Supporting Information

Single Molecule Conductance, thermopower and Transition Voltage

Shaoyin Guo¹, Gang Zhou², and Nongjian Tao¹*

¹Center for Bioelectronics and Biosensors, Biodesign Institute, and

Departments of Electrical Engineering, Arizona State University, Tempe, Arizona 85287

²Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China

Circuit current offset and calibration:

In order to measure the thermoelectric effect of a single molecule, it is necessary to ensure that the offset current/voltage of the electric circuit is sufficiently stable during the measurement. Fig. S1a shows the schematics of the current preamplifier circuit used in the experiment, where resistor, R_M , represents the molecular junction, current source, I_{TE} , represents the thermoelectric current, U_{os} and I_{os} are the input offset voltage and current of the circuit, respectively.

Fig. S1. (a) Circuit diagram of a current pre-amplifier used in the experiment. (b) The stability of the circuit offset.

Kirchhoff's current law at the circled node gives rise to

$$U_{\text{out}} = \frac{R_F}{R_M} (U_{\text{os}} - U_{\text{bias}}) + U_{\text{os}} - I_{\text{os}} R_F - I_{\text{TE}} R_F.$$
 (S1)

The total input current offset at zero applied bias, I_{TE,m}, is then given by

$$I_{TE,m} = \frac{U_{out}|_{U_{bias}=0}}{-R_{F}} = I_{TE} + I_{os} - U_{os} \left(\frac{1}{R_{M}} + \frac{1}{R_{F}}\right) = I_{TE} + I_{o}, \quad (S2)$$

where $I_0 = I_{os} - U_{os} \left(\frac{1}{R_M} + \frac{1}{R_F} \right)$ is the total offset current due to the circuit itself.

The corresponding voltage offset including the thermoelectric effect is given by

$$U_{TE,m} = U_{TE} + I_{os}R_M - U_{os}R_M \left(\frac{1}{R_M} + \frac{1}{R_F}\right),$$
 (S3)

where $U_{TE} = I_{TE}R_{M}$.

In order to ensure that the measured voltage offset is independent of the molecular resistance, R_M , a large R_F was used (e.g., $R_F = 100 \times R_M$), and the measured voltage offset, $U_{TE,m}$, is expressed as

$$U_{TE.m} \approx U_{TE} + I_{os}R_M - U_{os} = U_{TE} + U_0,$$
 (S4)

where $U_0 = I_{os}R_M - U_{os}$ is the offset voltage due to the circuit, which remains constant if U_{os} and I_{os} are stable over time.

Fig. S1b plots the measured voltage offset of the circuit with a dummy resistor at the input to simulate the molecular junction. It shows that the circuit becomes stabilized in ~30 minutes after turning on the power. In addition, baking the STM tip by placing a heat source in close proximity (no direct contact) doesn't change the offset. We typically left the circuit on overnight to ensure maximum stability.

Relationship between thermopower and energy level alignment:

The transmission function for a molecular junction can be described in terms of Lorentian functions, given by

$$\tau(E) = \sum_{n=0}^{N} \frac{\Gamma_{n,1} \Gamma_{n,2}}{(\Gamma_{n,1} + \Gamma_{n,2})^{2} / 4 + (E - \varepsilon_{n})^{2}},$$
 (S5)

where ε_n is the energy level of the n^{th} molecular orbital, and $\Gamma_{n,1}$ and $\Gamma_{n,2}$ describe the couplings of the n^{th} molecular orbital to first and second electrodes, respectively.

Assuming that molecule-electrode contacts are symmetric and the HOMO of the molecule dominates the charge transport, then Eq. S5 can be simplified as

$$\tau(E) = \frac{\Gamma_H^2}{\Gamma_H^2 + (E - \varepsilon_H)^2}, \quad (S6)$$

where ε_H is the energy level of the HOMO, and Γ_H is the coupling of the HOMO to the electrodes.

If further assuming that Γ_H is energy-independent (the wideband approximation), the thermopower can be expressed as,

$$S_{junction} = -\frac{\pi^2 k_B^2 T}{3|e|} \frac{\partial \ln(\tau(E))}{\partial E} \bigg|_{E=E_F} = \frac{\pi^2 k_B^2 T}{3|e|} \frac{2(E_F - \varepsilon_H)}{\Gamma_H^2 + (E_F - \varepsilon_H)^2}.$$
 (S7)

From the works by Bâldea (Refs. S1 and S2), the transition voltage is

$$|e|V_t = \frac{2}{\sqrt{3}}(E_F - \varepsilon_H) + \frac{11}{\sqrt{3}} \frac{\Gamma_H^2}{3(E_F - \varepsilon_H)}$$
 (S8)

For weak molecule-electrode coupling, $(E_F - \varepsilon_H)^2 \gg \Gamma_H^2$, the thermopower is given by

$$S_{junction} \approx \frac{\pi^2 k_B^2 T}{3|e|} \frac{2}{(E_F - \varepsilon_H)}$$
 (S9)

Since the transition voltage reflects the energy barrier height of the molecular junction, we have

$$|e|V_t \approx \frac{2}{\sqrt{3}}(E_F - \varepsilon_H)$$
. (S10).

Combining Eqs. S9 and S10, the thermopower at 300K is

$$S_{junction} \approx \frac{4\pi^2 k_B^2 T}{3\sqrt{3}e^2} \frac{1}{V_t} \approx \frac{A}{V_t},$$
 (S11)

where $A = 16.93 \,\mu V \cdot V/K$.

Correlation analysis

As a measure of dependence between two sets of data X and Y, the Pearson's correlation coefficient is defined as:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} \quad (S12)$$

where x_i and y_i are individual data points in X and Y(i=1, 2, ..., n), \bar{x} and \bar{y} are the sample means of X and Y, and s_x and s_y are the sample standard deviation of X and Y. r_{xy} varies between -1 and 1, indicating the degree of linear dependence between X and Y. If X and Y are uncorrelated, r_{xy} will be zero. And r_{xy} is 1 in the case of a perfect positive linear correlation and -1 in the case of a perfect negative linear correlation.

Single molecule transition voltage spectroscopy

After obtaining the I-V curves for single molecular junctions (Figs. S2a and S2d), one can get 4 G-V curves by dividing current by bias (Figs. S2b and S2e). As thousands of curves need to be processed within reasonable time, all G-V curves are fitted using second order polynomial before re-plotting using ln(I/V2) vs. 1/V axes, known as Fowler-Nordheim plot (Figs. S2c and S2f). The corresponding bias at minimum point in such plot is the transition voltage, which is a measure of the energy difference between the frontier molecular orbital and the electrodes' Fermi energy.

Fig. S2. Examples of I-V, G-V and TVS curves for DMS molecule.

References

- S1. Bâldea, I. Journal of the American Chemical Society 2012, 134, (18), 7958-7962.
- S2. Bâldea, I. Chemical Physics **2012**, 400, (0), 65-71.