Supporting Information For:

Stress-Responsive Polymers Containing Cyclobutane Core Mechanophores: Reactivity and Mechanistic Insights

Zachary S. Kean, Zhenbin Niu, Gihan B. Hewage, Arnold L. Rheingold, Stephen L. Craig*

Department of Chemistry, Duke University, Durham, North Carolina 27708
*To whom correspondence should be addressed. Phone: (919) 660-1538.
Fax: (919) 660-1605. Email: stephen.craig@duke.edu

Table of Contents

I. General Procedures
Synthetic Schemes S3
Small Molecule Synthesis S4
Polymer Synthesis S9
II. Activation of P1 (cis-BCO) S14
General Sonication Conditions and GPC-MALS Analysis S14
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Product Analysis S15
Determination of \% Ring Opening vs. Sonication Time S15
Determination of Product Distribution by Deconvolution S17
Determination of Product Distribution by GC S19
III. Activation of P2 (trans-BCO) S21
Determination of \% Ring Opening vs. Sonication Time S21
Determination of Product Distribution by Deconvolution S22
Determination of Product Distribution by GC S22
IV. Activation of P1,2 (cis/trans-BCO) S23
Determination of \% Ring Opening vs. Sonication Time S23
V. Activation of P3 (cis-CN-BCO) S24
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Product Analysis S24
Determination of \% Ring Opening vs. Sonication Time S24
Determination of Product Distribution by Deconvolution S25
VI. Activation of P4 (cis-Br 2 -BCO) S28
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Product Analysis S28
Determination of \% Ring Opening vs. Sonication Time S28
Determination of Product Distribution by Deconvolution S29
VII. Activation of PC (control) S31
VIII. Product distribution vs. MW evolution and activation of P1,66kDa S31
IX. Functionalization by Thiol-ene Addition S33
X. X-ray Crystallography S34
XI. Determination of Elongation S35
XII. Effect of Bromine Substitution on Heat of Reaction S35
XIII. Miscellaneous ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra S36
XIV. References S52

I. General Procedures

Dry solvents were obtained from Sigma-Aldrich and purified with a Pure Solv ${ }^{\mathrm{TM}}$ solvent purification system before use. CDCl_{3} and $\mathrm{DMSO}-\mathrm{d}_{6}$ were purchased from Cambridge Isotope Laboratories. All GPC experiments were performed using inhibitor free Chromasolv grade THF obtained from Sigma-Aldrich. Ethyl thioglycolate (97\%) and 1,4-butanediol bis(thioglycolate) (95\%) were purchased from TCI and used without further purification. Maleic anhydride was recrystallized from chloroform and cyclohexene was washed with acidic aqueous ferrous sulfate and distilled over calcium hydride before use. All other reagents were purchased from Sigma-Aldrich and used without further purification unless otherwise noted.

All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were collected in either $\mathrm{CDCl}_{3}\left(\delta=7.26\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.77.16\left({ }^{13} \mathrm{C}\right)\right)$ or DMSO- $\mathrm{d}_{6}\left(\delta=2.50\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.39.52\left({ }^{13} \mathrm{C}\right)\right)$ and referenced to residual solvent peak on either a Varian 400 or 500 MHz spectrometer. All chemical shifts are given in $\mathrm{ppm}(\delta)$ and coupling constants (J) in Hz as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), or broad (br). Column (flash) chromatography was performed using Silicycle F60 (230-400 mesh) silica gel.

Gel permeation chromatography (GPC) was performed on two in series columns (Agilent Technology PL gel $10^{4} \AA, 10^{3} \AA$) with THF as the mobile phase at $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$ with the flow rate set with a Varian Prostar Model 210 pump. Molecular weights were determined using an inline Wyatt Dawn EOS multi-angle light scattering (MALS) detector and a Wyatt Optilab DSP Interferometric Refractometer (RI). The dn/dc values were determined in-line, assuming 100% mass recovery based on known injection mass. All $\mathrm{dn} / \mathrm{dc}$ values for cis and trans BCO polymers ($\mathbf{P 1}, \mathbf{P 2}, \mathbf{P 1 2}, \mathbf{P C}$) were determined to be within 0.058 ± 0.004 for both sonicated and unsonicated samples, a value of 0.058 was used for these polymers, while $\mathbf{P 3}(\mathrm{dn} / \mathrm{dc}=0.058 \pm 0.003)$ and $\mathbf{P 4}(\mathrm{dn} / \mathrm{dc}=0.048 \pm$ 0.001) were determined independently.

Small Molecule Synthesis and Characterization

Compound 1a: cis-Bicyclo[4.2.0]octane-cis-7,8-dicarboxylic acid

Using procedure modified from those previously reported, ${ }^{1-4}$ benzophenone ($5.00 \mathrm{~g}, 27.4$ $\mathrm{mmol})$, maleic anhydride ($20.0 \mathrm{~g}, 197 \mathrm{mmol}$), and cyclohexene ($100 \mathrm{~mL}, 987 \mathrm{mmol}$) were dissolved in 300 mL acetonitrile in a 500 mL photochemical reactor fitted with a water-cooled quartz emersion well. The solution was sparged with argon for 30 minutes then irradiated with a 450 W medium pressure mercury arc lamp through a Pyrex filter for 5 hours under argon. During the course of the reaction, the internal temperature stabilized at $35^{\circ} \mathrm{C}$. Acetonitrile and cyclohexene were removed under reduced pressure and resulting residue was distilled under high vacuum, collecting all volatiles distilling between 110 and $200^{\circ} \mathrm{C}$ (200-500 mTorr). The distillate was stirred with 100 mL 2 N aqueous NaOH for 1 hour then extracted with 50 mL diethyl ether. The aqueous layer was then neutralized carefully with concentrated HCl at which point a white precipitate formed with was filtered and washed with $\mathrm{MeOH}(20 \mathrm{~mL})$ to yield $\mathbf{1 a}$ as a white powder in 27% yield ($10.6 \mathrm{~g}, 53.5 \mathrm{mmol}$). Due to poor solubility, the compound was further characterized as the methyl ester.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 2.92(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{J}=4.88 \mathrm{~Hz}$), 2.48 (br, 2H), 1.64 (br, 2H), 1.43 (br, 4H), 1.24 (br, 2H); ${ }^{13}$ C NMR (125 MHz, DMSO-d ${ }_{6}$) δ 174.86, 43.82, 34.07, 26.86, 21.92

Compound 1b: Dimethyl cis-Bicyclo[4.2.0]octane-cis-7,8-dicarboxylate

Diacid 1a ($1.00 \mathrm{~g}, 5.05 \mathrm{mmol}$) was suspended in 20 mL dry MeOH in an oven dried 50 mL round bottom flask under argon. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.540 \mathrm{~mL}, 10.1 \mathrm{mmol})$ was carefully added and the solution was heated at reflux overnight, becoming homogenous after approximately 1 hour. The solution was cooled and carefully quenched with NaHCO_{3} until effervescence ceased. Methanol was removed under reduced pressure and
the residue was suspended in 100 mL water and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organics were dried over MgSO_{4} and solvent evaporated to give crude yellow oil which was purified by column chromatography (80:20 Hexanes:EtOAc) to give a clear oil in 88.5% yield ($1.01 \mathrm{~g}, 4.47 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.88), 2.74(\mathrm{br}, 2 \mathrm{H}), 1.76$ (br, 2 H), $1.47(\mathrm{br}, 4 \mathrm{H}), 1.33(\mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 173.02,51.28,42.98$, 33.07, 26.54, 21.67. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{MH}+]$, 227.1278; found, 227.1279

Compound 1: Bis(2-hydroxyethyl)-cis-Bicyclo[4.2.0]octane-cis-7,8-dicarboxylate

Diacid 1a ($4.02 \mathrm{~g}, 20.3 \mathrm{mmol}$) was suspended in 31 mL dry ethylene glycol in an oven dried 100 mL round bottom flask under argon. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(2.15 \mathrm{~mL}, 40.6$ mmol) was carefully added at which point the mixture became homogenous. The solution was heated at $100{ }^{\circ} \mathrm{C}$ overnight under a stream of argon. After cooling, the reaction was quenched by pouring into 100 mL sat. NaHCO_{3} and extracted with EtOAc $(4 \times 100 \mathrm{~mL})$. The combined organics were washed with 200 mL water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then evaporated under reduced pressure to give a light yellow oil which was subjected to column chromatography (gradient, DCM to $2 \% \mathrm{MeOH}$ in DCM) to give \mathbf{X} as a clear yellow oil in 69.4% yield ($4.03 \mathrm{~g}, 14.1 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.26-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{br}, 4 \mathrm{H}), 3.19$ (d, 2H, J = 5.08), 2.78 (br, 2H), 2.63 (br, 2H), 1.72-185 (m, 2H), 1.42-1.55 (m, 4H), 1.27$1.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.68,66.10,60.37,43.72,33.53,26.99$, 21.99. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]+$, 309.1309; found, 309.1306

Compound 2a: Dimethyl cis-Bicyclo[4.2.0]octane-trans-7,8-dicarboxylate (racemic)

Under argon, methyl ester $\mathbf{1 b}(1.50 \mathrm{~g}, 6.64 \mathrm{mmol})$ was dissolved in dry $\mathrm{MeOH}(5 \mathrm{~mL})$ in a 25 mL oven dried round bottom flask with reflux condenser and stir bar. A 50% ($\mathrm{wt} / \mathrm{wt}$) solution of sodium methoxide in methanol was added and the solution heated at reflux overnight. After cooling, the solution was poured into 100 mL of 1 N HCl and extracted with DCM ($3 \times 50 \mathrm{~mL}$), dried over MgSO_{4}, and evaporated to yield an 5:1 mixture of trans:cis diester. Purification by flash chromatography ($\mathrm{SiO}_{2}, 95: 5$

Hexanes:Ethyl Acetate) yielded pure trans isomer as a clear oil in 13.3 \% yield (200 mg , 0.885 mmol).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H})$, $0.95-1.82(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.24,172.28,51.79,51.57,42.03$, 40.67, 34.54, 33.17, 25.25, 24.42, 22.73, 21.70. HRMS-ESI (m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}$ [M+Na]+, 249.1097; found, 249.1094

Compound 2: Bis(2-hydroxyethyl)-cis-Bicyclo[4.2.0]octane-trans-7,8-dicarboxylate (racemic)

Dimethyl ester 1b ($3.83 \mathrm{~g}, 17.0 \mathrm{mmol}$) was transferred to an oven dried 50 mL round bottom flask fitted with a reflux condenser under argon. Dry $\mathrm{MeOH}(12 \mathrm{~mL})$ was added, followed by a solution of NaOMe in $\mathrm{MeOH}(25 \%, 7.6 \mathrm{~mL})$. The solution was heated at reflux for 18 hours. After cooling, $\mathrm{NaHSO}_{4}(6.3 \mathrm{~g})$ was added carefully and solution evaporated under reduced pressure. The mixture was suspended in 30 mL dry ethylene glycol and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.41 \mathrm{~mL})$ was added dropwise. . The solution was heated at $100{ }^{\circ} \mathrm{C}$ overnight under a stream of argon. After cooling, the reaction was quenched by pouring into 100 mL sat. NaHCO_{3} and extracted with EtOAc ($4 \times 100 \mathrm{~mL}$). The combined organics were washed with water ($2 \times 150 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then evaporated under reduced pressure to give a light yellow oil which was subjected to column chromatography (gradient, DCM to $2 \% \mathrm{MeOH}$ in DCM) to give 2 as a clear yellow oil in 32.7% yield (1.59 g , $5.56 \mathrm{mmol}, 95: 5 \mathrm{dr}$), two steps.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.13-4.32(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.30-3.43(\mathrm{~m}, 2 \mathrm{H})$, 2.50-2.60 (m, 2H), $2.30(\mathrm{br}, 2 \mathrm{H}), 0.92-1.89(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $174.14,172.20,66.25,66.11,61.00,42.52,40.97,34.20,33.23,25.23,24.62,22.74$, 21.75. HRMS-ESI (m / z) : calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]+, 309.1309$; found, 309.1299

Compound 3a: Dimethyl 7-cyano-cis-Bicyclo[4.2.0]octane-cis-7,8-dicarboxylate (racemic)

Cis-cyclohexanediacetic acid ${ }^{5}(12.2 \mathrm{~g}, 60.8 \mathrm{mmol})$ was loaded into an oven dried 250 mL round bottomed flask with stir bar, addition funnel, and reflux condenser fitted with a N_{2} bubbler. Thionyl chloride ($30.0 \mathrm{~mL}, 413 \mathrm{mmol}$) was carefully added by addition funnel and the suspension was heated at reflux for 2 hours at which point the solid had completely dissolved. Bromine ($6.92 \mathrm{~mL}, 134 \mathrm{mmol}$) was then added dropwise and the solution heated at $80^{\circ} \mathrm{C}$ overnight then allowed to cool to $60^{\circ} \mathrm{C}$ and excess thionyl chloride and bromine were removed under a stream of N_{2}. The brown oil was allowed to cool to room temperature and 30 mL of MeOH was carefully added followed by heating at reflux for 2 hr . After cooling, the mixture was poured into 1 L of cold water. The aqueous layer was decanted from the brown residue, which was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and washed with aqueous sodium bisulfite (10%), potassium carbonate (10%), water, and brine. Drying over magnesium sulfate and evaporation under reduced pressure yielded a yellow oil, which was used for the next step without further purification (90.8% crude yield, $21.2 \mathrm{~g}, 55.2 \mathrm{mmol}$).

HRMS-ESI (m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{4}[\mathrm{MH}+], 384.9645$; found, 384.9647
The dibromide ($21.0 \mathrm{~g}, 55.3 \mathrm{mmol}$) and finely ground potassium cyanide ($10.8 \mathrm{~g}, 166$ mmol) were loaded into a 250 mL round bottomed flask with stir bar and subsequently suspended in 20 mL of dry MeOH . The suspension was heated at reflux for 3 days under N_{2}. The resulting black oil was allowed to cool then diluted with 400 mL EtOAc and stirred over celite and filtered. The brown solution was then washed with water (3×150 $\mathrm{mL})$ and brine (100 mL), dried over MgSO_{4} and concentrated under reduced pressure. The dark brown oil was then subjected to column chromatography ($\mathrm{SiO}_{2}, 9: 1$
Hexane/EtOAc, $\mathrm{R}_{\mathrm{f}} \sim 0.15$) to give white crystals of X as a single diastereomer in 14.9% yield (two steps, $2.07 \mathrm{~g}, 8.25 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8), 3.19(\mathrm{~m}$, $1 \mathrm{H}), 2.65(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.59), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.13$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.78,167.95,117.29,53.77,52.25,46.63$, $46.53,37.63,33.17,26.09,24.88,22.15,20.92$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4}$ [MH+], 252.1230; found, 252.1232

Compound 3: Bis(2-hydroxyethyl)-7-cyano-cis-Bicyclo[4.2.0]octane-cis-7,8dicarboxylate (racemic)

3a ($1.38 \mathrm{~g}, 5.50 \mathrm{mmol}$) was dissolved in dry THF (5 mL) in a flame dried 25 mL under Argon. Ethylene glycol ($10.2 \mathrm{~mL}, 165 \mathrm{mmol}$) and diisopropylethylamine $(0.960 \mathrm{~mL}$, 5.50 mmol) were subsequently added and the solution was stirred at room temperature for 72 hours. The solution was directly purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution $1: 1$ to $4: 1 \mathrm{EtOAc} /$ Hexane) to yield $\mathbf{3}$ as a clear oil in 56% yield ($950 \mathrm{mg}, 3.05$ mmol)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.92(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.48), 3.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.55)$, $3.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{br}, 2 \mathrm{H}), 2.72(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.59), 2.13(\mathrm{~m}, 1 \mathrm{H})$, $1.66(\mathrm{~m}, 5 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.87,167.76$, $117.33,68.65,66.92,60.67,60.43,46.93,46.75,37.64,33.21,26.07,24.88,22.09,20.88$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{6}[\mathrm{MH}+]$, 312.1442; found, 312.1443

Compound 4a: Dimethyl 7,8-dibromo-cis-Bicyclo[4.2.0]octane-cis-7,8-dicarboxylate
4a was synthesized as previously reported. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 4 \mathrm{H})$, $1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.98$, 68.90. 53.54, 38.54, 25.50, 21.27. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]+$, 399.9754 ; found, 399.9746

Compound 4: Bis(2-hydroxyethyl)-7,8-dibromo-cis-Bicyclo[4.2.0]octane-cis-7,8dicarboxylate

$4 \mathbf{a}(1.04 \mathrm{~g}, 2.71 \mathrm{mmol})$ was suspended in ethylene glycol $(10 \mathrm{~mL})$ in a 25 mL round bottomed flask under argon. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.2 \mathrm{~mL})$ was added and the biphasic solution was heated at $100^{\circ} \mathrm{C}$ for 24 hours (until 1 phase was formed) then $90^{\circ} \mathrm{C}$ for 48 hours. The solution was then allowed to cool, was diluted with 125 mL EtOAc, and washed with 50 mL dilute NaHCO_{3} and 50 mL brine, dried over magnesium sulfate and concentrated under reduced pressure. The light yellow oil was then subjected to column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution $1: 1$ to $\left.4: 1 \mathrm{EtOAc} / \mathrm{Hexane}\right)$ to yield 4 as a clear oil in 40.5% yield ($487 \mathrm{mg}, 1.10 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.35(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.52), 3.07(\mathrm{~m}$, $2 \mathrm{H}), 2.60(\mathrm{br}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 169.96, 69.23, 68.37, 60.63, 38.70, 25.60, 21.27. HRMS-ESI (m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]+$, 459.9965 ; found, 459.9967

Polymer Synthesis

All polyesterifications were performed using a method modified from that of Moore and Stupp. ${ }^{6}$

Synthesis of P1 (cis-BCO)

Diol 1 ($3.77 \mathrm{~g}, 13.2 \mathrm{mmol}$), glutaric acid ($1.74 \mathrm{~g}, 13.2 \mathrm{mmol}$), and DPTS ($1.55 \mathrm{~g}, 5.28$ mmol) were weighed into a 50 mL oven dried round bottom flask. The flask was purged with argon for 30 minutes, then 15 mL of dry DCM was added by syringe. The solution was heated to $37{ }^{\circ} \mathrm{C}$ and stirred until homogenous, then allowed to cool to room temperature. DIC ($6.63 \mathrm{~mL}, 39.6 \mathrm{mmol}$) was added dropwise by syringe, and the polymerization was allowed to proceed for 48 hours. The viscous mixture was then precipitated three times from DCM into MeOH and dried under high vacuum to yield 3.47 g of white gummy polymer.
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21-4.30(\mathrm{~m}, 8 \mathrm{H}), 3.13(\mathrm{~d}, 2 \mathrm{H}), 2.73(\mathrm{br}, 2 \mathrm{H}), 2.41(\mathrm{t}, 4 \mathrm{H}$, $\mathrm{J}=7.32$), 1.94 (quintet, $2 \mathrm{H}, \mathrm{J}=7.49$), 1.70-1.82 (br, 2H), 1.42-1.54 (br, 4H), 1.26-1.40 (br, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.03,172.77,62.29,43.67,34.00,33.09,27.31$, 22.32, 19.99.

GPC-MALS: $\mathrm{M}_{\mathrm{n}}=179 \mathrm{kDa}, \mathrm{PDI}=1.43$

Synthesis of P2 (trans-BCO)

Diol $2(1.12 \mathrm{~g}, 3.90 \mathrm{mmol})$, glutaric acid ($0.515 \mathrm{~g}, 3.90 \mathrm{mmol}$), and DPTS ($0.459 \mathrm{~g}, 1.56$ mmol) were weighed into a 25 mL oven dried round bottom flask. The flask was purged with argon for 30 minutes, then 6 mL of dry DCM was added by syringe. The solution was heated to $37^{\circ} \mathrm{C}$ and stirred until homogenous, then allowed to cool to room temperature. DIC ($1.82 \mathrm{~mL}, 11.7 \mathrm{mmol}$) was added dropwise by syringe, and the polymerization was allowed to proceed for 48 hours. The viscous mixture was then precipitated three times from DCM into MeOH and dried under high vacuum to yield 692 mg of a tacky clear solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20-4.33(\mathrm{~m}, 8 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.38$ (t, 4H, J = 7.33), 1.94 (quintet, $2 \mathrm{H}, \mathrm{J}=7.36$), 1.74-1.79 (br, 1 H), 1.58-1.66 (br, 3H), 1.16$1.47(\mathrm{~m}, 3 \mathrm{H}), 0.95-1.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.50, 172.66, 171.61, $62.30,62.19,41.82,40.65,34.81,33.26,33.10,25.25,24.48,22.77,21.75,20.00$.

GPC-MALS: $\mathrm{M}_{\mathrm{n}}=155 \mathrm{kDa}$, PDI $=1.34$

Synthesis of P1,2 (cis/trans-BCO)

Diol 1 ($576 \mathrm{mg}, 2.01 \mathrm{mmol}$), diol 2 ($578 \mathrm{mg}, 2.03 \mathrm{mmol}$), glutaric acid ($532 \mathrm{mg}, 4.03$ mmol), and DPTS ($473 \mathrm{mg}, 1.61 \mathrm{mmol}$) were added to a 25 mL oven dried round bottom flask. Dry DCM (6 mL) was added by syringe and the solution was heated to $37^{\circ} \mathrm{C}$ and stirred until homogenous, then allowed to cool to room temperature. DIC $(1.88 \mathrm{~mL}, 12.1$ mmol) was added dropwise by syringe, and the polymerization was allowed to proceed for 48 hours. The viscous mixture was then precipitated three times from DCM into MeOH and dried under high vacuum to yield 1.015 g of white gummy polymer.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.16-4.34(\mathrm{~m}, 8 \mathrm{H}), 3.32(\mathrm{~m}, 1.06 \mathrm{H}), 3.10(\mathrm{~d}, 0.94 \mathrm{H}), 2.70$ (br, 0.94H), 2.45-2.56 (m, 1.06H), $2.38(\mathrm{~m}, 4 \mathrm{H}), 1.91$ (quintet, $2 \mathrm{H}, \mathrm{J}=7.34$), 0.92-1.83 $(\mathrm{m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.44,172.94,172.64,171.55,62.22,62.13$, $43.59,41.73,40.54,34.72,33.91,33.17,33.01,27.23,25.17,24.42,22.70,22.24,21.68$, 19.91.

GPC-MALS: $\mathrm{M}_{\mathrm{n}}=161 \mathrm{kDa}, \mathrm{PDI}=1.32$

Synthesis of P3 (CN-cis-BCO)

Diol 3 ($906 \mathrm{mg}, 2.91 \mathrm{mmol}$), glutaric acid ($384 \mathrm{mg}, 2.91 \mathrm{mmol}$), and DPTS (342 mg , 1.16 mmol) were added to a 25 mL oven dried round bottom flask. The flask was purged with argon for 30 minutes, then 4 mL of dry DCM was added by syringe. The solution was heated to $37{ }^{\circ} \mathrm{C}$ and stirred until homogenous, then allowed to cool to room temperature. DIC ($1.35 \mathrm{~mL}, 8.73 \mathrm{mmol}$) was added dropwise by syringe, and the polymerization was allowed to proceed for 48 hours. The viscous mixture was then precipitated three times from DCM into MeOH and dried under high vacuum to yield 640 mg of solid white polymer.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.16-4.48(\mathrm{~m}, 8 \mathrm{H}), 3.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.98), 3.16(\mathrm{~m}, 1 \mathrm{H})$, $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.93$ (quintet, $2 \mathrm{H}, \mathrm{J}=7.35), 1.47-1.80(\mathrm{~m}, 6 \mathrm{H})$, $1.36(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.66,172.63,170.00$, $167.25,116.87,64.43,62.74,61.86,61.54,46.57,46.42,37.81,33.22,32.97,26.07$, 24.82, 22.11, 20.86, 19.89 .

GPC-MALS: $\mathrm{M}_{\mathrm{n}}=133 \mathrm{kDa}, \mathrm{PDI}=1.28$

Synthesis of P4 (Br_{2}-cis-BCO)

Diol 4 ($417 \mathrm{mg}, 0.940 \mathrm{mmol}$), glutaric acid ($124 \mathrm{mg}, 0.940 \mathrm{mmol}$), and DPTS (110 mg , 0.376 mmol) were added to a 10 mL oven dried round bottom flask. The flask was purged with argon for 30 minutes, and then 2 mL of dry DCM was added by syringe. The solution was heated to $37^{\circ} \mathrm{C}$ and stirred until homogenous, then allowed to cool to room temperature. DIC ($0.440 \mathrm{~mL}, 2.82 \mathrm{mmol}$) was added dropwise by syringe, and the polymerization was allowed to proceed for 48 hours. The viscous mixture was then precipitated three times from DCM into MeOH and dried under high vacuum to yield 276 mg of clear tacky polymer.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.22-4.44(\mathrm{~m}, 8 \mathrm{H}), 3.00(\mathrm{br}, 2 \mathrm{H}), 2.41(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.30)$, 1.86-2.02 (m, 4H), 1.70-1.86 (br, 4H), 1.26-1.40 (br, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.66, 169.30, 68.66, 64.04, 61.68, 38.66, 33.09, 25.58, 21.35, 19.98.

GPC-MALS: $\mathrm{M}_{\mathrm{n}}=51.0 \mathrm{kDa}$, PDI $=1.35$

Synthesis of Control Polymer (PC)

Diol 1 ($285 \mathrm{mg}, 1.00 \mathrm{mmol}$), Diol $2(285 \mathrm{mg}, 1.00 \mathrm{mmol})$, glutaric acid ($250 \mathrm{mg}, 1.89$ mmol), and DMAP ($97 \mathrm{mg}, 0.80 \mathrm{mmol}$) were dissolved in 3 mL DCM and 3 mL DMF in a 25 mL round bottom flask and subsequently purged with argon. EDCI ($1.14 \mathrm{~g}, 5.97$ mmol) was added as a solid and the solution allowed to stir overnight. The solution was diluted with 150 mL DCM and washed with water ($2 \times 100 \mathrm{~mL}$), and brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was dissolved in a minimal amount of DCM and passed through a plug of neutral alumina, eluting with DCM to yield 198 mg of clear viscous polymer.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.16-4.34(\mathrm{~m}, 8 \mathrm{H}), 3.33(\mathrm{~m}, 1.08 \mathrm{H}), 3.12(\mathrm{~d}, 0.92 \mathrm{H}), 2.71$ (br, 0.92H), 2.43-2.58 (m, 1.08H), 2.38 (m, 4H), 1.93 (quintet, 2H, J = 7.36), 0.93-1.83 $(\mathrm{m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.50,172.99,172.70,171.60,62.28,62.18$, $43.67,41.80,40.63,34.79,33.91,33.98,33.24,33.09,27.29,25.23,24.47,22.76,22.30$, 21.74, 19.99.

GPC-MALS: $\mathrm{M}_{\mathrm{n}}=13.3 \mathrm{kDa}, \mathrm{PDI}=1.28$

Synthesis of P1,66kDa (cis-BCO)

Diol $1(1.24 \mathrm{~g}, 4.32 \mathrm{mmol})$, glutaric acid $(0.570 \mathrm{~g}, 4.32 \mathrm{mmol})$, and DPTS $(0.508 \mathrm{~g}, 1.73$ mmol) were weighed into a 25 mL oven dried round bottom flask. The flask was purged with argon for 30 minutes, then 7 mL of dry DCM was added by syringe. The solution was heated to $38^{\circ} \mathrm{C}$ and stirred until homogenous, then allowed to cool to room temperature. DIC ($2.00 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added dropwise by syringe, and the polymerization was allowed to proceed for 48 hours. The viscous mixture was then concentrated to half volume and precipitated three times from DCM into MeOH and dried under high vacuum to yield 1.18 g of clear tacky polymer.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.19-4.33(\mathrm{~m}, 8 \mathrm{H}), 3.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.12), 2.72(\mathrm{br}, 2 \mathrm{H})$, $2.41(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.32), 1.95$ (quintet, $2 \mathrm{H}, \mathrm{J}=7.30$), 1.71-1.83 (br, 2H), 1.42-1.53 (br, 4H), 1.26-1.40 (br, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.93,172.68,62.23,43.63,33.94$, 33.04, 27.24, 22.25, 19.95.

GPC-MALS: $\mathrm{M}_{\mathrm{n}}=66.1 \mathrm{kDa}, \mathrm{PDI}=1.52$

II. Activation of P1 (cis-BCO)

General Sonication Conditions and GPC-MALS Analysis

Ultrasound experiments were performed in dry acetonitrile on a Vibracell Model VCX500 (20 kHz frequency) with a 12.8 mm titanium probe. For polymer $\mathbf{4}, \mathrm{CHCl}_{3}$ was used due to insolubility in acetonitrile while all other conditions were identical. Solutions were irradiated at a concentration of $2 \mathrm{mg} / \mathrm{mL}$ in 16 mL of solvent unless otherwise noted. Prior to sonication, the solution was transferred to a 3-necked Suslick cell in an ice bath and sparged with nitrogen for 30 minutes prior to sonication. Irradiations were performed at $14.8 \mathrm{~W} / \mathrm{cm}^{2}$ with a pulse sequence of 1 s on $/ 1 \mathrm{~s}$ off while maintaining a temperature of $6-9^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Power calibration was performed using the method of Berkowski et. al. ${ }^{7}$

Individual sonication experiments were performed for each time point. 32 mg of $\mathbf{P 1}$ was dissolved in 16 mL MeCN , subjected to irradiation for the times indicated. The solution was filtered and evaporated under reduced pressure. 2 mg was dissolved in 1 mL of THF for GPC analysis, while the remainder was dissolved in $0.5 \mathrm{~mL} \mathrm{CDCl}_{3}$ for NMR analysis. Molecular weight was observed to degrade as a function of sonication time, indicated by an increase in retention time with prolonged irradiation. MWs are reported as number average molecular weight $\left(\mathrm{M}_{\mathrm{n}}\right)$. P1 sonication overlay below is representative of all polymers tested unless otherwise noted:

Figure S 1. GPC overlay of P1 molecular weight degradation at various sonication times.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Product Analysis

Assignment of mechanochemically generated products are shown below, peaks are consistent with expected shifts for substitution and stereochemical arrangement of analogous reported compounds. ${ }^{8}$

Figure S 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments for unsaturated products of P 1 activation.

Determination of \% Ring Opening vs. Sonication Time

\% Ring Opening was calculated via integration as shown below. Protons H and $\mathrm{H}_{\mathrm{C}, \mathrm{D}}$ were chosen due to good resolution from neighboring peaks and because their resonances represent an equal number of protons (2) in both BCO and diene monomer units.

Figure S 3. Peak assignments and equation used in the calculation of \% ring opening of cis-BCO as a function of sonication time.

Figure S 4. Evolution of \% Ring Opening and M_{n} as functions of sonication time.

Determination of Product Distribution by Deconvolution

Lorentzian peak fitting was performed using Mestrelab Mnova (Mestrelab Research S.L., Santiago de Compostela, Spain, www.mestrelab.com) peak fitting function. β, E-Protons were deconvoluted into two peak distributions, corresponding to major ($E Z$) and minor $(E E)$ monomeric product dienes:

Figure S 5. Assignment of E and Z alkenes used in the determination of product ratios.

$\mathrm{H}_{\mathrm{A}, \mathrm{E}}+\mathrm{H}_{\mathrm{A}, \mathrm{Z}}$

Figure S 6. Sample deconvolution of E-alkene peaks in the determination of major and minor isomer content.

$A(m)$
6.9439

Deconvolutions were performed for all time points. The chart and equations below detail determination of individual isomer ratios:

Sonication Time (min)	\% $\mathrm{E}_{\text {total }}$	\% $\mathrm{E}_{\text {major }}$ (EZ)	\% $\mathrm{E}_{\text {minor }}$ (EE)	$\%_{\text {total }}$	\%EZ	\%EE	\%ZZ
5	49.4	80.6	19.4	50.6	79.7	9.6	10.8
15	50.2	73.1	26.9	49.8	73.4	13.5	13.1
30	50.9	81.2	18.8	49.1	82.6	9.6	7.8
60	50.8	70.5	29.5	49.2	71.6	15.0	13.4
120	51.2	73.4	26.6	48.8	75.2	13.6	11.2
180	51.2	75.5	24.5	48.8	77.4	12.5	10.1

Table S 1. Summary of product ratios by deconvolution for P1
$\% E_{\text {total }}$ and $\% Z_{\text {total }}$ are the percent of total alkenes generated in the E and Z configurations respectively:
$\% E_{\text {total }}=100 \cdot \int \mathrm{H}_{\mathrm{B}, E} /\left[\left[\mathrm{H}_{\mathrm{B}, E+} \int \mathrm{H}_{\mathrm{B}, Z}\right]\right.$
$\% Z_{\text {total }}=100 \cdot \int \mathrm{H}_{\mathrm{B}, Z} /\left[\int \mathrm{H}_{\mathrm{B}, E+} \int \mathrm{H}_{\mathrm{B}, Z}\right]$
$\% E_{\text {major }}$ and $\% E_{\text {minor }}$ are the percent of $E_{\text {total }}$ integration that is attributed to each isomer respectively:

$$
\begin{aligned}
& \% E_{\text {major }}=\% E_{\text {total }} \cdot \int \mathrm{H}_{E, \text { major }} /\left[\int \mathrm{H}_{E, \text { major }}+\int \mathrm{H}_{E, \text { minor }}\right] \\
& \% E_{\text {minor }}=\% E_{\text {total }} \cdot \int \mathrm{H}_{E, \text { minor }} /\left[\int \mathrm{H}_{E, \text { major }+} \int \mathrm{H}_{E, \text { minor }}\right]
\end{aligned}
$$

Total isomer content in terms of \% of monomeric diene generated are calculated as follows:
$\% E Z=\left[\% E_{\text {major }} \cdot \% E_{\text {total }} \cdot 2\right] / 100$
$\% E E=\left[\% E_{\text {minor }} \cdot \% E_{\text {total }}\right] / 100$
$\% \mathrm{ZZ}=100-\% E Z-\% E E$

Note: Product ratios shown in table 5 (e.g. 77:13:10, 180 min) are based on the assumption that the $E_{\text {major }}$ isomer is $E Z$. Without prior knowledge, another product ratio is possible if $E_{\text {major }}$ is $E E$ (e.g. 25:39:36). Given that $E_{\text {total }} \sim Z_{\text {total }}$ and unsatisfactory deconvolution of $\mathrm{H}_{\mathrm{B}, \mathrm{z}}$ we were unable to distinguish between the two by ${ }^{1} \mathrm{H}$ NMR. This necessitated GC analysis. For CN and Br derivatives, asymmetry within the monomer unit and different $E_{\text {total }}: Z_{\text {total }}$ content allowed for full characterization by ${ }^{1} \mathrm{H}$ NMR.

Determination of Product Distribution by GC

Reduction of Polyester P1:

P1 was sonicated using standard conditions to achieve a 52% ring opening by ${ }^{1} \mathrm{H}$ NMR. The polymer ($31 \mathrm{mg}, 0.649 \mathrm{mmol}$ ester groups) was transferred to a 25 mL Schlenk flask with a stir bar and dried under high vacuum. Under argon, 3.5 mL dry DCM was added and the solution was cooled to $-30^{\circ} \mathrm{C}$. A 1 M solution of Dibalh in toluene $(2.60 \mathrm{~mL}, 2.60$ mmol) was added dropwise with the solution first turning to a gelled suspension and eventually a homogenous solution upon completion of addition. The solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 1.5 hr . The reaction was quenched by addition of $50 \mu \mathrm{~L}$ water, $100 \mu \mathrm{~L} 2 \mathrm{~N} \mathrm{NaOH}$, and $75 \mu \mathrm{~L}$ water in succession. MgSO_{4} was then added and the suspension stirred for 15 minutes. The mixture was then filtered and evaporated to yield 12 mg of a clear oil, which was then subjected to GC analysis.

All GC analysis was performed using a Shimadzu QP2010 GC/MS with autosampler. All samples were derivatized before injection:

A $2 \mathrm{mg} / \mathrm{mL}$ sample in dry DCM was prepared in an oven dried 4 mL scintillation vial. BSTFA ($5: 1 \mathrm{~mol} \%$ vs. hydroxyl content) was added via microsyringe and the vial was sealed and heated in a sand bath at $60^{\circ} \mathrm{C}$ then immediately subjected to GC analysis.

Retention times were confirmed by comparing with authentic samples ${ }^{8}$ as shown in red and green curves below. Blue curve shows result of analysis of $\mathbf{P} 1$ sample after reduction and derivatization. Percent content of each isomer was determined by integration of the decadienediol peaks:

Figure S 7. GC chromatograms for authentic decadienediols (red), reduced cis-BC0 (green), and P1 after sonication and reduction (blue).

Integration Result:
EZ (77.5\%), EE (13.6\%), ZZ (8.9\%)

III. Activation of P2 (trans-BCO)

Determination of \% Ring Opening vs. Sonication Time
Figure S 8. Peak assignments and equation used in the calculation of \% ring opening of trans-BCO as a function of sonication time.

Figure S 9. Evolution of \% Ring Opening and \mathbf{M}_{n} as functions of sonication time.

Determination of Product Distribution by Deconvolution

Deconvolution was performed in a manner identical to that of $\mathbf{P 1}$.

Sonication Time (min)	\% $\mathrm{E}_{\text {total }}$	\% $E_{\text {major }}$ (EZ)	\% $\mathrm{E}_{\text {minor }}$ (EE)	$\% \mathrm{Z}_{\text {total }}$	\%EZ	\%EE	\%ZZ
5	53.0	70.2	29.8	47.0	74.4	15.8	9.8
15	52.9	70.0	30.0	47.1	74.0	15.9	10.1
30	52.7	69.2	30.8	47.3	73.0	16.2	10.8
60	53.0	64.6	35.4	47.0	68.4	18.8	12.8
120	54.0	69.7	30.3	46.0	75.3	16.3	8.3
180	53.2	68.1	31.9	46.8	72.5	17.0	10.6

Table S 2. Summary of product ratios by deconvolution for P2.

Determination of Product Distribution by GC

The $\mathbf{P} \mathbf{2}$ product distribution was determined in an identical fashion to $\mathbf{P} 1$.

Figure S 10. GC chromatogram of $P 2$ after sonication and reduction.

Integration Result:
EZ (70.7\%), EE (18.8\%), ZZ (10.5\%)

IV. Activation of P1,2 (cis/trans-BCO)

Determination of \% Ring Opening vs. Sonication Time
Figure S 11. Peak assignments used in the calculation of \% ring opening of cis and trans isomers in P1,2 as a function of sonication time.

${ }^{1} \mathrm{H}$ NMR spectra for all time points were normalized based on peak integration to $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ - shifts from ethylene glycol subunits at 4.2-4.4 ppm.
\% Ring Opening as a function of time (t) was calculated based on change in $\mathrm{H}_{\text {trans }}$ and $\mathrm{H}_{\text {cis }}$ integrals from initial values $\mathrm{H}_{\text {trans }, 0}$ and $\mathrm{H}_{c i s, 0}$:
$\% \mathrm{RO}_{\text {trans }}(\mathrm{t})=\left[\left(\int \mathrm{H}_{\text {trans }, 0}-\int \mathrm{H}_{\text {trans }, t}\right) / \int \mathrm{H}_{\text {trans }, 0}\right] \cdot 100$
$\% \mathrm{RO}_{c i s}(\mathrm{t})=\left[\left(\int \mathrm{H}_{c i s, 0}-\int \mathrm{H}_{c i s, t}\right) / \int \mathrm{H}_{c i s, 0}\right] \cdot 100$

V. Activation of P3 (cis-CN-BCO)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Product Analysis

Assignment of mechanochemically generated products are shown below, peaks are consistent with expected shifts for substitution and stereochemical arrangement of analogous reported compounds. ${ }^{9}$

Figure $S 12 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments for unsaturated products of P 3 activation.

Determination of \% Ring Opening vs. Sonication Time

Figure S 13. Peak assignments and equation used in the calculation of \% ring opening of cis-CN-BCO as a function of sonication time.

Figure S 14. Evolution of \% Ring Opening and M_{n} as functions of sonication time.

Determination of Product Distribution by Deconvolution

Figure S 15. Assignment of E and Z alkenes used in the determination of product ratios.

Figure S 16. Sample deconvolution of E-alkene peaks in the determination of major and minor isomer content.

Deconvolutions were performed for all time points. The chart and equations below detail determination of individual isomer ratios:

Sonication Time (min)	\% $\mathrm{E}_{\text {cN,total }}$	\% $\mathrm{E}_{\mathrm{CN}, \text { major }}$ (EZ)	$\% \mathrm{E}_{\mathrm{CN}, \text { minor }}$ (EE)	$\%^{\text {c }}$ c,total ${ }_{\text {l }}$	\% $\mathrm{E}_{\text {unsub,total }}$	$\% \mathrm{Z}_{\text {unsub,total }}$	\%EZ	\%EE	\%ZX
5	91.3	83.0	17.0	8.7	22.5	77.5	75.7	15.5	8.7
15	93.4	80.7	19.3	6.6	22.2	77.8	75.4	18.0	6.6
30	94.3	79.2	20.8	5.7	22.3	77.7	74.7	19.6	5.7
60	91.5	78.2	21.8	8.5	22.9	77.1	71.6	19.9	8.5
120	94.0	79.2	20.8	6.0	23.6	76.4	74.4	19.5	6.0
180	98.4	77.9	22.1	1.6	24.0	76.0	76.7	21.7	1.6

[^0]$\% E_{C N, \text { total }}$ and $\% Z_{C N, \text { total }}$ are the percent of total cyano-alkenes generated in the E and Z configurations respectively:
$\% E_{C N, \text { total }}=100 \cdot \int \mathrm{H}_{\mathrm{B}, \mathrm{CN}, E} /\left[\int \mathrm{H}_{\mathrm{B}, \mathrm{CN}, E+} \int \mathrm{H}_{\mathrm{B}, \mathrm{CN}, Z}\right]$
$\% Z_{C N, \text { total }}=100 \cdot \int \mathrm{H}_{\mathrm{B}, \mathrm{CN}, Z} /\left[\int \mathrm{H}_{\mathrm{B}, \mathrm{CN}, E+} \int \mathrm{H}_{\mathrm{B}, \mathrm{CN}, \mathrm{Z}}\right]$
$\% E_{\text {major }}$ and $\% E_{\text {minor }}$ are the percent of $E_{C N, \text { total }}$ integration that is attributed to each isomer respectively:
$\% E_{C N, \text { major }}=\% E_{C N, \text { total }} \cdot \int \mathrm{H}_{E, \mathrm{CN}, \text { major }} /\left[\int \mathrm{H}_{E, \mathrm{CN}, \text { major }+} \int \mathrm{H}_{E, \mathrm{CN}, \text { minor }}\right]$
$\% E_{C N, \text { minor }}=\% E_{C N, \text { total }} \cdot \int \mathrm{H}_{E, \mathrm{CN}, \text { minor }} /\left[\int \mathrm{H}_{E, \mathrm{CN}, \text { major }+} \int \mathrm{H}_{E, \mathrm{CN}, \text { minor }}\right]$
$\% E_{\text {unsub,total }}$ and $\% Z_{\text {unsub,total }}$ are the percent of total unsubstituted unsaturated esters generated in the E and Z configurations respectively:
$\% E_{\text {unsub,total }}=100 \cdot \int \mathrm{H}_{\mathrm{B}, E} /\left[\int \mathrm{H}_{\mathrm{B}, E} \cdot \int \mathrm{H}_{\mathrm{B}, Z}\right]$
$\% Z_{\text {total }}=100 \cdot \int \mathrm{H}_{\mathrm{B}, Z} /\left[\int \mathrm{H}_{\mathrm{B}, E+} \int \mathrm{H}_{\mathrm{B}, \mathrm{Z}}\right]$

Total isomer content in terms of \% of monomeric diene generated are calculated as follows:

$$
\begin{aligned}
& \% E Z=\left[\% E_{\mathrm{CN}, \text { major }} \cdot \% E_{\mathrm{CN}, \text { total }}\right] / 100 \\
& \% E E=\left[\% E_{\mathrm{CN}, \text { minor }} \cdot \% E_{\mathrm{CN}, \text { total }}\right] / 100 \\
& \% \mathrm{ZX}=100-\% E Z-\% E E
\end{aligned}
$$

VI. Activation of P4 (cis-Br $\mathbf{B r}_{2}$-BCO)

${ }^{1}$ H Product Analysis

Assignment of mechanochemically generated products are shown below, peaks are consistent with expected shifts for substitution and stereochemical arrangement of analogous reported compounds. ${ }^{10}$

Figure $\mathrm{S} 17 .{ }^{1} \mathrm{H}$ assignments for unsaturated products of P 1 activation.

Determination of \% Ring Opening

Figure S 18. Figure S 19. Peak assignments and equation used in the calculation of \% ring opening of cis-$\mathrm{Br}_{2}-\mathrm{BCO}$ as a function of sonication time.

Determination of Product Distribution by Deconvolution

Figure S 20. Assignment of E and Z alkenes used in the determination of product ratios.

Figure S 21. Sample deconvolution of Z-alkene peaks in the determination of major and minor isomer content.

The table and equations below detail determination of individual isomer ratios:

Sonication Time (min)	$\% Z_{\text {major }}(Z Z)$	$\% Z_{\text {minor }}(Z E)$	$\% Z_{\text {total }}$	$\% E_{\text {total }}$	ZZ	EZ	EE
180	83.3	16.7	79.8	20.2	66.4	26.7	6.8

Table S 4. Summary of product ratios by deconvolution for $\mathbf{P 4}$.
$\% E_{\text {total }}$ and $\% Z_{\text {total }}$ are the percent of total alkenes generated in the E and Z configurations respectively:
$\% E_{\text {total }}=100 \cdot \int \mathrm{H}_{\mathrm{B}, E} /\left[\int \mathrm{H}_{\mathrm{B}, E+} \int \mathrm{H}_{\mathrm{B}, Z}\right]$
$\% Z_{\text {total }}=100 \cdot \int \mathrm{H}_{\mathrm{B}, Z} /\left[\int \mathrm{H}_{\mathrm{B}, E+} \int \mathrm{H}_{\mathrm{B}, Z}\right]$
$\% E_{\text {major }}$ and $\% E_{\text {minor }}$ are the percent of $E_{\text {total }}$ integration that is attributed to each isomer respectively:
$\% Z_{\text {major }}=\% Z_{\text {total }} \cdot \int \mathrm{H}_{Z, \text { major }} /\left[\int \mathrm{H}_{Z, \text { major }}+\int \mathrm{H}_{Z, \text { minor }}\right]$
$\% Z_{\text {minor }}=\% Z_{\text {total }} \cdot \int \mathrm{H}_{Z, \text { minor }} /\left[\int \mathrm{H}_{Z, \text { major }}+\int \mathrm{H}_{Z, \text { minor }}\right]$
Total isomer content in terms of \% of monomeric diene generated are calculated as follows:
$\% E Z=\left[\% Z_{\text {minor }} \cdot \% Z_{\text {total }} \cdot 2\right] / 100$
$\% Z Z=\left[\% Z_{\text {major }}{ }^{\circ} \% Z_{\text {total }}\right] / 100$
$\% E E=100-\% E Z-\% Z Z$

VII. Sonication of PC (control-cis-BCO)

Polymer PC was sonicated using the standard procedure. Due to the low molecular weight (13.3 kDa) forces experienced by the polymer would be insufficient for ring opening, supporting the mechanical nature of the reaction. No ring opening was observed by ${ }^{1} \mathrm{H}$ NMR and the final MW was determined to be 12.6 kDa .

Figure S 22. ${ }^{1} \mathrm{H}$ NMR (left) and GPC trace (right) of 13.3 kDa control polymer PC before (green) and after (blue) $\mathbf{1 8 0}$ minutes of sonication.

VIII. Product distribution vs. MW evolution and activation of P1,66kDa

While the $\mathbf{P 4}$ product distribution is dramatically different from all other examples, the M_{n} is also significantly lower. To show a lack of sensitivity of mechanochemical product distributions to initial MW a lower MW cis-BCO polymer ($\mathbf{P 1 , 6 6 k D a}$) was tested:

Deconvolution of $\mathbf{P 1 , 6 6 k D a}$ was performed in a manner identical to that of $\mathbf{P 1}$.

Sonication Time (min)	\% $\mathrm{E}_{\text {total }}$	\% $E_{\text {major }}$ (EZ)	\% $\mathrm{E}_{\text {minor }}$ (EE)	$\% \mathrm{Z}_{\text {total }}$	\%EZ	\%EE	\%ZZ
30	56.0	69.0	31.0	44.0	77.2	17.4	5.4
60	57.2	71.5	28.5	42.8	81.8	16.3	1.9
120	56.7	68.5	31.5	43.3	77.7	17.8	4.4
180	55.7	68.8	31.2	44.3	76.6	17.4	6.0

Table S 5. Summary of product ratios by deconvolution for P1,66kDa.

Figure S 23: Evolution of \% Ring Opening and M_{n} as functions of sonication time.

While a slight increase in $\% E E$ is observed, this is at the cost of $Z Z$ isomer content, which is not reflected in the product distribution of $\mathbf{P 4}$. If a decrease in $E Z$ predominance in the product distribution is a product of low MW, one might anticipate that $\% E Z$ content would decrease throughout sonication:

Figure S 24. Evolution of $\% E Z$ content vs. sonication time for all polymers tested.

No such trend is observed, and P4 EZ content (pink) is significantly lower than all other polymers tested at all time points. Trendlines for the above plot are summarized below:

	Slope	$\mathbf{R}^{\mathbf{2}}$
P1	-0.0086	0.021
P2	-0.0019	0.003
P12	-0.0175	0.076
P3	0.0055	0.047
P1,66kDa	-0.0159	0.205

Table S 6: Trendline slope and R^{2} values for \%EZ vs. sonication time shown in Figure S 24.

IX. Functionalization of P1 by Thiol-ene Addition

Small Molecule Conjugation:

P1 was sonicated for 3 hr . as a $4 \mathrm{mg} / \mathrm{mL}$ solution in MeCN to obtain 53 mg of 33% ring opened (0.092 mmol alkenes). Polymer was dissolved in $0.75 \mathrm{~mL} \mathrm{MeCN}-\mathrm{d}_{3}$ and ethyl thioglycolate ($16.4 \mathrm{mg}, 0.137 \mathrm{mmol}$) was added. DBU ($0.6 \mathrm{mg}, 0.004 \mathrm{mmol}$) was added from a stock solution in 0.1 mL of $\mathrm{MeCN}-\mathrm{d}_{3}$ to initiate reaction and time-points were recorded.

Formation of Cross-linked Polymer Networks:

P1 was sonicated for 3 hr . as a $4 \mathrm{mg} / \mathrm{mL}$ solution in MeCN to obtain 55 mg of 36% ring opened (0.10 mmol alkenes). The polymer was dissolved in 0.5 mL MeCN in a 7 mL vial. 1,4-butanediol dithioglycolate ($12 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added followed by DBU (0.80 mg) from a stock solution in 0.1 mL MeCN . The vial was vortexed for 1 second and allowed to stand for 1 minute at which time a gel was formed (left).

An identical experiment was run with unsonicated $\mathbf{P 1}$ as a control. No gelation was observed and the solution remained free flowing upon inversion (right). No change was observed over the course of two weeks.

X. X-ray Crystallography

Compound 3: Colorless prisms crystallized from pentane/acetone at $3-6^{\circ} \mathrm{C}$ by employing liquid/liquid diffusion method. Crystal data: Prism, colorless, crystal size $=0.4157 \times 0.3474 \times 0.1977 \mathrm{~mm}^{3}, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4}$, FW 251.28, monoclinic, space group $P 121 / c 1, a=8.89070(11), b=$ 12.16463(14), $c=12.12008(14) \AA, \alpha=90^{\circ}, \beta=93.0379(10)^{\circ}$, $\gamma=90^{\circ}, V=1308.97(3) \AA^{3}, Z=4, \quad D_{c}=1.275 \mathrm{mg} / \mathrm{m}^{3}, T=$ 100 (1) $\mathrm{K}, \mu=0.785 \mathrm{~mm}^{-1}, 11312$ measured reflections, $2689[\mathrm{R}(\mathrm{int})=0.0238]$ independent reflections, $2689 / 0 / 165$ Data / restraints / parameters, $F(000)=536, R 1=0.0381$, $w R 2=0.0950, R 1=0.0362, w R 2=0.0934[I>2 \operatorname{sigma}(\mathrm{I})]$, Max. residual density 0.358 e. \AA^{-3}, Max. and min. transmission 1.894 and 0.821 , and goodness-of-fit $\left(F^{2}\right)=$ 1.048 .

Compound 4: Colorless plates crystallized from pentane/acetone at room temperature by employing vapor diffusion method. Crystal data: plates, colorless, crystal size $=0.24 \times 0.24 \times 0.10$ $\mathrm{mm}^{3}, \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{4}$, FW 384.07, Monoclinic, space group P2(1)/c, $a=8.4288(2), b=13.7579(4), c=12.3099(3) \AA, \alpha=90^{\circ}, \beta=$ $106.9400(10)^{\circ}, \gamma=90^{\circ}, V=1365.55(6) \AA^{3}, Z=4, \quad D_{c}=1.868$ $\mathrm{mg} / \mathrm{m}^{3}, T=100(2) \mathrm{K}, \mu=7.588 \mathrm{~mm}^{-1}, 8416$ measured reflections, $2391[\mathrm{R}($ int $)=0.0519]$ independent reflections, $2391 / 0 / 165$ Data $/$ restraints $/$ parameters, $F(000)=760, R 1=0.0450, w R 2=$ $0.1017, R 1=0.0409, w R 2=0.0988[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$, Max. residual density 1.090 e. \AA^{-3}, Max. and min. transmission 0.5175 and 0.2632 , and goodness-of-fit $\left(F^{2}\right)=1.074$.

Figure S 25. Crystal structure of 3a (cis-CN-BCO dimethyl ester.

Figure S 26. Crystal structure of 4a (cis- $\mathrm{Br}_{2}-\mathrm{BCO}$ dimethyl ester.

XI. Determination of Elongation

Modeling to determine change in monomer length was performed using Spartan ${ }^{\circledR}$ software as previously described. ${ }^{11}$ In short, Molecular Mechanics was performed for both closed (cis-BCO dimethyl ester) and opened ($E Z$ dimethyl ester) to generate a CoGEF ${ }^{12}$-type constrained potential relating molecular energy to end-to-end distance (left plot). This was fitted to a second order polynomial, the derivative of which relates force to end-to-end distance (right). By solving the linear equation of force vs. distance for $\mathrm{f}=$ 0 N a contour length was obtained, the difference of which between the opened and closed form equals the net elongation upon ring opening.

Figure S 25. Energy vs. Elongation curves (left) and Force vs. Elongation curves (right) used in the determination of change in length of cis-BCO upon activation.

$F(0)=8.08 \AA$

$$
F(0)=14.8 \AA
$$

$\Delta L=6.7 \AA$

XII. Effect of Bromine Substitution on Heat of Reaction

$\Delta \mathrm{H}_{\mathrm{rxn}}$ for analogous cyclobutanes were calculated using Spartan ${ }^{\circledR}$ software in the ground state using thermochemical recipe T 1 starting from semi-empirical AM1 geometry:

Figure S 26. Comparison of heat of reaction for fragmentation of substituted and unsubstituted cyclobutane.

XIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra

Compound 1a

Fatinetw	, 4at	¢5\%	
Drym	natm		
sjectivertw Rnquwicy	nง **		7
Noiluel	\pm		

Ranmer	nown
Origie	vevim
Sowivmiter fravercy	Lis.3\%
Saclent	L2C

Compound 1b

Renmenter	nem
Orisim	nevm
Souturster Hewercy	wes 35
Siscless	$\mathrm{IH}^{\text {H }}$

Compound 1

Compound 2a

Compound 2

Dige Fachentw	wat	+9	$7=18$	
Drame	Tavin	+N	\cdots-8	\cdots ancan
Sumitiafeter Noypuly	มู3	$\underset{\sim}{\sim}$	\%80	
Weilued	2IE	\checkmark		- $4 \times$

Compound 3a

\quad Parameter	Value Varian
Origin	1H
Spectrometer Frequency	500.22
Nucleus	

Parameter	Value	∞ in	$\stackrel{\square}{\square}$	
Origin	Varian	¢	$\stackrel{\text { N }}{ }$	
Spectrometer Frequency	125.79	$\stackrel{\text { Nor }}{ }$	$\stackrel{-}{-}$	
Nucleus	13 C	11	1	く

Compound 3

natinetw	bat
Dram	Tavm
	ma*
Weilua	± 4

Facineter	vaik	* ${ }^{\circ}$	\cdots	18808	
Drame	Tatm	¢	\cdots	18.04	Kh,
simitiafeter Roymicy	มบบ	$\underset{\sim}{81}$	\cdots	8388	
Weiluel	LE	67	1	\checkmark	\square \& 2 \%ir

Compound 4a

Facterm	, bial
Dram	maim
Sjedtafiter Rmipwiy	
Wicilua	${ }^{3 H}$

Fatineter	watar	0	8	T	PN
Dram	5atin	a	8		\bigcirc
Sjedtuetim Rmpmivy	แมง	$\stackrel{\square}{7}$	5	2988	N8
Weilued	2IE	1	I	74	1

Compound 4

Futimetw	was
Drym	Tavim
Sjestuenter Requwiy	max
Nailued	\pm

Fucturn	Mast	0			
Dram	-	a	Nnc	\ldots	38
	มมง	$\stackrel{\square}{7}$	838	8	込
Wiciles	2IE	I	I	,	1

 f1 ($\rho \rho \mathrm{m}$)

P1

Racinetw	van
Drym	max
Simatiantim Nm	ma*
Willua	${ }^{3}$

Focineter	Mat
Dram	notim
Sjudtienter Nrywivy	ะ13
Weilued	2IE

P2

Facterm	, and
Dram	Tavim
Simatiantiw Rei	nง **
Wivilued	$\pm{ }^{2}$

Natineter	wher	으유ํ
Dray	metim	
	215 3	
Weilued	2IE	$1{ }^{2}$

P1，2

Facterer	vain
Dray	mim
Wivilued	${ }^{3}$

Fotumer	not	戠事古合	
Dram	matm	めNA－	¢
Symationtiw Rnipury	4183\％	$\stackrel{\sim}{\sim}$	
Weilmel	2IE	4	ckinty trun

P3

naturnw	van
Dray	main
Sunctiarliw Rm	มงง＊
Sicilued	\pm

Runester	Whbm	3384	E	
Orisim	Evim	des－	S	
Sopetvester Avsiency	1753	べッツ	$\stackrel{\square}{7}$	す＠心？
Svilen	15C	－ Cr	1	$\rightarrow-4-2$,

P4

noturner	vas
Dray	ºvin
sumatiarliw Rm	มงง *
Wivilued	\pm

PC

Racinetm	, bial
Dram	Satim
Simiturelw Nm	nง. s $^{\text {a }}$
Wivilued	${ }^{3}$

Fatineter	wat	으ㅇㅜㅜ
Dram	notm	man-
Sjemtiafeter Nrymily	มมร 3	
Wailuel	2IE	4

P1,66kDa

XIV. References

(1) Robson, R.; Grubb, P. W.; Barltrop, J. A. J. Chem. Soc. 1964, 2153-2164.
(2) Koltzenburg, G.; Fuss, P. G.; Leitich, J. Tetrahedron Lett. 1966, 7, 34093414.
(3) Barltrop, J. A.; Robson, R. Tetrahedron Lett. 1963, 4, 597-600.
(4) Schenck, G. O.; Kuhls, J.; Krauch, C. H. Justus Liebigs Ann. Chem. 1966, 693, 20-43.
(5) Nagao, Y.; Ikeda, T.; Inoue, T.; Yagi, M.; Shiro, M.; Fujita, E. The Journal of Organic Chemistry 1985, 50, 4072-4080.
(6) Moore, J. S.; Stupp, S. I. Macromolecules 1990, 23, 65-70.
(7) Berkowski, K. L.; Potisek, S. L.; Hickenboth, C. R.; Moore, J. S. Macromolecules 2005, 38, 8975-8978.
(8) Könning, D.; Hiller, W.; Christmann, M. Org. Lett. 2012, 14, 5258-5261.
(9) Mukhopadhyay, C.; Datta, A. Synth. Commun. 2008, 38, 2103-2112.
(10) Lipshutz, B. H.; Bošković, Ž. V.; Aue, D. H. Angew. Chem. Int. Ed. 2008, 47, 10183-10186.
(11) Klukovich, H. M.; Kouznetsova, T. B.; Kean, Z. S.; Lenhardt, J. M.; Craig, S. L. Nat. Chem. 2013, 5, 110-114.
(12) Beyer, M. K. J. Chem. Phys. 2000, 112, 7307-7312.

[^0]: Table S 3. Summary of product ratios by deconvolution for P3.

