Comprehensive Signal Assignment of ${ }^{13} \mathrm{C}$-Labeled Lignocellulose using Multidimensional Solution NMR and ${ }^{13} \mathrm{C}$ Chemical Shift Comparison with Solid-State NMR

Takanori Komatsu ${ }^{\dagger, \#}$, Jun Kikuchi ${ }^{\dagger}, \ddagger, \S$, \#* *
${ }^{\dagger}$ RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
${ }^{\ddagger}$ Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
§Biomass Engineering Research Program, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako 351-0198, Japan
\#Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Table S1. Assignment references and notes

Table S2. Correspondence of Samples to Hemicelluloses

	order	family	major hemicellulose in primary wall	major hemicellulose in secondary wall
potatoes (Solanum tuberosum L.) chicory	Solanaceae	Solanum	arabinoxyloglucan	glucronoxylan
(Cichorium intybus) corn (Zea mays)	Asterales	Asteraceae	xyloglucan glucronoarabinoxylan	glucronoxylan
goales	Poaceae			

Figure S1. Characteristic hemicellulosic signals on ${ }^{13} \mathrm{C}$-HSQC spectra

Figure S2. Partial structures of glucuronoarabinoxylan and their chemical shifts.

Figure S3. Constant time (2T) series of ${ }^{1} \mathrm{H}$ projections for the ct-HSQC spectra. Signal intensities changed as a function of $\Pi \cos \left(2 T \pi J_{C C}\right)$.

Figure S 4 . The evaluation of ${ }^{1} J_{C C}$ values using high-resolution ${ }^{13} \mathrm{C}-\mathrm{HSQC}$ to optimize values of 2 T in ct-HSQC. (a) ${ }^{13} \mathrm{C}$-HSQC spectrum of ${ }^{13} \mathrm{C}$-labeled lignocellulose from potatoes. (b) ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ splitting pattern of uniformly ${ }^{13} \mathrm{C}$-labeled compounds. The evaluation of ${ }^{1} J_{C C}$ values in aliphatic (c), (d), anomeric (e), and aromatic region (f). Left and right spectra are ct-HSQC and high-resolution ${ }^{13} \mathrm{C}-\mathrm{HSQC}$ spectra respectively. In high-resolution ${ }^{13} \mathrm{C}$-HSQC experiments, 2048 complex f1 (${ }^{13} \mathrm{C}$) points were recorded and the spectral widths of the f2 dimensions were 60 ppm .

Figure S_{5}. Comparison of signal assignments between this study and previous reports. Previous reports focused on lignin and the well-resolved anomeric signals of the polysaccharide. The use of ${ }^{13} \mathrm{C}$ labeled samples in the current study combined with multidimensional NMR delivered significant advances for signal assignments, especially for the aliphatic region of polysaccharides. Note that the plots assigned in this study include only fully assigned components, whereas those from other studies included only partly assigned signals. *Reference number1 ${ }^{* *}$ Reference number5 ${ }^{* * *}$ Reference number6 ${ }^{* * * *}$ This data was obtained from Bm-Char which is a web tool used to characterize the chemical structure of lignocellulosic biomass using NMR data. ${ }^{78}$ (https://database.riken.jp/ecomics/index.html)

References

(1) Kim, H.; Ralph, J. Org Biomol Chem 2010, 8, 576.
(2) Hoije, A.; Sandstrom, C.; Roubroeks, J. P.; Andersson, R.; Gohil, S.; Gatenholm, P. Carbohyd Res 2006, 341, 2959.
(3) Pitkanen, L.; Tuomainen, P.; Virkki, L.; Aseyev, V.; Tenkanen, M. J Agr Food Chem 2008, 56, 5069.
(4) Jia, Z. H.; Qin, Q.; Darvill, A. G.; York, W. S. Carbohyd Res 2003, 338, 1197.
(5) Rencoret, J.; Gutierrez, A.; Nieto, L.; Jimenez-Barbero, J.; Faulds, C. B.; Kim, H.; Ralph, J.; Martinez, A. T.; del Rio, J. C. Plant Physiol 2011, 155, 667.
(6) Yuan, T. Q.; Sun, S. N.; Xu, F.; Sun, R. C. J Agr Food Chem 2011, 59, 10604.
(7) Kikuchi, J.; Ogata, Y.; Shinozaki, K. J. Ecosys. Ecogr 2011, S2, 001.
(8) Ogata, Y.; Chikayama, E.; Morioka, Y.; Everroad, R. C.; Shino, A.; Matsushima, A.; Haruna, H.; Moriya, S.; Toyoda, T.; Kikuchi, J. Plos One 2012, 7.

