Supporting Information

A Cyclochiral Conformational Motif Constructed Using a Robust Hydrogen Bonding Network

Kenji Mishiro*, Takumi Furuta*, Takahiro Sasamori, Kazuhiro Hayashi, Norihiro Tokitoh, Shiroh Futaki, and Takeo Kawabata

Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 *<u>mishiro@fos.kuicr.kyoto-u.ac.jp</u> *<u>furuta@fos.kuicr.kyoto-u.ac.jp</u>

General	S2
Preparation of 12 and 13	S3-S4
Preparation of 1-10	
X-ray Structural Analysis of 1 and 10	S13
Conformational search of 9	S14
HPLC and CD analysis of 1 (Experiment related to Figure 3c and 3d)	S15-S17
HPLC analysis of 9	S17-S20
HPLC analysis of 10	S21
Experiment of Scheme 1	S22
NMR spectra of 1-10, 12, 13	S23-S38
¹ H NMR spectra of 1 with different concentrations	S39
VT NMR experiment (Experiment related to Figure 3b and Table 1)	S40-S50

General

Melting points were measured using a Yanagimoto micro point apparatus.

NMR spectra were obtained with a JEOL ECX-400 PKT spectrometer, chemical shift being given in ppm units (¹H NMR in CDCl₃: tetramethylsilane as internal standards, indicating 0, ¹H NMR in DMSO- d_6 : residual DMSO as internal standards, indicating 2.49, ¹H NMR in *o*-dichlorobenzene- d_4 : residual *o*-dichlorobenzene as internal standards, indicating 6.94, ¹³C NMR in CDCl₃: CDCl₃ as internal standards, indicating 77.0) and spin-spin coupling constants being given in Hz units.

IR spectra were recorded with a JASCO FT-IR 4200 spectrometer.

The mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded with a JEOL JMS-DX 300 mass spectrometer and a JEOL-DX 700 mass spectrometer.

Elemental analysis was performed with a Yanagimoto CHN CORDER MT-5. The analysis results obtained were within 0.3 % of the theoretical values. The weight of samples was determined using a METTLERTOLEDO UMx2 ulta micro balance.

Specific rotation was measured with Horiba SEPA-200 automatic digital polarimeter. UV/Vis absorption spectra were recorded with a JASCO V-550 UV/Vis spectrophotometer. CD spectra were recorded with JASCO J-720 W spectropolarimeter.

Silica gel column chromatography was carried out by using Silica gel 60 N (spherical, neutral, 63 ~ 210 μ m, Kanto Chemical Co., Inc.) or Ultra Pure Silica Gel (230-400mesh, SILYCYCLE).

TLC analysis and preparative TLC (PTLC) were performed on commercial glass plates bearing a 0.25 mm layer and 0.5 mm layer of Merck Kiesel–gel 60 F_{254} , respectively. Analytical HPLC was run with a JASCO PU-2089 Plus instrument, equipped with a Daicel CHIRALCEL ODH or CHIRALPAK ID (4.6 mm × 250 mm) and a JASCO UV-2075 Plus UV/Vis detector.

Anhydrous THF was purchased from Kanto Kagaku and pre-treated with activated MS4Å more than 1 day. Anhydrous toluene was purchased from Wako and distilled from calcium hydride, and distilled toluene was kept over MS4Å. HMDS was purchased from Acros and distilled from calcium hydride, and distilled HMDS was kept over MS4Å.

All other chemical reagents were commercially purchased and used without further purification.

Preparation of 13

Scheme S1. Synthetic route from 11 to 13

11 (100 mg, 0.43 mmol)¹ was dissolved in 12N aqueous HCl (2.0 mL) and stirred under reflux. After 5 h, the mixture was concentrated *in vacuo*. The residue was dissolved into MeOH (2.0 mL) and stirred at 0 °C. To the stirred mixture, SOCl₂ (0.13 mL, 1.73 mmol) was added at 0 °C. After stirred for 10 min, the mixture was heated and stirred under reflux. After stirred for 2 h under reflux, the mixture was cooled to rt and concentrated *in vacuo*. The residue was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The Organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give **12** (108 mg, 95%) as a colorless solid.

cis-dimethyl 1-(pyridin-4-yl)pyrrolidine-2,5-dicarboxylate (12)

Colorless solid. m.p. 86-88 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 6.4 Hz, 2H), 6.43 (d, *J* = 6.4 Hz, 2H), 4.42-4.34 (m, 2H), 3.78 (s, 6H), 2.42-2.28 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 172.34 (2C), 150.85, 149.86 (2C), 107.71 (2C), 61.34 (2C), 52.53 (2C), 29.22 (2C). IR (KBr) 3482, 3465, 3088, 3023, 2994, 2960, 2870, 1747, 1596, 1544, 1510, 1440, 1389, 1360, 1324, 1278, 1204, 1176, 1105, 1082, 1054, 1022, 987, 964 cm⁻¹. MS m/z (rel intensity) 287 (M+Na⁺, 33), 265 (M+H⁺, 100), 205 (26). HRMS Calcd for C₁₃H₁₇N₂O₄ (M+H⁺): 265.1188, found, 265.1187.

30% KH dispersed in mineral oil (500 mg, ca. 3.7 mmol) was poured into 100 mL two necked flask and washed with dry hexane (10 mL \times 2) under Ar atmosphere. Remaining hexane was removed *in vacuo* to give white powder of KH and the powder was suspended in anhydrous THF (20 mL). To the stirred suspension, HMDS (0.85 mL, 4.0 mmol) was added dropwise at rt. Then the mixture was heated and stirred under reflux. After H₂ gas generation stoped, the mixture was cooled to – 78 °C. To the stirred mixture, a solution of **12** (323 mg, 1.22 mmol) in THF (10 mL) was added dropwise. After stirring for 30 min, methyl cyanoformate (0.29 mL, 3.66 mmol) was added to the mixture at – 78 °C. After 1 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H_2O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : MeOH = 80 : 1) to give **13** as a colorless solid (351 mg, 76%).

tetramethyl 1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxylate (13)

Colorless solid. m.p. 105-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 5.0 Hz, 2H), 6.45 (d, J = 5.0 Hz, 2H), 3.75 (s, 12H), 2.64 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 169.01 (4C), 149.14, 149.02 (2C), 110.29 (2C), 75.16 (2C), 53.27 (4C), 36.00 (2C). IR (KBr) 3453, 3015, 2959, 1745, 1592, 1550, 1510, 1460, 1432, 1352, 1267, 1196, 1172, 1153, 1108, 1062, 1016, 993 cm⁻¹. MS m/z (rel intensity) 403 (M+Na⁺, 12), 381 (M+H⁺, 100), 321 (27). HRMS Calcd for C₁₇H₂₁N₂O₈ (M+H⁺): 381.1298, found, 381.1303. Anal Calcd for C₁₇H₂₀N₂O₈: C, 53.68; H, 5.30; N, 7.37. Found: C, 53.71; H, 5.45; N, 7.39.

Preparation of 1 - 10

Scheme S2. General synthesis of 1-10

1-10 were synthesized by condensation of **13** and corresponding amine. Aniline, *p*-bromoaniline, *p*-methoxyaniline, 1-naphthylamine, benzylamine, *n*-hexylamine, *tert*-butylamine, 4-heptylamine, (R)-1-(1-naphthylethyl)-amine were commercially purchased. Dicyclohexylmethylamine was synthesized according to a literature procedure.²

N2,N'2,N5,N'5-tetraphenyl-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (1)

60% NaH dispersed in mineral oil (32 mg ca. 0.79 mmol) was added into 10 mL two necked flask and washed with dry hexane (2.0 mL \times 2) under Ar atmosphere. Remaining hexane was removed *in vacuo* to give white powder of NaH and the powder was suspended in anhydrous THF (1.0 mL). To the stirred suspension, aniline (79 µL, 0.87 mmol) was added dropwise at rt. Then the mixture was heated to 50 °C. After 1 h, the mixture was cooled to 0 °C. To the stirred mixture, **13** (30 mg, 0.079 mmol) was added at 0 °C and the mixture was gradually warmed to rt. After 4 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 2) to give **1** as a colorless solid (31 mg, 63%).

Colorless solid. m.p. 282-283 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.17 (s, 2H), 11.95 (s, 2H), 8.28 (d, J = 5.6 Hz, 2H), 7.79-7.66 (m, 8H), 7.46-7.33 (m, 8H), 7.25-7.16 (m, 4H), 6.41 (d, J = 5.6 Hz, 2H), 2.95-2.75 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 170.14 (2C), 168.38 (2C), 150.26 (2C), 147.63, 137.16 (2C), 136.87 (2C), 129.18 (4C), 129.00 (4C), 125.51 (2C), 125.45 (2C), 120.88 (4C), 120.54 (4C), 109.76(2C), 74.44 (2C), 38.20 (2C). IR (KBr) 3293, 3127, 3034, 1679, 1645, 1594, 1532, 1499, 1444, 1348, 1238, 1220 cm⁻¹. MS m/z (rel intensity) 647 (M+Na⁺, 7), 625 (M+H⁺, 53), 504 (10), 154 (100). HRMS Calcd for C₃₇H₃₃N₆O₄ (M+H⁺): 625.2563, found, 625.2565.

N2,N'2,N5,N'5-tetrakis(4-bromophenyl)-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (2)

60% NaH dispersed in mineral oil (75 mg ca. 0.39 mmol) was added into 10 mL two necked flask and washed with dry hexane (2.0 mL \times 2) under Ar atmosphere. Remaining hexane was removed *in vacuo* to give white powder of NaH and the powder was suspended in anhydrous THF (1.0 mL). To the stirred suspension, *p*-bromoaniline (75 mg, 0.43 mmol) was added at rt. Then the mixture was heated to 50 °C. After 1 h, the mixture was cooled to 0 °C. To the stirred mixture, **13** (30 mg, 0.079 mmol) was added at 0 °C and the mixture was gradually warmed to rt. After 1 h, the mixture was heated to 50 °C. After 3 h stirring, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 3) to give **2** as a colorless solid (18 mg, 24%).

Colorless solid. m.p. > 300 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.05 (s, 2H), 11.85 (s, 2H), 8.22 (d, J = 6.4 Hz, 2H), 7.59-7.35 (m, 16H), 6.26 (d, J = 6.4 Hz, 2H), 2.87-2.64 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 170.06 (2C), 168.47 (2C), 150.38 (2C), 147.35, 136.06 (2C), 135.66 (2C), 132.27 (4C), 132.07 (4C), 122.29 (4C), 122.17 (4C), 118.56 (2C), 118.51 (2C), 109.56 (2C), 74.35 (2C), 38.18 (2C). IR (KBr) 3175, 3035, 1682, 1650, 1587, 1536, 1486, 1395, 1335, 1229, 1072, 1008 cm⁻¹. MS m/z (rel intensity) 941 (M+H⁺, 8), 742 (2), 154 (100). HRMS Calcd for C₃₇H₂₉Br₄N₆O₄ (M+H⁺): 940.8948, found, 940.8946.

N2,N'2,N5,N'5-tetrakis(4-methoxyphenyl)-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (3)

60% NaH dispersed in mineral oil (25 mg ca. 0.63 mmol) was added into 10 mL two necked flask and washed with dry hexane (2.0 mL \times 2) under Ar atmosphere. Remaining hexane was removed *in vacuo* to give white powder of NaH and the powder was suspended in anhydrous THF (1.0 mL). To the stirred suspension, *p*-anisidine (78 mg, 0.63 mmol) was added dropwise at rt. Then the mixture was heated to 50 °C. After 1 h, the mixture was cooled to 0 °C. To the stirred mixture, **13** (20 mg, 0.053 mmol) was added at 0 °C and the mixture was gradually warmed to rt. After 3 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 2) to give **3** as a colorless solid (28 mg, 71%).

Colorless solid. m.p. 254-256 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.05 (s, 2H), 11.80 (s, 2H), 8.20 (d, J = 6.4 Hz, 2H), 7.60-7.46 (m, 8H), 6.89-6.76 (m, 8H), 6.33 (d, J = 6.4 Hz, 2H), 3.74 (s, 6H), 3.72 (s, 6H), 2.82-2.65 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 169.72 (2C), 168.07 (2C), 157.09 (2C), 157.03 (2C), 150.12 (2C), 147.85, 130.40 (2C), 130.14 (2C), 122.37 (4C), 122.01 (4C), 114.25 (4C), 114.10 (4C), 109.77 (2C), 74.25 (2C), 55.50 (2C), 55.47 (2C), 38.11 (2C). IR (KBr) 3189, 3039, 1679, 1646, 1593, 1550, 1510, 1462, 1415, 1341, 1303, 1242, 1174, 1033 cm⁻¹. MS m/z (rel intensity) 767 (M+Na⁺, 3), 745 (M+H⁺, 23), 594 (5), 154 (100). HRMS Calcd for C₄₁H₄₁N₆O₄ (M+H⁺): 745.2986, found, 745.2996.

N2,N'2,N5,N'5-tetra(naphthalen-1-yl)-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (4)

60% NaH dispersed in mineral oil (21 mg ca. 0.53 mmol) was added into 10 mL two necked flask and washed with dry hexane (2.0 mL \times 2) under Ar atmosphere. Remaining hexane was removed *in vacuo* to give white powder of NaH and the powder was suspended in anhydrous THF (1.0 mL). To the stirred suspension, 1-naphthylamine (83 mg, 0.58 mmol) was added at rt. Then the mixture was heated to 50 °C. After 1 h, the mixture was cooled to 0 °C. To the stirred mixture, **13** (20 mg, 0.053 mmol) was added at 0 °C and the mixture was gradually warmed to rt. After 5 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 2) to give **4** as a brown solid (11 mg, 25%).

Brown solid. m.p. 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.55 (s, 2H), 12.48 (s, 2H), 8.40 (d, J = 6.4 Hz, 2H), 8.12 (d, J = 8.3 Hz, 2H), 8.06 (d, J = 7.3 Hz, 2H), 7.88-7.20 (m, 24H), 6.75 (d, J = 6.4 Hz, 2H), 3.35-3.05 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 172.16 (2C), 169.37 (2C), 150.51 (2C), 148.05, 134.26 (2C), 133.94 (2C), 131.99 (2C), 131.65 (2C), 128.83 (2C), 128.68 (2C), 128.32 (2C), 127.50 (2C), 126.88 (2C), 126.48 (2C), 126.27 (2C), 126.21 (4C), 125.87 (2C), 125.56 (2C), 125.24 (2C), 123.15 (2C), 122.16 (2C), 120.80 (2C), 118.83 (2C), 110.19 (2C), 74.80 (2C), 38.99 (2C). IR (KBr) 3158, 3054, 2979, 1681, 1649, 1630, 1594, 1543, 1502, 1395, 1339, 1285, 1208, 1015 cm⁻¹. MS m/z (rel intensity) 825 (M+H⁺, 11), 154 (100). HRMS Calcd for C₅₃H₄₁N₆O₄ (M+H⁺): 825.3189, found, 825.3191.

N2,N'2,N5,N'5-tetrabenzyl-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (5)

To a stirred solution of benzylamine (0.23 mL, 2.1 mmol) in anhydrous THF (2.0 mL), was added 1.45 M *n*-butyllithium in hexane (1.45 mL, 2.1 mmol) at -78 °C. After stirring for 30 min, **13** (80 mg, 0.21 mmol) was added and the mixture was kept stirring at -78 °C. After 4 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted

with AcOEt. The organic layer was separated and washed with H_2O and brine, dried over Na_2SO_4 , filtered and concentrated *in vacuo*. The residue was purified with SiO_2 column (AcOEt : hexane = 1 : 2) to give **5** as a colorless solid (26 mg, 18%).

Colorless solid. m.p. 153-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.84 (t, J = 5.7 Hz, 2H), 10.15 (t, J = 5.7 Hz, 2H), 8.02 (d, J = 6.4 Hz, 2H), 7.32-7.02 (m, 20H), 5.96 (d, J = 6.4 Hz, 2H), 4.40 (d, J = 6.0 Hz, 4H), 4.36 (A part of ABX, $J_{AB} = 14.7$ Hz, $J_{AX} = 6.7$ Hz, 2H), 4.24 (B part of ABX, $J_{AB} = 14.7$ Hz, $J_{BX} = 4.8$ Hz, 2H), 2.46-2.25 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 171.45 (2C), 170.57 (2C), 149.49 (2C), 147.66, 137.76 (2C), 137.63 (2C), 128.73 (4C), 128.43 (4C), 127.70 (4C), 127.61 (6C), 127.23 (2C), 109.87 (2C), 73.54 (2C), 43.99 (2C), 43.77 (2C), 37.58 (2C). IR (KBr) 3213, 3033, 1672, 1644, 1599, 1538, 1502, 1453, 1349, 1220, 1176 cm⁻¹. MS m/z (rel intensity) 703 (M+Na⁺, 12), 681 (M+H⁺, 72), 546 (22), 413 (15), 154 (100). HRMS Calcd for C₄₁H₄₁N₆O₄ (M+H⁺): 681.3189, found, 618.3195.

N2,N'2,N5,N'5-tetrahexyl-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (6)

To a stirred solution of *n*-hexylamine (115 μ L, 0.87 mmol) in anhydrous THF (3.0 mL), was added 1.6 M *n*-butyllithium in hexane (0.49 mL, 0.79 mmol) at – 78 °C. After stirring for 30 min, **13** (30 mg, 0.079 mmol) was added and the mixture was kept stirring at – 78 °C. After 5.5 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 2) to give **6** as a colorless oil (37 mg, 71%).

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 10.29 (t, *J* = 5.0 Hz, 2H), 9.82 (t, *J* = 5.5 Hz, 2H), 8.13 (d, *J* = 6.4 Hz, 2H), 6.02 (d, *J* = 6.4 Hz, 2H), 3.36-2.98 (m, 8H), 2.52-2.23 (m, 4H), 1.58-1.02 (m, 32H), 0.83 (t, *J* = 6.6 Hz, 6H), 0.77 (t, *J* = 6.9 Hz, 6H) . ¹³C NMR (100 MHz, CDCl₃) δ 171.22 (2C), 170.39 (2C), 149.32 (2C), 148.09, 109.67 (2C), 73.53 (2C), 40.10 (2C), 40.01 (2C), 37.51 (2C), 31.38 (2C), 31.30 (2C), 29.12 (2C), 28.69 (2C), 26.61 (2C), 26.54 (2C), 22.52 (2C), 22.50 (2C), 14.00 (2C), 13.96 (2C). IR (KBr) 3215, 3051, 2956, 2929, 2858, 1674, 1644, 1598, 1550, 1506, 1463, 1349, 1225, 1177 cm⁻¹. MS m/z (rel intensity) 674 (M+Na⁺, 26), 658 (M+H⁺, 100), 528 (32), 399 (5). HRMS Calcd for C₃₇H₆₅N₆O₄ (M+H⁺): 657.5067, found, 657.5068.

N2,N'2,N5,N'5-tetra-tert-butyl-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (7)

To a stirred solution of *tert*-butylamine (0.13 mL, 1.26 mmol) in anhydrous THF (2.0 mL), was added 1.5 M *n*-butyllithium in hexane (0.70 mL, 1.05 mmol) at -78 °C. After 30 min, **13** (40 mg, 0.105 mmol) was added and the mixture was kept stirring at -78 °C. After 7 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 2) to give **7** as a colorless solid (45 mg, 79%).

Colorless solid. m.p. 213-215 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.70 (s, 2H), 9.65 (s, 2H), 8.14 (d, J = 6.4 Hz, 2H), 6.03 (d, J = 6.4 Hz, 2H), 2.45-2.15 (m, 4H), 1.29 (s, 18H), 1.22 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 170.79 (2C), 168.96 (2C), 148.86 (2C), 148.79, 109.88 (2C), 73.97 (2C), 51.81 (2C), 51.50 (2C), 37.67 (2C), 28.35 (6C), 28.09 (6C). IR (KBr) 3213, 3048, 2970, 1677, 1643, 1599, 1544, 1501, 1455, 1393, 1363, 1347, 1226, 1176, 1072, 991 cm⁻¹. MS m/z (rel intensity) 567 (M+Na⁺, 4), 545 (M+H⁺, 100), 445 (12), 345 (3). HRMS Calcd for C₂₉H₄₉N₆O₄ (M+H⁺): 545.3815, found, 545.3827.

N2,N'2,N5,N'5-tetra(heptan-4-yl)-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (8)

To a stirred solution of 4-heptylamine (87 μ L, 0.58 mmol) in anhydrous THF (1.0 mL), was added 1.45 M *n*-butyllithium in hexane (0.36 mL, 0.53 mmol) at – 78 °C. After 30 min, **13** (20 mg, 0.053 mmol) was added and the mixture was kept stirring at – 78 °C. After 1.5 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 3) to give **8** as a colorless solid (32 mg, 86%)

Colorless solid. m.p. 109-111 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.12 (d, J = 8.3 Hz, 2H), 9.62 (d, J = 8.7 Hz, 2H) 8.17 (d, J = 6.4 Hz, 2H), 6.13 (d, J = 6.4 Hz, 2H), 4.05-3.79 (m, 4H), 2.64-2.30 (m, 4H),

1.60-1.08 (m, 32H), 0.95 (t, J = 7.3 Hz, 6H), 0.90 (t, J = 6.9 Hz, 6H), 0.86 (t, J = 7.3 Hz, 6H), 0.80 (t, J = 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.90 (2C), 169.75 (2C), 148.90 (2C), 148.09, 110.15 (2C), 73.66 (2C), 49.99 (2C), 49.33 (2C), 37.77 (2C), 37.52 (2C), 37.15 (2C), 36.73 (2C), 36.39 (2C), 19.65 (2C), 19.27 (2C), 19.16 (2C), 19.04 (2C), 14.01 (2C), 13.96 (2C), 13.94 (2C), 13.71 (2C). IR (KBr) 3194, 3041, 2959, 2931, 2871, 1674, 1643, 1599, 1545, 1504, 1461, 1352, 1225, 1180, 1151 cm⁻¹. MS m/z (rel intensity) 735 (M+Na⁺, 6), 713 (M+H⁺, 100), 570 (25), 429 (6). HRMS Calcd for C₄₁H₇₃N₆O₄ (M+H⁺): 713.5693, found, 713.5693.

N2,N'2,N5,N'5-tetrakis(dicyclohexylmethyl)-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarboxamide (9)

To a stirred solution of dicyclohexylmethylamine (520 mg, 2.7 mmol) in anhydrous THF (5.0 mL), was added 1.46 M *n*-butyllithium in hexane (1.73 mL, 2.5 mmol) at -78 °C. After 30 min, **13** (97 mg, 0.25 mmol) was added and the mixture was kept stirring at -78 °C. After 3 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 9) to give **9** as a colorless solid (152 mg, 58 %).

Colorless solid. m.p. 298-300 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (d, *J* = 9.6 Hz, 2H), 9.76 (d, *J* = 9.6 Hz, 2H), 8.12 (d, *J* = 6.4 Hz, 2H), 6.32 (d, *J* = 6.4 Hz, 2H), 3.74-3.52 (m, 4H), 2.68-2.40 (m, 4H), 1.94-0.65 (m, 86H), 0.55-0.36 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.89 (2C), 169.33 (2C), 148.44 (2C), 147.39, 111.75 (2C), 73.97 (2C), 59.43 (2C), 58.61 (2C), 39.20 (2C), 38.52 (2C), 38.30 (2C), 38.00 (2C), 37.84 (2C), 31.04 (2C), 30.79 (2C), 30.63 (2C), 30.37 (2C), 28.25 (2C), 27.83 (2C), 26.50 (4C), 26.45 (4C), 26.39 (2C), 26.34 (2C), 26.29 (8C), 26.18 (4C), 26.02 (2C), 25.80 (2C). IR (KBr) 3206, 3034, 2928, 2852, 1673, 1639, 1600, 1540, 1449, 1349, 1220 cm⁻¹. MS m/z (rel intensity) 1034 (M+H⁺, 23), 950 (5), 810 (5), 589 (2), 55 (100). HRMS Calcd for C₆₅H₁₀₅N₆O₄ (M+H⁺): 1033.8197, found, 1033.8196.

N2,N'2,N5,N'5-tetrakis((*R*)-1-(naphthalen-1-yl)ethyl)-1-(pyridin-4-yl)pyrrolidine-2,2,5,5-tetracarbo xamide (10)

To a stirred solution of (*R*)-1-(1-naphthylethyl)-amine (248mg, 1.5 mmol) in anhydrous THF (5.0 mL), was added 1.64 M *n*-butyllithium in hexane (0.8 mL, 1.3 mmol) at -78 °C. After 30 min, **13** (50 mg, 0.13 mmol) was added and the mixture was kept stirring at -78 °C. After 2.5 h, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was separated and washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified with SiO₂ column (AcOEt : hexane = 1 : 1) to give **10** as a colorless solid (42.1 mg, 34%).

Colorless solid. m.p. 110-118 °C. $[\alpha]_D^{19} = 36$ (c 0.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 10.96-10.84 (m, 2H), 10.26-10.13 (m, 2H), 8.42 (d, J = 6.4 Hz, 1.46H), 8.03-6.91 (m, 28.54H), 6.32 (d, J = 6.4 Hz, 1.46H), 5.90-5.72 (m, 4H), 5.43 (d, J = 6.4 Hz, 0.54H), 2.81-2.58 (m, 1.08H), 2.14-1.85 (m, 2.92H), 1.70 (d, J = 6.9 Hz, 4.38H), 1.69 (d, J = 6.9 Hz, 1.62H), 1.57 (d, J = 6.9 Hz, 1.62H), 1.47 (d, J = 6.9 Hz, 4.38H). ¹³C NMR (100 MHz, CDCl₃) δ 170.32, 169.88, 169.55, 169.12, 149.63, 148.57, 148.43, 146.82, 138.46, 138.12, 137.90, 133.89, 133.55, 130.84, 130.47, 130.31, 128.85, 128.81, 128.76, 128.34, 128.16, 127.67, 127.53, 126.39, 126.25, 126.10, 125.86, 125.72, 125.67, 125.37, 125.32, 125.25, 125.17, 123.13, 122.90, 122.85, 122.82, 122.76, 122.39, 122.29, 109.87, 109.82, 73.59, 73.46, 45.62, 45.54, 45.47, 45.44, 37.95, 37.13, 21.35, 21.28, 21.00, 20.92. IR (KBr) 3199, 3039, 2973, 2928, 2871, 1669, 1639, 1597, 1525, 1449, 1376, 1345, 1222, 1176, 1120, 1084, 1057, 1033, 993 cm⁻¹. MS m/z (rel intensity) 937 (M+H⁺, 22), 155 (100). HRMS Calcd for C₆₁H₅₇N₆O₄ (M+H⁺): 937.4441, found, 937.4436.

Preparation of 10-HCl

10 (2.8 mg, 3.0 μ mol) was dissolved in MeOH and 12 N aqueous HCl (0.05 mL) was added to the solution. After stirring for 10 min at rt, the mixture was concentrated *in vacuo*. The residue was dissolved in CDCl₃ (0.6 mL) and the ratio of **10a-HCl** and **10b-HCl** in CDCl₃ at 20 °C was detected by ¹H NMR.

10-HCl salt ¹H NMR (400 MHz, CDCl₃) δ 10.43 (d, J = 8.3 Hz, 0.64H), 10.25 (d, J = 8.3 Hz, 1.36H), 10.04 (d, J = 8.3 Hz, 1.36H), 9.98 (d, J = 8.3 Hz, 0.64H), 8.33 (br s, 0.64H), 7.92-6.88 (m, 26.64H), 6.70-6.56 (m, 1.36H), 6.42 (br s, 0.64H), 6.00 (br s, 1.36H), 5.80-5.56 (m, 4H), 4.93 (br s, 1.36H),

2.81-2.48 (m, 2.72H), 2.15-1.75 (m, 1.28H), 1.67 (d, J = 6.9 Hz, 4.08H), 1.62 (d, J = 6.9 Hz, 1.92H), 1.53 (d, J = 6.9 Hz, 4.08H), 1.40 (d, J = 6.9 Hz, 1.92H). ¹³C NMR (100 MHz, CDCl₃) δ 167.95, 167.59, 167.21, 154.90, 152.46, 139.83, 137.68, 137.52, 137.46, 137.26, 137.23, 133.91, 133.89, 133.56, 133.53, 130.61, 130.43, 130.35, 130.16, 129.29, 129.22, 129.00, 128.98, 128.82, 128.46, 128.03, 126.46, 126.42, 126.28, 126.19, 125.82, 125.73, 125.69, 125.50, 125.35, 125.20, 125.10, 125.05, 122.99, 122.73, 122.53, 122.43, 122.36, 122.03, 110.65, 110.06, 74.71, 74.59, 46.15, 46.07, 45.57, 45.52, 37.66, 37.21, 21.22, 20.81, 20.04.

1. Synthesized according to our previous report.

Kawabata, T.; Muramatsu, W.; Nishio, T.; Shibata, T.; Uruno, Y.; Schedel, H.

- J. Am. Chem. Soc. 2007, 129, 12890–12895.
- 2. Synthesized according to the literature procedure.
- Bowles, P.; Clayden, J.; Helliwell, M.; McCarthy, C.; Tomkinson, M.; Westlund, N.
- J. Chem. Soc., Perkin Trans. 1, 1997, 2607–2616.

X-ray Crystallographic Analysis of 1.

The intensity data were collected on a Rigaku/MSC Mercury CCD diffractometer with graphite monochromated MoK α radiation ($\lambda = 0.71070$ Å). Single crystals of **1** suitable for X-ray analysis were obtained by slow recrystallization at room temperature. The structure was solved by a direct method (SIR-2004)* and refined by full-matrix least-squares procedures on F2 for all reflections (SHELXL-97).** All hydrogen atoms were refined isotropically, while all other atoms were refined anisotropically. Crystal data: C₃₇H₃₂N₆O₄, M = 624.69, T = 173(2) K, monoclinic, *C*2/c (no.15), 0.30 × 0.05 × 0.05 mm³, a = 15.959(7) Å, b = 13.032(5) Å, c = 15.286(6) Å, V = 3147(2) Å³, Z = 4, *D*_{calc} = 1.319 gcm⁻³, $\mu = 0.088$ mm⁻¹, 20max = 51.00, 10902 measured reflections, 2932 independent reflections (Rint = 0.0544), 222 refined parameters, GOF = 1.058, *R*₁ = 0.0581 and w*R*₂ = 0.1263 [*I* >2 σ (*I*)], *R*₁ = 0.0901 and w*R*₂ = 0.1444 [for all data], largest diff. peak and hole 0.179 and -0.226 e.Å⁻³. These data has been depositied with the Cambridge Crystallographic Data Center as CCDC 948984.

X-ray Crystallographic Analysis of 10.

The intensity data were collected on a Rigaku/MSC Mercury CCD diffractometer with graphite monochromated MoK α radiation ($\lambda = 0.71069$ Å). Single crystals of **10** suitable for X-ray analysis were obtained by slow recrystallization at room temperature. The structure was solved by a direct method (SIR-2004)* and refined by full-matrix least-squares procedures on F2 for all reflections (SHELXL-97).** All hydrogen atoms were refined isotropically, while all other atoms were refined anisotropically. Crystal data: C₆₁H₅₆N₆O₄, M = 937.12, T = 173 (2) K, orthorhombic, *P*2₁2₁2₁ (no.19), a = 9.0103 (2) Å, b = 14.1379 (2) Å, c = 39.4878 (9) Å, V = 5030.22 (18) Å³, Z = 4, *D*_{calc} = 1.237 gcm⁻³, $\mu = 0.078$ mm⁻¹, 20max = 50.98, 36180 measured reflections, 9345 independent reflections (Rint = 0.0996), 644 refined parameters, GOF = 1.012, *R*₁ = 0.0539 and w*R*₂ = 0.0922 [*I* > 2 σ (*I*)], *R*₁ = 0.1307 and w*R*₂ = 0.1154 [for all data], largest diff. peak and hole 0.166 and -0.198 e.Å⁻³. These data has been depositied with the Cambridge Crystallographic Data Center as CCDC 948985.

Reference:

* (SIR-2004)

Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Caro, L. D.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Cryst. 2005, 38, 381.

** (SHELX-97)

(a) Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, 46, 467. (b) Sheldrick, G..
SHELX-97 Program for Crystal Structure Solution and the Refinement of
Crystal Structures, Institüt für Anorganische Chemie der Universität
Göttingen, Tammanstrasse 4, D-3400 Göttingen, Germany, 1997.

Conformational Search of 9

An energy-minimized conformer was generated by a molecular modeling search with OPLS2005 force field with the GB/SA solvation model for chloroform using MacroModel V 9.0 (20,000 steps MCMM). Stereoview of the conformer was shown below.

Figure S1. Energy-minimized structures of 9 (a) Side View (b) Top view

HPLC analysis of 1

A solution of **1** in CH₂Cl₂ (75 mM, 20 μ L) was submitted to chiral HPLC separation (Daicel, CHIRALPAK ID, 4.6 mm × 250 mm) eluent: hexane/CH₂Cl₂/Et₂NH = 60/40/0.1, flow rate: 1.0 mL/min, temperature: 0 °C; first eluting enantiomer $t_{\rm R}$ =28.7 min; second eluting enantiomer $t_{\rm R}$ = 33.2 min.

Figure S2. HPLC Chromatogram of 1

CD analysis of 1

Fraction A and B separated by HPLC were collected separately in 30 mL flask being cooled with dry ice/acetone bath. CD spectra of the fractionated solutions were readily measured at 0 °C.

Figure S3. CD and UV spectra of 1 at 0 °C (hexane/CH₂Cl₂/Et₂NH = 60/40/0.1)

Time dependent CD analysis

Time dependent CD spectra of **1** were recorded at 0 °C. The rate constant k for inversion was determined by plotting $ln(CD_0/CD_t)$ versus time using CD intensity at 258 nm. The half-life of racemization and the racemization barrier were calculated by linear regression analysis according to the below equations.

(1) $\ln(CD_0/CD_t) = 2kt$ (2) $t_{1/2} = \frac{\ln 2}{2k}$ (3) $\Delta G^{\ddagger} = -RTIn \frac{hk}{k_BT}$ R = gas constant T = Temperature h = Plank's constant k_B = Boltzmann constant t = time

Figure S4. Time dependent CD spectra of A at 0 °C (hexane/CH₂Cl₂/Et₂NH = 60/40/0.1)

Table S1. Time dependent CD of **A** at 258 nm $(0^{\circ}C)$

Figure S5. Time dependent CD spectra of **B** at 0 °C (hexane/CH₂Cl₂/Et₂NH = 60/40/0.1)

Table S2. Time dependent CD of **B** at 258 nm (0° C)

HPLC analysis of 9

A solution of **9** in CH₂Cl₂ was submitted to chiral HPLC separation (Daicel, CHIRALPAK ID, 4.6 mm × 250 mm) eluent: hexane/CH₂Cl₂/Et₂NH = 75/25/0.1, flow rate: 1.0 mL/min, temperature: 0 °C; first eluting enantiomer $t_{\rm R}$ =12.7 min; second eluting enantiomer $t_{\rm R}$ = 16.2 min.

Figure S6. HPLC Chromatogram of 9

Semipreparative scale separation of 9

A solution of racemic **9** in CH₂Cl₂ (40 mM, 50 µL) was submitted to preparative chiral HPLC separation (Daicel CHIRALPAK ID: 250 mm x 10 mm) eluent: hexane/CH₂Cl₂/Et₂NH = 75/25/0.1, UV: 254 nm, flow rate: 5.0 mL/min, temperature: 0 °C; first eluting enantiomer $[\alpha]_D^{19} - 42$ (99% ee, c 0.1, hexane); second eluting enantiomer $[\alpha]_D^{19} + 40$ (97% ee, c 0.1, hexane). Fractionated solution was concentrated *in vacuo* at 0 °C to give a colorless solid of (-)-**9** and (+)-**9**. These solids were kept in freezer at – 20 °C without racemization.

Racemization barrier analysis of 9 in o-dichlorobenzene by HPLC

The rate constant k for inversion at each temperature was determined by plotting $ln(ee_0/ee_t)$ versus time according to the equation $[ln(ee_0/ee_t) = 2kt]$. Hence, from the Eyring equation, the activation parameters were determined by plotting ln(k/T) versus 1/T wherein

(1)
$$\Delta H^{\ddagger} = -R \times slope$$

(2) $\Delta S^{\ddagger} = R \times [intercept + ln (h/k_B)]$

$$\begin{pmatrix} R = gas constant \\ h = Plank's constant \\ k_B = Boltzmann constant \end{pmatrix}$$

Table S3. Time dependent ee of 9 in o-dichlorobenzene (20 °C)

Table S4. Time dependent ee of 9 in *o*-dichlorobenzene (30 °C)

Table S5. Time dependent ee of 9 in *o*-dichlorobenzene (40 °C)

Table S6. Time dependent ee of 9 in o-dichlorobenzene (50 °C)

Table S7. Eyring plot of the racemization of 9 in o-dichlorobenzene

k (^{s-1})
7.56 × 10 ^{−6}
2.68 × 10 ⁻⁵
8.40 × 10 ⁻⁵
2.57 × 10 ⁻⁴

 $\label{eq:alpha} \begin{array}{l} \Delta H^{\ddagger} = 21.4 \ \text{kcal/mol} \\ \Delta S^{\ddagger} = - \ 8.8 \ \text{cal/mol} \cdot \text{K} \\ \Delta G^{\ddagger} = 23.8 \ \text{kcal/mol} \ (0 \ ^{\circ}\text{C}) \end{array}$

Racemization barrier analysis of 9 in hexane and CH₂Cl₂ by HPLC

The rate constant k for inversion was determined by plotting $ln(ee_0/ee_t)$ versus time. The half-life of racemization and the racemization barrier were calculated by linear regression analysis according to the below equations.

(1)
$$\ln(ee_0/ee_t) = 2kt$$

(2) $t_{1/2} = \frac{\ln 2}{2k}$
(3) $\Delta G^{\ddagger} = -RTln \frac{hk}{k_BT}$
R = gas constant
T = Temperature
h = Plank's constant
k_B = Boltzmann constant
t = time

Table S8. Time dependent ee of 9 in hexane (20 °C)

Table S9. Time dependent ee of 9 in CH₂Cl₂ (20 °C)

 $t_{1/2}$ = 78 min, ΔG^{\ddagger} = 22.7 kcal/mol (20 °C)

HPLC analysis of 10 at 0 $^\circ C$ and 18 $^\circ C$

A solution of **10** in CH₂Cl₂ was submitted to chiral HPLC separation (Daicel, CHIRALPAK ID, 4.6 mm × 250 mm) eluent: hexane/CH₂Cl₂/Et₂NH = 70/30/0.1, flow rate: 1.0 mL/min, temperature: 0 °C; first eluting conformer $t_{\rm R}$ =4.3 min; second eluting conformer $t_{\rm R}$ = 6.7 min.

Figure S7. HPLC Chromatogram of 10 (0 °C)

A solution of **10** in CH₂Cl₂ was submitted to chiral HPLC separation (Daicel, CHIRALPAK ID, 4.6 mm × 250 mm) eluent: hexane/CH₂Cl₂/Et₂NH = 70/30/0.1, flow rate: 1.0 mL/min, temperature: 18 °C; first eluting conformer $t_{\rm R}$ =4.2 min; second eluting conformer $t_{\rm R}$ = 5.9 min.

Figure S8. HPLC Chromatogram of 10 (18 °C)

Experiment of Scheme 1

To a stirred solution of 1-(1-naphthyl)ethylalcohol (3.3 mg, 19 µmol), 2,4,6-collidine (1.5 µL, 12 µmol) and (-)-9 (98% ee, 2.0 mg, 1.9 µmol) in CHCl₃ (40 µL), was added isobutyric anhydride (16 µL, 97 µmol) at – 40 °C. After 48 h, the mixture was diluted with hexane (1.0 mL) and 20 µL of the mixture was submitted to chiral HPLC analysis to detect ee of (-)-9 [98%ee, no racemization of (-)-9 occurred]. The reaction mixture was quenched with 40% MeNH₂/MeOH (0.10 mL) and concentrated *in vacuo*. The residue was purified by preparative TLC (AcOEt : hexane = 4 : 1) to obtain isobutyrate of the alcohol (59% ee, *S* major) and remaining alcohol (36% ee, *R* major). Ee of the isobutyrate was detected by chral HPLC. (Daicel, CHIRALCEL ODH, 250 mm × 4.6 mm), eluent hexane/IPA = 98/2, UV 254 nm, flow rate 1.0 mL/min. *R*-isomer, t_R 5.4 min and *S*-isomer, t_R 7.3 min. Absolute structure of the isobutyrate was identified by comparison with an authentic sample of *R* isomer prepared using (*R*) 1-(1-naphthyl)ethylalcohol purchased from Aldrich. Ee of the recovered alcohol was detected after isobutyration with excess amount of (*i*-PrCO)₂O, triethylamine and DMAP in CHCl₃.

Acylative kinetic resolution of a racemic secondary alcohol in the presence of (+)-9

The acylative kinetic resolution was also taken place in the presence of (+)-9 (96%ee, 10 mol%) under the same condition with Scheme 1 to give 55% ee (*R* major) of isobutyrate and 35% ee (*S* major) of recovered alcohol ($k_R/k_S = s = 5$).

Scheme S3. Acylative kinetic resolution in the presence of (+)-9

NMR Spectra

¹H NMR spectrum of **12** (CDCl₃)

¹H NMR spectrum of 2 (CDCl₃) ¹H NMR spectrum of 2 (CDCl₃) Br Br 0 0 ΗÌN HN NH Ы N 2 3.0 2.0 1.0 ·····ann Br Rr ^{13}C NMR spectrum of **2** (CDCl₃) С ίH ΗN NH g N 2 200.0190.0

70.0

60.0 50.0 40.0 30.0 20.0

160.0

180.0 170.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0

B

10.0 .

¹H NMR spectrum of **9** (CDCl₃)

S-33

¹H-¹³C HMQC NMR spectrum of **10** (CDCl₃)

¹H-¹³C HMBC NMR spectrum of **10** (CDCl₃)

¹H NMR spectrum of **10-HCl** (CDCl₃)

¹H-¹H COSY NMR spectrum of **10-HCl** (CDCl₃)

 $^1\text{H-}^{13}\text{C}$ HMQC NMR spectrum of **10-HCl** (CDCl₃)

¹H-¹³C HMBC NMR spectrum of **10-HCl** (CDCl₃)

Figure S9. ¹NMR spectra of 1 with different concentrations (20 °C, CDCl₃)

VT NMR Experiment

Racemization barrier analysis of **1-8** in *o*-dichlorobenzene- d_4 and DMSO- d_6 were conducted by full line shape analysis of VT NMR spectra. VT NMR spectra were recorded at 400 MHz on a JEOL ECX-400 PKT spectrometer. Natural line widths for each spectrum were determined using pyridine C(2)-H signals as spectator signals. The chemical shifts of the amide protons at close to coalescence were determined from a plot of v_A - v_B (in Hz) vs T at temperatures well below coalescence. Simulated spectra for the amide protons were generated using WINDNMR-Pro and compared with the acquired spectra using difference spectra. From these simulations, the rate constant k for inversion could be determined as a function of temperature. Hence, from the Eyring equation, the activation parameters could be determined by plotting ln(k/T) versus 1/T wherein

(1)
$$\Delta H^{\ddagger} = -R \times slope$$

(2) $\Delta S^{\ddagger} = R \times [interce_{pt} + ln (h/k_{B})]$

$$\begin{pmatrix} R = gas constant \\ h = Plank's constant \\ k_{B} = Boltzmann constant \end{pmatrix}$$

Racemization barrier analysis of 1 (*o*-dichlorobenzene- d_4)

Figure S10. (a) VT NMR spectra of 1. (b) Full line shape analysis of amide protons of 1. (c) Eyring plot

Racemization barrier analysis of 2 (o-dichlorobenzene- d_4)

Figure S11. (a) VT NMR spectra of 2. (b) Full line shape analysis of amide protons of 2. (c) Eyring plot

Racemization barrier analysis of 3 (o-dichlorobenzene- d_4)

Figure S12. (a) VT NMR spectra of 3. (b) Full line shape analysis of amide protons of 3. (c) Eyring plot

Racemization barrier analysis of 4 (o-dichlorobenzene- d_4)

Figure S13. (a) VT NMR spectra of 4. (b) Full line shape analysis of amide protons of 4. (c) Eyring plot

Figure S14. (a) VT NMR spectra of 5. (b) Full line shape analysis of amide protons of 5. (c) Eyring plot

Racemization barrier analysis of 6 (*o*-dichlorobenzene- d_4)

Figure S15. (a) VT NMR spectra of 6. (b) Full line shape analysis of amide protons of 6. (c) Eyring plot

Racemization barrier analysis of 7 (o-dichlorobenzene- d_4)

Figure S16. (a) VT NMR spectra of 7. (b) Full line shape analysis of amide protons of 7. (c) Eyring plot

Racemization barrier analysis of 8 (o-dichlorobenzene- d_4)

Figure S17. (a) VT NMR spectra of 8. (b) Full line shape analysis of amide protons of 8. (c) Eyring plot

Racemization barrier analysis of 7 (DMSO-d₆)

Figure S18. (a) VT NMR spectra of 7. (b) Full line shape analysis of amide protons of 7. (c) Eyring plot

Racemization barrier analysis of 8 (DMSO- d_6)

Figure S19. (a) VT NMR spectra of 8. (b) Full line shape analysis of amide protons of 8. (c) Eyring plot