Supporting Information

Aminopyrazole-phenylalanine Based GPR142 Agonists: Discovery of Tool Compound and In Vivo Efficacy Studies

Ming Yu, ${ }^{\text {a* }}$ Mike Lizarzaburu, ${ }^{\text {a }}$ Alykhan Motani, ${ }^{\text {a }}$ Zice Fu, ${ }^{\text {a }}$ Xiaohui Du, ${ }^{\text {a }}$ Jiwen (Jim) Liu, ${ }^{\text {a }}$ Xianyun Jiao, ${ }^{\text {a }}$ SuJen Lai, ${ }^{\text {a }}$ Peter Fan, ${ }^{\text {a }}$ Angela Fu, ${ }^{\text {a }}$ Qingxiang Liu, ${ }^{a}$ Michiko Murakoshi, ${ }^{\text {b }}$ Futoshi Nara, ${ }^{\text {b }}$ Kozo Oda, ${ }^{\text {b }}$ Ryo Okuyama, ${ }^{\text {b }}$ Jeff D. Reagan, ${ }^{\text {a }}$ Nobuaki Watanabe, ${ }^{\text {b }}$ Mami Yamazaki, ${ }^{\text {b }}$ Yumei Xiong, ${ }^{a}$ Ying Zhang, ${ }^{\text {a }}$ Run Zhuang, ${ }^{\text {a }}$ Daniel C.-H. Lin, ${ }^{\text {a }}$ Jonathan B. Houze, ${ }^{\text {a }}$ Julio C. Medina ${ }^{\mathrm{a}}$ and Leping $\mathrm{Li}^{\mathrm{a}} \dagger$
${ }^{a}$ Amgen Inc. 1120 Veterans Boulevard, South San Francisco, CA 94080, USA.
${ }^{b}$ Daiichi-Sankyo, 1-2-58 Hiromachi, Shinagawa-Ku, Tokyo, 140-8710; 1-16-13 Kitakasai, Edogawa-Ku, Tokyo, 134-8650, JP.
*To whom correspondence should be addressed. Phone: 1-650-244-2050; E-mail: yum@amgen.com

Present Addresses

\dagger Presidio Pharmaceuticals, Inc. 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA.

Experimental Section

Unless otherwise noted, all materials were obtained from commercial suppliers and used without purification. Dry organic solvents (DriSolv) were purchased from EMD Chemicals and were packaged under nitrogen in Sure Seal bottles. Reactions were monitered using thin-layer chromatography on $250 \mu \mathrm{~m}$ plates or using Agilent 1100 series LCMS with UV detection at 254 and/or 220, 280 nm and a low resonance electrospray mode (ES). Purification of the title compounds was accomplished by flash column chromatography using silica gel 60 (particle size $0.04-0.063 \mathrm{~mm}, 230-400 \mathrm{mesh}$), or medium pressure liquid chromatography on a CombiFlash Companion (Teledyne Isco) with RediSep normal phase silica gel, or preparative HPLC (system: waters; column: Axia 00D-4454-U0-AX, C18, Gemini NX $5 \mathrm{uM}, 100 \times 30 \mathrm{~mm}$ from Phenomenex). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker spectrometer $(400$ or 500 MHz$)$ at ambient temperature. Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$, or DMSO and coupling constants (J) are reported in hertz (Hz). Purity of final compounds was $\geq 95 \%$ based on analytical HPLC and NMR analysis.

(S)-tert-Butyl
(1-oxo-3-phenyl-1-((3-(pyridin-4-yl)isoxazol-5-yl)amino)propan-2-
yl)carbamate (3.2) To a solution of 3-(pyridin-4-yl)isoxazol-5-amine 3.1 ($400 \mathrm{mg}, 2.48 \mathrm{mmol}$) in DMF (5.0 mL) and N, N-diisopropyl- N-ethylamine ($1.3 \mathrm{~mL}, 7.5 \mathrm{mmol}$) at rt was added $1-\mathrm{H}-$ benzotriazolium,1-[bis(dimethylamino)methylene]-hexafluorophosphate (1-),3-oxide
($1.41 \mathrm{~g}, 3.7 \mathrm{mmol}$) followed by N -(tert-butoxycarbonyl)-L-phenylalanine ($790 \mathrm{mg}, 2.98 \mathrm{mmoL}$). The mixture was allowed to stir at $50{ }^{\circ} \mathrm{C}$ for 6.0 hr . The resulting mixture was cooled to rt and applied to preparative HPLC ($10-90 \% / 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 45 min) for purification to provide the title intermediate $\mathbf{3 . 2}$ as light yellow TFA salt (204 mg, 16\%). LCMS (ES) [M + 1] ${ }^{+}$ m/z 409.1.
(S)-2-Amino-3-phenyl- N -(3-(pyridin-4-yl)isoxazol-5-yl)propanamide (3.3). To a solution of (S)-tert-butyl 1-oxo-3-phenyl-1-(3-(pyridin-4-yl)isoxazol-5-ylamino)propan-2-ylcarbamate-TFA salt 3.2 ($160 \mathrm{mg}, 0.40 \mathrm{mmole}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at rt was added trifluoroacidic acid (2 mL). After stirring at rt for 3 hr , the solvents was removed under reduced pressure. The residue was redissoved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), and was washed with saturated aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$, water (5 mL), brine (5 mL), and dried over MgSO_{4}. Removal of organic solvents under reduced pressure provided crude product of (S)-2-amino-3-phenyl-N-(3-(pyridin-4-yl)isoxazol-5yl)propanamide 3.3 as a light yellow solid ($100 \mathrm{mg}, 81 \%$ yield). LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 309.2$.
(S)-3-Phenyl-N-(3-(pyridin-4-yl)isoxazol-5-yl)-2-(thiazol-4-ylmethylamino)propanamide (3). To solution of (S)-2-amino-3-phenyl-N-(3-(pyridin-4-yl)isoxazol-5-yl)propanamide 3.3 (40 mg , $0.13 \mathrm{mmole})$ in dichloroethane $(10 \mathrm{~mL})$ at rt was added thiazole-4-carbaldehyde $(18 \mathrm{mg}$, 0.16 mmole) followed by sodium triacetoxyborohydride ($55 \mathrm{mg}, 0.26 \mathrm{mmole}$). The reaction was stirred at $70^{\circ} \mathrm{C}$ under N_{2} for 12 hr , cooled to rt and treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and water $(8 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. Organic layers were combined. After removal of organic solvents
under reduced perssure, the resulting residue was purified by preparative HPLC $(10-90 \%$ $0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 30 min) to provide the title product 3 as white TFA salt ($14.2 \mathrm{mg}, 27$ \% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ ppm 9.09 (d, $J=1.96 \mathrm{~Hz}, 1 \mathrm{H}$), 8.87 (br. s., 2 H), 8.27 (d, $J=5.38 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (d, $J=1.96 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 2 \mathrm{H}) 7.07$ (s, 1 H), 4.42-4.55 (m, 2 H), 4.35 (dd, $J=8.80,5.87 \mathrm{~Hz}, 1 \mathrm{H}$), $3.44(\mathrm{dd}, J=13.57,5.99 \mathrm{~Hz}, 1$ H), $3.26\left(\mathrm{dd}, J=13.69,8.80 \mathrm{~Hz}, 1 \mathrm{H}\right.$); HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S} 406.1329$ $(\mathrm{M}+\mathrm{H})^{+}$, found: 406.1334.

(S)-tert-Butyl

1-oxo-3-phenyl-1-(3-(pyridin-4-yl)-1H-pyrazol-5-ylamino)propan-2-
ylcarbamate (4.2) To a solution of 3-(pyridin-4-yl)-1H-pyrazol-5-amine $4.1(257 \mathrm{mg}, 1.6$ mmol) and Boc-L-phenylalanine ($480 \mathrm{mg}, 1.8 \mathrm{mmol}$) in pyridine $(4.5 \mathrm{~mL})$ at rt was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($403 \mathrm{mg}, 2.1 \mathrm{mmol}$). After stirring at rt under N_{2} atomosphere for 3.0 hr , the reaction mixture was treated with water (20 mL) and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic solution was washed with water (10 mL), brine (5 mL) and dried over MgSO_{4}. After removal of organic solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using 0-10\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution gave 4.2 as pale yellow solid ($123 \mathrm{mg}, 19 \%$). LCMS (ES) $[\mathrm{M}+1]^{+}$ m/z 408.1.
(S)-3-Phenyl-N-(3-(pyridin-4-yl)-1H-pyrazol-5-yl)-2-(thiazol-5-
ylmethylamino)propanamide (4). This title compound was prepared starting from compound 4.2 according the procedure described above for conversion of $\mathbf{3 . 2}$ to 3 . The crude product was purified by preparative $\operatorname{HPLC}\left(20-70 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /\right.$ water, 30 min$)$ to provide the title product 4 as white TFA salt ($20 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 3.25(\mathrm{~m}, 1 \mathrm{H})$ $3.36(\mathrm{dd}, J=13.57,5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=9.05,5.87 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.52(\mathrm{~m}, 2 \mathrm{H}), 6.99$ (s, 1 H), $7.17-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.73(\mathrm{~d}, J=1.47 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 8.74(\mathrm{~d}, J=$ 6.60 Hz, 2 H), $9.04\left(\mathrm{~d}, J=1.71 \mathrm{~Hz}, 1 \mathrm{H}\right.$); HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{OS} 405.1489$ $(\mathrm{M}+1)^{+}$, found: 405.1476 .

(S)-Methyl 2-((tert-butoxycarbonyl)(thiazol-4-ylmethyl)amino)-3-phenylpropanoate (5.2).

To a solution of (S)-methyl 2-((tert-butoxycarbonyl)amino)-3-phenylpropanoate 5.1 ($627 \mathrm{mg}, 2.3$ mmol) in THF at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere was added sodium hydride ($88 \mathrm{mg}, 60 \%, 2.3 \mathrm{mmol}$). When the gas formation ceased, to the mixture was added a solution of 4-(chloromethyl)thiazole ($336 \mathrm{mg}, 2.5 \mathrm{mmol}$) in DMF $(1.0 \mathrm{~mL})$. The reaction mixture was allowed to warm to rt over 30 min. After stirring at rt for 1.5 hr , the resulting mixture was slowly poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3.0 \mathrm{~mL})$, diluted with water (15 mL), and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic solution was washed with water (4 mL), brine (5 mL), and dried over MgSO_{4}. After removal of organic solvent under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-100 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ for elution gave the title intermediate 5.2 as colorless solid ($523 \mathrm{mg}, 61 \%$). LCMS (ES) $[\mathrm{M}+1]+\mathrm{m} / \mathrm{z} 377.0$.
(S)-2-((tert-Butoxycarbonyl)(thiazol-4-ylmethyl)amino)-3-phenylpropanoic acid (5.3). Tо а solution of (S)-methyl 2-((tert-butoxycarbonyl)(thiazol-4-ylmethyl)amino)-3-phenylpropanoate $5.2(335 \mathrm{mg}, 0.89 \mathrm{mmol})$ in dioxane $(2.5 \mathrm{~mL})$ and water $(1.0 \mathrm{~mL})$ was added lithium hydroxide ($56 \mathrm{mg}, 1.34 \mathrm{mmol}$). After stirring at rt for 30 min , the reaction mixture was treated with HOAc $(43 \mathrm{mg}, 3.0 \mathrm{mmol})$, diluted with water $(4 \mathrm{~mL})$ and extracted with $30 \% i-\mathrm{PrOH} / \mathrm{chloroform}(3 \times 5$ $\mathrm{mL})$. The combined organic solution was washed with water (8 mL), brine (5 mL) and dried over MgSO_{4}. After removal of organic solvent under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution gave the title compound as yellow solid 5.3 ($290 \mathrm{mg}, 81 \%$). LCMS (ES) [M - 1] m/z 361.1.
(S)-tert-Butyl (1-fluoro-1-oxo-3-phenylpropan-2-yl)(thiazol-4-ylmethyl)carbamate (5.4). To a solution of (S)-2-((tert-butoxycarbonyl)(thiazol-4-ylmethyl)amino)-3-phenylpropanoic acid 5.3 ($290 \mathrm{mg}, 0.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ was added pyridine ($2.1 \mathrm{~mL}, 2.1 \mathrm{mmol}$) followed by cyanuric fluoride ($240 \mathrm{mg}, 1.8 \mathrm{mmol}$). The resulting mixture was allowed to stir at $<-10{ }^{\circ} \mathrm{C}$ for 1.0 hr , quenched with ice- $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic solution was washed with water $(10 \mathrm{~mL})$, brine (6 mL) and dried over MgSO_{4}. After removal of organic solvent under reduced pressure at rt , the residue was left on high vacuum for 3.0 hr to provide the title crude product $\mathbf{5 . 4}$ as light purple syrup for direct used in the next step ($280 \mathrm{mg}, 95 \%$).

(S)-tert-Butyl (1-oxo-3-phenyl-1-((5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)amino)propan-2-

 yl)(thiazol-5-ylmethyl)carbamate (5.6). To a solution of (S)-tert-butyl (1-fluoro-1-oxo-3-phenylpropan-2-yl)(thiazol-4-ylmethyl)carbamate 5.4 ($267 \mathrm{mg}, 0.73 \mathrm{mmol}$) in DMF (2.5 mL) at rt under N_{2} was added 5-(pyridin-3-yl)-1,3,4-oxadiazol-2-amine 5.5 ($143 \mathrm{mg}, 0.88 \mathrm{mmol}$) followed by triethylamine ($255 \mu \mathrm{~L}, 1.82 \mathrm{mmol}$). After stirring at $45^{\circ} \mathrm{C}$ overnight, the reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$, diluted with water $(5 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 8 \mathrm{~mL})$. The combined organic solution was washed with water $(7 \mathrm{~mL})$, brine (6 mL) and dried over MgSO_{4}. After removal of organic solvent, purification by flash chromatography on silica gel using $0-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution provided the title intermediate $\mathbf{5 . 6}$ as pale yellow syrup ($159 \mathrm{mg}, 43 \%$). LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 506.2$.(S)-3-Phenyl-N-(5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)-2-((thiazol-5-
ylmethyl)amino)propanamide (5). To a solution of (S)-tert-butyl (1-oxo-3-phenyl-1-((5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)amino)propan-2-yl)(thiazol-5-ylmethyl)carbamate 5.6 (147 $\mathrm{mg}, 0.29 \mathrm{mmol})$ in dioxane $(3.0 \mathrm{~mL})$ at rt was added concentrated $\mathrm{HCl}(0.5 \mathrm{~mL})$. After stirring at rt for 1.5 hr , the reaction mixture was poured into saturated aqeuous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, diluted with water (5 mL) and extracted with 30% i- $\mathrm{PrOH} /$ chloroform $(3 \times 5 \mathrm{~mL})$. The combined organic solution was washed with water (5 mL), brine (5 mL) and dried over MgSO_{4}. After removal of solvents under reduced pressure, purification of the residue by preparative HPLC (10$90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 45 min) provided the title product 5 as white solid ($48 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 3.22-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.47-(\mathrm{dd}, J=13.50,6.06 \mathrm{~Hz}, 1 \mathrm{H})$,
4.40-4.63(m, 3H), 7.21-7.41 (m, 5H), $7.80(\mathrm{~d}, J=1.96 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=6.65 \mathrm{~Hz}, 2 \mathrm{H})$, $8.86(\mathrm{~d}, J=6.65 \mathrm{~Hz}, 2 \mathrm{H}), 9.10(\mathrm{~d}, J=1.96 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{OS}$ $406.1442(\mathrm{M}+\mathrm{H})+$, found: 406.1432 .

5-(Pyridin-4-yl)-1,3,4-oxadiazol-2-amine (6.2). To a solution of isonicotinohydrazide 6.1 (3.5 $\mathrm{g}, 26 \mathrm{mmoL})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ at rt was added cyanogen bromide ($1.7 \mathrm{~mL}, 33 \mathrm{mmoL}$). After stirring at $50{ }^{\circ} \mathrm{C}$ for 12 hr , the reaction solvent was removed under reduced pressure. To the residue was added water (30 mL), and extracted with a solution of $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}(3 \times 25$ mL). After removal of organic solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution provided the title intermediate 6.2 as white solid ($0.91 \mathrm{~g}, 22 \%$). LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 163.0$.

(S)-3-Phenyl- N-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)-2-((thiazol-5-

ylmethyl)amino)propanamide (6). The title compound was prepared starting with 5-(pyridin4 -yl)-1,3,4-oxadiazol-2-amine $\mathbf{6 . 2}$ according to the procedure as described above for conversion of 5.5 to 5. The crude product was purified by preparative HPLC ($10-90 \%$ $0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 45 min) to provide the title compound 6 as white solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{MeOH}) \delta \mathrm{ppm} 3.25(\mathrm{dd}, J=14.67,4.70 \mathrm{~Hz}, 1 \mathrm{H}) 3.40(\mathrm{dd}, J=14.67,4.89 \mathrm{~Hz}, 1 \mathrm{H}) 4.73(\mathrm{t}$, $J=4.70 \mathrm{~Hz}, 1 \mathrm{H}) 4.86(\mathrm{~d}, J=16.43 \mathrm{~Hz}, 1 \mathrm{H}) 5.05(\mathrm{~d}, J=16.43 \mathrm{~Hz}, 1 \mathrm{H}) 7.17$ (dd, $J=7.43$, $1.76 \mathrm{~Hz}, 2 \mathrm{H}) 7.23-7.39(\mathrm{~m}, 3 \mathrm{H}) 7.66(\mathrm{~d}, J=1.76 \mathrm{~Hz}, 1 \mathrm{H}) 8.08(\mathrm{~d}, J=5.87 \mathrm{~Hz}, 2 \mathrm{H}) 8.84(\mathrm{~d}, J=$ $6.46 \mathrm{~Hz}, 2 \mathrm{H}) 9.06(\mathrm{~d}, J=1.96 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S} 407.1282$ $(\mathrm{M}+\mathrm{H})+$, found: 407.1296.

\boldsymbol{N} - (Cyanomethyl)isonicotinamide (7.2). A mixture of isonicotinic acid $7.1(1.00 \mathrm{~g}, 8.12$ mmol), 2-aminoacetonitrile hydrochloride ($0.902 \mathrm{~g}, 9.75 \mathrm{mmol}$), 1H-benzo[d][1,2,3]triazol-1-ol hydrate ($1.24 \mathrm{~g}, 8.12 \mathrm{mmol}$), N_{1}-((ethylimino)methylene)- $\mathrm{N}_{3}, \mathrm{~N}_{3}$-dimethylpropane-1,3-diamine hydrochloride ($1.71 \mathrm{~g}, 8.94 \mathrm{mmol}$) and N -ethyl- N -isopropylpropan-2-amine ($4.95 \mathrm{~mL}, 28.4$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was allowed to stir at rt for 24 hr . After removal of organic solvent under reduced pressure, purification of the residue by flash chromatography on silica gel using 0 $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution provided the title intermediate 7.2 as white solid $(1.31 \mathrm{~g}$, $99 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 4.30(\mathrm{~d}, \mathrm{~J}=2 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.87(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $9.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;$ LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 162.0$.

2-(Pyridin-4-yl)thiazol-5-amine (7.3). A solution of N-(cyanomethyl)isonicotinamide $\mathbf{7 . 2}$ $(0.665 \mathrm{~g}, 4.1 \mathrm{mmol})$ and phosphorus pentasulfide ($1.8 \mathrm{~g}, 8.3 \mathrm{mmol}$) in benzene ($5.00 \mathrm{~mL}, 56$ mmol) was allowed to refluxed under N_{2} for 24 hr . After removal of organic solvent under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-10 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution provided the title intermediate 7.3 as white solid $(730 \mathrm{mg}, 49 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CD ${ }_{3} \mathrm{OD}$) $7.07(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 177.2.
(S)-3-Phenyl- N-(2-(pyridin-4-yl)thiazol-5-yl)-2-(thiazol-4-ylmethylamino)-propanamide (7). This title compound was prepared starting with 2-(Pyridin-4-yl)thiazol-5-amine 7.3 according to the procedure as described above for conversion of $\mathbf{3 . 1}$ to $\mathbf{3}$. The crude product was purified by preparative HPLC ($10-90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 45 min) to provide the title compound 7 as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 3.23(\mathrm{dd}, \mathrm{J}=12,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (dd, $\mathrm{J}=12,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, \mathrm{J}=12,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (dd, $\mathrm{J}=8.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~m}, 2 \mathrm{H}), 8.81(\mathrm{~m}, 2 \mathrm{H})$, $9.30(\mathrm{~m}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}_{2} 422.1101(\mathrm{M}+\mathrm{H})+$, found: 422.1080.

2-(Pyridin-4-yl)thiazol-4-amine (8.2). To a solution of 2-bromo-1-(pyridin-4-yl)ethanone 8.1 $(5.00 \mathrm{~g}, 17.8 \mathrm{mmol})$ and 2-thiourea $(1.25 \mathrm{~mL}, 23.1 \mathrm{mmol})$ in EtOH was added triethylamine (2.5 $\mathrm{mL}, 17.8 \mathrm{mmol})$. The mixture was heated at $60^{\circ} \mathrm{C}$ for 20 hr , and the resulting solution was concentrated under reduced pressure. To the residue was added water (15 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$, and the mixture was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic solution was combined, washed with water (15 mL), brine (10 mL) and dried over MgSO_{4}. After removal of organic solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-70 \% \mathrm{EtOAc} /$ Hexanes for elution provided $\mathbf{8 . 2}$ as yellow solid ($2.71 \mathrm{~g}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 2.80-4.30$ (br s, 2H), 7.25-7.60 (br s, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) ; 8.30(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.85(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;$ LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 178.0.

(S)-3-Phenyl- N-(5-(pyridin-4-yl)thiazol-2-yl)-2-((thiazol-5-ylmethyl)amino)propanamide

(8). This title compound was prepared starting with 5-(pyridin-4-yl)thiazol-2-amine 8.2 according to the procedure as described above for conversion of $\mathbf{3 . 1}$ to 3 . The crude product was purified by preparative $\operatorname{HPLC}\left(10-90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /\right.$ water, 30 min) to provide $\mathbf{8}$ as colorless TFA salt. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 3.40-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.48$ (dt, $J=3.42$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.49(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~m}, 5 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=6.65 \mathrm{~Hz}, 2$ H), $8.75(\mathrm{~d}, J=6.65 \mathrm{~Hz}, 2 \mathrm{H}), 9.10(\mathrm{~d}, J=1.96 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}_{2} 422.1101(\mathrm{M}+\mathrm{H})+$, found: 422.1092 .

(S)-3-Phenyl-N-(4-(pyridin-4-yl)thiazol-2-yl)-2-((thiazol-5-ylmethyl)amino)propanamide (9). The title compound was prepared starting with 4-(pyridin-4-yl)thiazol-2-amine 9.1 according to the procedure as described above for conversion of 3.1 to 3 . The crude product was purified by preparative HPLC $\left(10-90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /\right.$ water, 45 min$)$ to provide the title compound 9 as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ ppm 3.20 (dd, $J=14.67,12.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}) 3.40(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) 4.73(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.36(\mathrm{~m}, 5 \mathrm{H}) 7.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, 1H) 8.01 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) 9.22$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}_{2} 422.1101(\mathrm{M}+\mathrm{H})+$, found: 422.1128.

(S)-3-Phenyl- N-(2-(pyridin-4-yl)thiazol-4-yl)-2-(thiazol-5-ylmethylamino)propanamide
(10). This title product was prepared starting from 2-(pyridin-4-yl)thiazol-4-amine $\mathbf{1 0 . 1}$ according to the procedure as described above for conversion of $\mathbf{3 . 1}$ to $\mathbf{3}$. The final crude product was purified by preparative HPLC $\left(10-90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /\right.$ water, 30 min$)$ to provide the title product 10 as white TFA salt. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 2.86-3.05(\mathrm{~m}, 1 \mathrm{H})$, $3.12(\mathrm{dd}, J=13.30,6.26 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=7.83,6.26 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-4.03(\mathrm{~m}, 2 \mathrm{H}), 7.13-$ 7.36 (m, 6 H), 7.84 ($\mathrm{s}, 1 \mathrm{H}$), $7.89-7.99$ (m, 2 H), 8.64 (dd, $J=4.50,1.76 \mathrm{~Hz}, 2 \mathrm{H}$), 8.90 (d, $J=$ $2.35 \mathrm{~Hz}, 1 \mathrm{H}$); HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}_{2} 422.1101(\mathrm{M}+\mathrm{H})+$, found: 422.1106.

(E)-N,N-Dimethyl-2-(pyridin-4-yl)ethenamine (11.2). A solution of 4-methylpyridine 11.1 ($4.27 \mathrm{~g}, 45.9 \mathrm{mmol}$) and tert-butoxy-bis(dimethylamino)methaneand ($10 \mathrm{~g}, 57.4 \mathrm{mmol}$) in DMF $(10 \mathrm{~mL})$ was heated at $150^{\circ} \mathrm{C}$ for 12 hr . After removal of solvents under reduced pressure, the
resulting residue solid was recrystalized using cyclohexane $(40 \mathrm{~mL})$ to provided the title product 11.2 as crystal solid ($4.7 \mathrm{~g}, 55 \%$).

Ethyl 2-amino-5-(pyridin-4-yl)thiophene-3-carboxylate (11.3). To a solution of (E)-N,N-dimethyl-2-(pyridin-4-yl)ethenamine 11.2 ($2.55 \mathrm{~g}, 17 \mathrm{mmol}$) in EtOH (25) was added ethyl cyanoacetate $(1.9 \mathrm{~g}, 17 \mathrm{mmol})$, sulfur $(0.59 \mathrm{~g}, 17 \mathrm{mmol})$ followed by morpholine $(0.50 \mathrm{~g}, 5.7$ mmol). The mixture was left stirring at $85^{\circ} \mathrm{C}$ for 2.5 hr under N_{2} atomosphere. The resulting mixture was placed into ice bath, cooled to $0{ }^{\circ} \mathrm{C}$. The precipitate was filtered, collected and and washed with hexanes to provide the title intermediate $\mathbf{1 1 . 3}$ as a yellow solid ($2.8 \mathrm{~g}, 66 \%$). LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 249.1$.

(S)-Ethyl 2-(3-phenyl-2-((thiazol-5-ylmethyl)amino)propanamido)-5-(pyridin-4-

 $\mathbf{y l}$)thiophene-3-carboxylate (11.4). This title product was prepared starting from ethyl 2-amino-5-(pyridin-4-yl)thiophene-3-carboxylate $\mathbf{1 1 . 3}$ according to the procedure as described above for conversion of $\mathbf{3 . 1}$ to $\mathbf{3}$. The final crude product was purified by flash chromatography on silica gel using $0-80 \%$ EtOAc/Hexanes for elution to provide 11.4 as yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{MeOH}) \delta \mathrm{ppm} 1.41(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H}), 3.10-3.28(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.49(\mathrm{~m}, 5 \mathrm{H}), 7.12-$ $7.38(\mathrm{~m}, 5 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 8.04-8.27(\mathrm{~m}, 3 \mathrm{H}), 8.60-8.75(\mathrm{~m}, 2 \mathrm{H}), 9.04(\mathrm{~d}, J=1.76 \mathrm{~Hz}, 1$ H); LCMS (ES) $[\mathrm{M}+1]+\mathrm{m} / \mathrm{z} 493.1$.
(S)-2-(3-Phenyl-2-((thiazol-5-ylmethyl)amino)propanamido)-5-(pyridin-4-yl)thiophene-3-

 carboxylic acid (11). To a solution of (S)-ethyl 2-(3-phenyl-2-(thiazol-4-ylmethylamino)propanamido)-5-(pyridin-4-yl)thiophene-3-carboxylate $\mathbf{1 1 . 4}$ (56.8 $\mathrm{mg}, 0.12$ $\mathrm{mmol})$ in dioxane $(2.0 \mathrm{~mL})$ was added aqueous $\mathrm{LiOH}(2.0 \mathrm{M}, 0.12 \mathrm{~mL}, 0.24 \mathrm{mmol})$. After stirring at $70{ }^{\circ} \mathrm{C}$ for 2.0 h , the reaction mixture was cooled to rt and treated with $\mathrm{AcOH}(0.1$ $\mathrm{mL})$. The resulting mixture was diluted with water (8 mL), and extracted by $20 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}$ $(3 \times 6 \mathrm{~mL})$. The organic layers were combined and washed with water (3 mL) and brine (3 mL).. After removal organic solvent under reduced pressure, the residue was purified by preparative HPLC $\left(10-70 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /\right.$ water, 30 min$)$ to provide the title product 11 as yellow solid (19.6 mg, 37). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}$) $\delta \mathrm{ppm} 3.19$ (dd, $J=13.30,9.39 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (dd, J $=13.40,5.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=9.39,5.87 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12-7.42(\mathrm{~m}, 5 \mathrm{H})$,$7.75(\mathrm{~d}, J=1.76 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.28(\mathrm{~m}, 3 \mathrm{H}), 8.66(\mathrm{~d}, J=7.04 \mathrm{~Hz}, 2 \mathrm{H}), 9.06(\mathrm{~d}, J=1.76 \mathrm{~Hz}$, 1 H); HRMS (ESMS) calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2} 465.1046(\mathrm{M}+\mathrm{H})+$, found: 465.1046.

1-Methyl-3-(pyridin-4-yl)-1H-pyrazol-5-amine (25). To a solution of 3-oxo-3phenylpropanenitrile $24(400 \mathrm{mg}, 2.76 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$ at rt was added methylhydrazine $(367 \mu \mathrm{l}, 6.89 \mu \mathrm{~mol})$ followed by conc. $\mathrm{HCl}(0.1 \mathrm{~mL})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 2.5 hr . After removal of organic solvent under reduced pressure, the residue was redissolved in $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The solution was washed with brine $(5 \mathrm{~mL})$, and dried over MgSO_{4}. After removal of organic solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution provided the title product 25 as white solid ($341 \mathrm{mg}, 71 \%$) . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 3.70$ (s, 3 H), $5.97(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.76(\mathrm{~m}, 2 \mathrm{H}), 8.44-8.54(\mathrm{~m}, 2 \mathrm{H}) ;$ LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 175.1$.

1-Methyl-3-(pyridin-4-yl)-1H-pyrazol-5-amine (27). The title compound was prepared starting with 1-methyl-3-(pyridin-4-yl)-1H-pyrazol-5-amine $\mathbf{2 5}$ in 68% yield according to the procedure as described above for conversion of $\mathbf{3 . 1}$ to 3.3. LCMS (ES) $[M+1]^{+} \mathrm{m} / \mathrm{z} 322.1$.

(S)-N-(1-Methyl-3-(pyridin-4-yl)-1H-pyrazol-5-yl)-3-phenyl-2-((thiazol-5-

ylmethyl)amino)propanamide (12). The title compound was prepared starting with (S)-2-amino- N-(1-methyl-3-(pyridin-4-yl)-1H-pyrazol-5-yl)-3-phenylpropanamide 27 according to the procedure as described above for conversion of $\mathbf{3 . 3}$ to $\mathbf{3}$. The crude product was purified by preparative HPLC $\left(10-90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /\right.$ water, 45 min$)$. The combined desired product fractions were treated with saturated aqueous NaHCO_{3}, and extracted with $30 \% i$ - $\mathrm{PrOH} / \mathrm{CHCl}_{3}$. The organic solution was washed with water and brine, and dried over MgSO_{4}. Removal of solvents under reduced pressure provided the title product 12 as white solid $(84 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 3.08$ (s, 2 H) 3.61 (s, 3 H) 3.68 (s, 1 H), 3.97 (s, 2 H) 6.73 (s, 1 H),
$7.28(\mathrm{~m}, 6 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}), 8.53(\mathrm{~m}, 2 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{OS}$ $419.1645(\mathrm{M}+\mathrm{H})+$, found: 419.1636 .

3-(Pyridin-4-yl)-1-(2,2,2-trifluoroethyl)-1H-pyrazol-5-amine (13.1). The title compound was prepared starting with 3-oxo-3-phenylpropanenitrile 24 and 2,2,2-trifluoroethylhydrazine according to the procedure as described above for preparation of $\mathbf{2 5}(81 \%)$. The crude product 13.1 was directly used in the next step without purifcation. LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 243.1$

(S)-N-(1-Methyl-3-(pyridin-4-yl)-1H-pyrazol-5-yl)-3-phenyl-2-((thiazol-5-

ylmethyl)amino)propanamide (13). This title product was prepared starting from 3-(pyridin-4-yl)-1-(2,2,2-trifluoroethyl)-1H-pyrazol-5-amine $\mathbf{1 3 . 1}$ according to the procedure as described above for conversion of $\mathbf{3 . 1}$ to $\mathbf{3}$. The final crude product was purified by preparative HPLC (10$90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 30 min). The desired product fractions were combined, treated with saturated aqueous NaHCO_{3}, and extracted with $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}$. The organic solution was washed with water. Removal of solvents under reduced pressure provided the title product 13 as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 2.83-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.94 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.83(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.81(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.55$ $(\mathrm{s}, 1 \mathrm{H}), 7.70-7.79(\mathrm{~m}, 2 \mathrm{H}), 8.42-8.54(\mathrm{~m}, 2 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{23} \mathrm{~F}_{3} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{OS}$ $487.1519(\mathrm{M}+\mathrm{H})+$, found: 487.1523.

3-(2-Chloropyridin-4-yl)-1H-pyrazol-5-amine (14.2). To a $0{ }^{\circ} \mathrm{C}$ solution of 2chloroisonicotinonitrile 14.1 ($25.00 \mathrm{~g}, 180 \mathrm{mmol}$) in THF (300 mL) under N_{2} atmosphere was added acetonitrile ($25 \mathrm{~mL}, 469 \mathrm{mmol}$) followed by portionwise addition of potassium tertbutoxide ($81 \mathrm{~g}, 722 \mathrm{mmol}$) over 30 min . The reaction solution was allowed to warm to rt over 30 min , and was then quenched with water (300 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc $(150 \mathrm{~mL})$. The organic solutions were combined. After removal of organic solvents under reduced pressure, the dark brown solid was collected, washed with pre-cooled $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and air-dried to provide the crude product $14.2(28 \mathrm{~g}, 88 \%)$. LCMS (ES) $[\mathrm{M}+1]^{+}$181.0.

2-(5-Amino-3-(pyridin-4-yl)-1H-pyrazol-1-yl)ethanol (14.3).

To a solution of 3-(2-chloropyridin-4-yl)-1H-pyrazol-5-amine 14.2 ($720 \mathrm{mg}, 4.0 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{~mL})$ at rt was added 2-hydrazinylethanol $(1.04 \mathrm{~mL}, 16.0 \mathrm{mmol})$ followed by concentrated $\mathrm{HCl}(0.8 \mathrm{~mL})$. After stirring at $80^{\circ} \mathrm{C}$ for 1.5 hr , reaction solvents was removed under reduced pressure. The residue was re-dissolved in $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(7 \mathrm{~mL})$, brine, and dried over MgSO_{4}. After removal of organic solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using 0 $30 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution gave title product 14.3 ($508 \mathrm{mg}, 53 \%$). LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 239.1.

6-(2-Chloropyridin-4-yl)-2,3-dihydro-1H-imidazo[1,2-b]pyrazole (14.4)

A mixture of polyphosphoric acid $(2.0 \mathrm{~mL})$ and 2-(5-amino-3-(pyridin-4-yl)-1H-pyrazol-1yl)ethanol $14.3(500 \mathrm{mg}, 2.1 \mathrm{mmol})$ was allowed to stir at $160^{\circ} \mathrm{C}$ for 2 hr . The mixture was treated with aquoues $\mathrm{NaOH}(6.0 \mathrm{~N})$ to $\mathrm{pH} \sim 9.0$, diluted with water (4 mL) and extracted with $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}(4 \times 10 \mathrm{~mL})$. The combined orgnic solution was washed with water (8 mL) and brine (5 mL). After removal of organic solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution gave title product $\mathbf{1 4 . 4}$ ($357 \mathrm{mg}, 77 \%$). LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 221.1$.
(S)-1-(6-(2-Chloropyridin-4-yl)-2,3-dihydro-1H-imidazo[1,2-b]pyrazol-1-yl)-3-phenyl-2-((thiazol-5-ylmethyl)amino)propan-1-one (14.5). This title product was prepared starting from

6-(2-chloropyridin-4-yl)-2,3-dihydro-1H-imidazo[1,2-b]pyrazole 14.4 according to the procedure as described above for conversion of 5.1 to $\mathbf{5}$. The final crude product was purified by preparative HPLC ($10-60 \% 0.1 \% \mathrm{TFA} / \mathrm{CH} 3 \mathrm{CN} /$ water, 45 min). The combined desired product fractions were treated with saturated aqueous NaHCO_{3}, and extracted with $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}$ $(10 \mathrm{~mL})$. The organic solution was washed with water and dried over MgSO_{4}. Removal of solvents under reduced pressure provided the title product $\mathbf{1 4 . 5}$ as white solid. LCMS (ES) $[\mathrm{M}+$ $1]^{+} \mathrm{m} / \mathrm{z} 465.1$.
(S)-3-Phenyl-1-(6-(pyridin-4-yl)-2,3-dihydro-1H-imidazo[1,2-b]pyrazol-1-yl)-2-((thiazol-5-ylmethyl)amino)propan-1-one (14). To a solution of (S)-1-(6-(2-chloropyridin-4-yl)-2,3-dihydro-1H-imidazo[1,2-b]pyrazol-1-yl)-3-phenyl-2-((thiazol-5-ylmethyl)amino)propan-1-one $14.5(67 \mathrm{mg}, 0.13 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added Pd / C. The reaction vessel was purgered with H_{2}, and the mixture was left stirring under under H_{2} atomosphere for 30 min . To the mixture was added aqueous saturated $\mathrm{NaHCO}_{3}(1.0 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$, organic solvent was removed under reduced pressure. The remaining was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). After removal of organic solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution gave title product $\mathbf{1 4}$ as white solid ($18 \mathrm{mg}, 31 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 2.93-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.82-4.11$ (m, 3 H), 4.12-4.26 (m, 1 H), 4.26-4.49 (m, 2 H), $4.55(t d, J=9.83,6.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.71$ (m, 1 H), $6.91(\mathrm{t}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.48(\mathrm{~m}, 1$ H), $7.70-7.86(\mathrm{~m}, 2 \mathrm{H}), 8.48-8.62(\mathrm{~m}, 2 \mathrm{H}), 8.88-8.98(\mathrm{~m}, 1 \mathrm{H}) ;$ LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O} 334.2(\mathrm{M}+\mathrm{H})+$, found: 334.3.

Ethyl 2-(5-amino-3-(pyridin-4-yl)-1H-pyrazol-1-yl)acetate (15.1). The title compound was prepared starting with 3-oxo-3-phenylpropanenitrile 24 and ethyl 2-hydrazinylacetate hydrochloride (1.8 eq.) according to the procedure as described above for preparation of $\mathbf{2 5}$. The
crude product was purified by flash chromatography on silica gel using $0-20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution to provide 15.1 as colorless solid (57\%).
(S)-Ethyl 2-(5-(2-amino-3-phenylpropanamido)-3-(pyridin-4-yl)-1H-pyrazol-1-yl)acetate (15.2). The title compound was prepared starting with ethyl 2-(5-amino-3-(pyridin-4-yl)-1H-pyrazol-1-yl)acetate $\mathbf{1 5 . 1}$ according to the procedure as described above for conversion of $\mathbf{3 . 1}$ to 3. The crude product was purified by flash chromatography on silica gel using $0-10 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution to provide 15.2 as colorless solid (43\%). LCMS (ES) $[\mathrm{M}+1]+\mathrm{m} / \mathrm{z}$ 491.1.
(S)-2-(5-(3-Phenyl-2-(thiazol-4-ylmethylamino)propanamido)-3-(pyridin-4-yl)-1H-pyrazol-1-yl)acetic acid (15). To a solution of (S)-ethyl 2-(5-(2-amino-3-phenylpropanamido)-3-(pyridin-4-yl)-1H-pyrazol-1-yl)acetate $15.2(35 \mathrm{mg}, 73 \mu \mathrm{~mol})$ in dioxane $(1.0 \mathrm{~mL})$ at rt was added lithium hydroxide monohydrate ($6 \mathrm{mg}, 147 \mu \mathrm{~mol}$) followed by water (0.3 mL). After stirring at rt for 1.0 hr , the reaction mixture was diluted with water (2 mL), neutralized by 10% HOAc to $\mathrm{pH} \sim 7$ and extracted with $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}(3 \times 4 \mathrm{~mL})$. The combined organic solution was concentrated under reduced pressure. Purification of the residue by preparative HPLC $\left(10-90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /\right.$ water, 30 min$)$ provided the title product 15 as white TFA salt ($8.5 \mathrm{mg}, 21 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 3.26(\mathrm{dd}, J=13.69,9.00 \mathrm{~Hz}, 1 \mathrm{H}$); 3.45 (dd, $J=13.69,5.87 \mathrm{~Hz}, 1 \mathrm{H}$), $4.39-4.57$ (m, 3 H), 4.69 (d, $J=18.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (s, 1 H), $7.25-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.82(\mathrm{~d}, J=1.96 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=7.04 \mathrm{~Hz}, 2 \mathrm{H})$, $8.81(\mathrm{~d}, J=6.65 \mathrm{~Hz}, 2 \mathrm{H}), 9.13(\mathrm{~d}, J=1.56 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}$ $465.1046(\mathrm{M}+\mathrm{H})^{+}$, found: 465.1046.

3-(2-Chloropyridin-4-yl)-1-methyl-1H-pyrazol-5-amine (16.1). The title compound was prepared starting with 3-(2-chloropyridin-4-yl)-1H-pyrazol-5-amine $\mathbf{1 4 . 2}$ and methylhydrazine according to the procedure as described above for preparation of 14.3. The crude product was
purified by flash chromatography on silica gel using $0-8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution to provide 16.1 as colorless solid (89\%). LCMS (ES) [M + 1] ${ }^{+} \mathrm{m} / \mathrm{z} 209.1$.

4-(5-Amino-1-methyl-1H-pyrazol-3-yl)-N-metylpyridin-2-amine (16.2). A mixture of 3-(2-chloropyridin-4-yl)-1-methyl-1H-pyrazol-5-amine 16.1 ($3.60 \mathrm{~g}, 18 \mathrm{mmol}$) in 40% aqueous MeNH_{2} solution (25 mL) in sealed tube was heated at $140{ }^{\circ} \mathrm{C}$ for 64 hr . The resulting mixture was allowed to cool to rt. After removal of solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution gave title product $\mathbf{1 6 . 2}$ as brown solid ($3.18 \mathrm{~g}, 91 \%$). LCMS (ES) [M + 1] $\mathrm{m} / \mathrm{z} 204.1$.

(S)-N-(1-Methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)-3-phenyl-2-((thiazol-5-

 ylmethyl)amino)propanamide (16). This title product was prepared starting from 4-(5-Amino-1-methyl-1H-pyrazol-3-yl)- N -metylpyridin-2-amine $\mathbf{1 6 . 2}$ according to the procedure as described above for conversion of $\mathbf{3 . 1}$ to $\mathbf{3}$. The final crude product was purified by preparative HPLC (10$90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 30 min). The combined desired product fractions were treated with saturated aqueous NaHCO_{3}, and extracted with $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}$. The organic solution was washed with water. Removal of solvents under reduced pressure provided the title product 16 as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}$) $\delta \mathrm{ppm} 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{t}, J=7.73 \mathrm{~Hz}, 2 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}, J=6.85 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-4.12(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}$, $J=4.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.34$ (m, 5 H), 7.37 (br. s., 1 H), 7.94 (d, $J=5.28 \mathrm{~Hz}, 1 \mathrm{H}$), 8.94 (s, 1 H); HRMS (ESMS) calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{OS} 448.1910(\mathrm{M}+\mathrm{H})+$, found: 448.1913.
(S)-2-Amino-3-(4-fluorophenyl)- N-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-

5-yl)propanamide (17.1). The title compound was prepared starting with 4-(5-Amino-1-methyl-1H-pyrazol-3-yl)- N-metylpyridin-2-amine 16.2 and (S)-2-((tert-butoxycarbonyl)amino)-3-(4-fluorophenyl)propanoic acid according to the procedure as described above for conversion
of 3.1 to 3.3. The crude product was purified by flash chromatography on silica gel using $0-8 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution ($4.70 \mathrm{~g}, 85 \%$). LCMS (ES) $[\mathrm{M}+1]+\mathrm{m} / \mathrm{z} 369.2$.
(2S)-3-(4-Fluorophenyl)-N-(3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)-2-(thiazol-5ylmethylamino)propanamide (17). This title compound was prepared starting from (S)-2-amino-3-(4-fluorophenyl)-N-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5yl)propanamide $17.1(173 \mathrm{mg}, 0.49 \mathrm{mmol})$ according the procedure described above for conversion of $\mathbf{3 . 3}$ to $\mathbf{3}$. The product was purified by flash chromatography on silica gel using 0 $8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution to give 17 as colorless solid ($119 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.97-3.14(\mathrm{~m}, J=13.89,13.89,13.69,7.04 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{t}, J=$ $1.56 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59-3.69(m, 4 H), 3.89-4.05 (m, 2 H), $6.61(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J$ $=5.48,1.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=8.80 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J=8.61,5.09 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $1.96 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=5.48 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=2.35 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{23} \mathrm{FH}_{24} \mathrm{~N}_{7} \mathrm{OS} 466.1816(\mathrm{M}+\mathrm{H})+$, found: 466.1814 .

(S)-2-(((1H-1,2,3-Triazol-4-yl)methyl)amino)-3-(4-fluorophenyl)-N-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)propanamide (18). This title compound was prepared starting from (S)-2-amino-3-(4-fluorophenyl)-N-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)propanamide $\mathbf{1 7 . 1}$ ($140 \mathrm{mg}, 0.38 \mathrm{mmol}$) and $1 \mathrm{H}-1,2,3$-triazole-4carbaldehyde ($37 \mathrm{mg}, 0.38 \mathrm{mmol}$) according the procedure described above for conversion of $\mathbf{3 . 3}$ to 3. The final crude product was purified by preparative HPLC ($10-50 \%$ $0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 30 min). The combined desired product fractions were treated with saturated aqueous NaHCO_{3}, and extracted with $30 \% i$ - $\mathrm{PrOH} / \mathrm{CHCl}_{3}$. The organic solution was washed with water. Removal of solvents under reduced pressure provided the title product $\mathbf{1 8}$ as white solid ($49 \mathrm{mg}, 29 \%$). ($400 \mathrm{MHz}, \mathrm{MeOH}$) $\delta \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 2.87-$ $2.94(\mathrm{~m}, 3 \mathrm{H}), 3.00-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.88-4.01(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.86$ (s, 1 H$), 6.92(\mathrm{~d}, J=4.30 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=8.80 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H})$,
$7.95(\mathrm{~d}, J=5.48 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{22} \mathrm{FH}_{24} \mathrm{~N}_{9} \mathrm{O} 450.2157(\mathrm{M}+\mathrm{H})+$, found: 450.2147.

(2S)-2-(Cyanomethylamino)-3-(4-fluorophenyl)- N -(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)propanamide (19.1). To a solution of (S)-2-amino-3-(4-fluorophenyl)-N-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)propanamide $\mathbf{1 7 . 1}$ ($750 \mathrm{mg}, 2.04$ $\mu \mathrm{mol}$) and bromoacetonitrile ($244 \mathrm{mg}, 214 \mathrm{mmol}$) in acetonitrile was added $N, N-$ diisopropylethylamine $(0.43 \mathrm{~mL}, 2.4 \mu \mathrm{~mol})$. After stirring at $60^{\circ} \mathrm{C}$ for 2 hr , organic solvents were removed under reduced pressure. Purification of the residue by flash chromatography on silica gel using $0-12 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution gave the title product $\mathbf{1 9 . 1}$ as yellow syrup (706 mg , 85\%). LCMS (ES) $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 408.1$.
(2S)-2-((1H-Tetrazol-5-yl)methylamino)-3-(4-fluorophenyl)-N-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)propanamide (19). To neat tributyltin chloride $(1.25 \mathrm{~mL}, 4.61 \mathrm{mmol})$ was added sodium azide ($500 \mathrm{mg}, 7.7 \mathrm{mmol}$). After sting at $80^{\circ} \mathrm{C}$ for 30 min, to the mixture was added a solution of (2S)-2-(cyanomethylamino)-3-(4-fluorophenyl)-N-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)propanamide $\mathbf{1 9 . 1}$ (178 $\mathbf{~ m g}, 437$ $\mu \mathrm{mol})$ in DMF. The resulting mixture was stirred at $160^{\circ} \mathrm{C}$ under N 2 for 1.5 hr , cooled and diluted with water. The resulting mixture was extracted with $30 \% i-\mathrm{PrOH} / \mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$, and organic solvents was removed under reduced pressure. After purification of the residue by preparative HPLC $\left(10-90 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /\right.$ water, 30 min$)$, the combined product fractions were treated with $1.0 \mathrm{~N} \mathrm{HCl}(0.50 \mathrm{~mL})$. Removal of solvents under reduced pressure provided 19 as colorless HCl solid ($121 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 7.82(\mathrm{~d}, J=6.65$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{t}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.60$ (br. s., 1 H) $3.63(\mathrm{~s}, 3 \mathrm{H}) 3.42-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.29(\mathrm{~m}, 1 \mathrm{H})$, $3.01-3.11(\mathrm{~m}, 4 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{FH}_{23} \mathrm{~N}_{10} \mathrm{O} 451.2110(\mathrm{M}+\mathrm{H})^{+}$, found: 451.2130.

2-((S)-3-(4-Fluorophenyl)-1-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-ylamino)-1-oxopropan-2-ylamino)acetic acid (20). To a solution of glyoxylic acid monohydrate ($58 \mathrm{mg}, 0.63 \mathrm{mmol}$) in dichloroethane/dioxane $(1: 1,3.0 \mathrm{~mL}$) was added HOAc $(0.050 \mathrm{~mL})$ followed by (2S)-2-amino-3-(4-fluorophenyl)- N -(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)propanamide 17.1 ($120 \mathrm{mg}, 0.33 \mathrm{mmol}$). After stirring at $70{ }^{\circ} \mathrm{C}$ for 2 min , to the mixture was added sodium triacetoxyborohydride (276 mg , $1.30 \mathrm{mmol})$. The resulting solution was left stirring at $70^{\circ} \mathrm{C}$ for 45 min , cooled to rt , treated with water (2 mL). After removal of solvents under reduced pressure, the residue was redissoved in DMF (3 mL) and purified by preparative HPLC ($5-35 \% 0.1 \% \mathrm{TFA} / \mathrm{CH}_{3} \mathrm{CN} /$ water, 45 min) to provide title compound 20 as colorless solid ($61 \mathrm{mg}, 44 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm}$ $7.84(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.61,5.09 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=9.00,6.26 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}) 3.36$ - $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=13.30,9.00 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (s, 3 H); HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{FH}_{23} \mathrm{~N}_{6} \mathrm{O}_{3} 427.1884(\mathrm{M}+\mathrm{H})_{+}$, found: 427.1878 .

2-((S)-3-(4-Fluorophenyl)-1-(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-

 ylamino)-1-oxopropan-2-ylamino)acetic acid (21). To a solution of N-ethyl- N -isopropylpropan-2-amine ($85 \mathrm{mg}, 0.66 \mathrm{mmol}$) and (2S)-2-amino-3-(4-fluorophenyl)- N -(1-methyl-3-(2-(methylamino)pyridin-4-yl)-1H-pyrazol-5-yl)propanamide $\mathbf{1 7 . 1}$ (121 mg, 0.33 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added 2-bromoacetamide ($44 \mathrm{mg}, 0.33 \mathrm{mmol}$). The mixture was left stirring at rt for 12 hr . After removal of organic solvents under reduced pressure, purification of the residue by flash chromatography on silica gel using $0-50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution gavethe title product 21 as colorless film ($20 \mathrm{mg}, 14 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}$) $\delta \mathrm{ppm} 2.91$ ($\mathrm{s}, 3$ H), 2.97-3.12 (m, 2 H), 3.20-3.28(m, 1 H), 3.31-3.35 (m, 1H), 3.36-3.41 (m, 1 H), $3.59(t$, $J=7.04 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=5.58,1.47 \mathrm{~Hz}, 1 \mathrm{H})$, 7.01-7.14 (m, 2 H), 7.24-7.40(m, 2 H), 7.91-8.01 (m, 1 H); HRMS (ESMS) calcd. for $\mathrm{C}_{21} \mathrm{FH}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} 426.2044(\mathrm{M}+\mathrm{H})+$, found: 426.2039.

(S)-2-((1-((1-Methyl-3-(pyridin-4-yl)-1H-pyrazol-5-yl)amino)-1-oxo-3-phenylpropan-2-
$\mathbf{y l}$)amino)acetic acid (24). This title product was prepared starting from 1-methyl-3-(pyridin-4-yl)-1H-pyrazol-5-amine 27 according to the procedure as described above for conversion of $\mathbf{1 7 . 1}$ to 20. The final crude product was purified by preparative HPLC (5-50\% $0.1 \% \mathrm{TFA} / \mathrm{CH} 3 \mathrm{CN} /$ water, 45 min) to provide the title product 22 as white solid $(42 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 3.10-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=6.26 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.51(\mathrm{~m}, 1 \mathrm{H})$, 3.51-3.57 (m, 4 H), 4.17 (dd, $J=8.80,6.46 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.81$ (m, 1 H$), 7.25-7.47$ (m, 5 H), $7.72-7.89(\mathrm{~m}, 2 \mathrm{H}), 8.52(\mathrm{~d}, J=6.50 \mathrm{~Hz}, 2 \mathrm{H})$; HRMS (ESMS) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3} 380.1713$ $(\mathrm{M}+\mathrm{H})+$, found: 380.1722 .

(S)-Ethyl 2-((1-((1-methyl-3-(pyridin-4-yl)-1H-pyrazol-5-yl)amino)-1-oxo-3-phenylpropan-2-yl)amino)acetate (23). This title product was prepared starting from 1-methyl-3-(pyridin-4-yl)-1H-pyrazol-5-amine 27 according to a procedure similar to as described above for conversion of $\mathbf{1 7 . 1}$ to 21, except that ethyl bromoacetate was used. The final crude product was purified by flash chromatography on silica gel using $30 \% \mathrm{EtOAc} /$ Hexanes for elution to provide the title 23 as free base (77%). The free base of $23(1.8 \mathrm{~g}, 4.0 \mathrm{mmol})$ was dissovled in a mixture solvents of
$\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 4,20 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and was treated with HCl solution (2.0 M in diethyl ether, $7.0 \mathrm{~mL}, 14 \mathrm{mmol}$). After stirring at $0^{\circ} \mathrm{C}$ for 10 min , the organic solvents was removed under reduced pressure to give 23 as light yellow di- HCl salt ($2.14 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, MeOH) $\delta \mathrm{ppm} 1.36(\mathrm{t}, J=7.21 \mathrm{~Hz}, 3 \mathrm{H}), 3.27-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=$ $13.45,6.36 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{q}, ~ J=7.09 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{dd}, J=9.17$, $6.24 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.49(\mathrm{~m}, 5 \mathrm{H}), 8.42(\mathrm{~d}, J=7.09 \mathrm{~Hz}, 2 \mathrm{H}), 8.80(\mathrm{~d}, J=6.85$ $\mathrm{Hz}, 2 \mathrm{H}$); HRMS (ESMS) calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} 408.2025(\mathrm{M}+\mathrm{H})+$, found:408.2018.

