulikov, V. A.; Ugarov, V. V.; Rambidi, N. G. Z., Struct. Khim. 1980, 21, 201.
- 20. Petrov, V. M.; Utkin, A. N.; Girichev, G. V.; Ivanov, A. A. Z., Struct. Khim. 1985, 26, 52.
- 21. Donald, K. J.; Hargittai, M.; Hoffmann, R., Chem. Eur. J 2009, 15, 158.
- 22. Nogt, N.; Haaland, A.; Martinsen, K. G.; Vogt, J., Acta Chem. Scand. 1993, 46, 589.
- 23. Haaland, A.; Martinsen, K. G.; Tremmel, A., Acta Chem. Scand. 1992, 46, 589.
- 24. Siegbahn, P. E. M., J. Phys. Chem. 1993, 97, 9096.
- 25. Zheng, W.; BowenJr, K. H.; Li, J.; Dabkowska, I.; Gutowski, M., *J. Phys. Chem. A* **2005**, *109*, 11521.

26. Zharskii, I. M.; Zasorin, E. Z.; Spiridonov, V. P.; Novikov, G. I.; Kupreev, V. N., *Koord. Khim.* **1975**, *1*, 574.

- 27. Hargittai, M., Chem. Rev. 2000, 100, 2233.
- 28. Zhang, Y.; Zhao, J.; Tang, G.; Zhu, L., Spec. Acta Part A 2006, 64, 420.
- 29. Hellwege, K. H.; Hellwege, A. M. E., Landolt-Bornstein Numerical Data and Functional
- Relationships in Science and Technology. Springer: Berlin, 1976; Vol. 7.
- 30. Decker, S. A.; Blobukowski, M., J. Chem. Inf. Comput. Sci. 2001, 41, 1.
- 31. Ehlers, A. W.; Frenking, G., J. Am. Chem. Soc. 1994, 116, 1514.
- 32. Arnesen, S. P.; Seip, H. M., Acta Chem. Scand. 1966, 20, 2711.
- 33. Wüllen, C. v., J. Comp. Chem. 1997, 18, 1985.
- 34. Drews, T.; Supel, J.; Hagenbach, A.; Seppelt, K., *Inorg. Chem.* 2006, 45, 3782.
- 35. Brisdon, A. K.; Holloway, J. H.; Hope, E. G.; Levason, W.; Ogden, J. S.; Saad, A. K., *J. Chem. Soc., Dalton Trans.* **1992**, *447*.
- 36. Cracium, R.; Long, R. T.; Dixon, D. A.; Christe, K. O., J. Phys. Chem. A 2010, 114, 7571.