# Pd-Catalyzed Heck-type Cascade Reaction with <br> $N$-Tosylhydrazones: An Efficient Way to Alkenes Via in-situ <br> <br> Generated Alkylpalladium 

 <br> <br> Generated Alkylpalladium}

Xianglei Liu, Xinna Ma, Yunze Huang and Zhenhua Gu*

## Supporting Information

General Information. All reactions were carried out under a nitrogen atmosphere in oven or flame-dried glassware, unless the reaction procedure states otherwise. Tetrahydrofuran (THF) was distilled from sodium-benzophenone in a continuous still under an atmosphere of $\mathrm{N}_{2}$. Dichloromethane and acetonitrile were distilled from calcium hydride in a still under and atmosphere of nitrogen. Room temperature reactions were carried out between $20-25{ }^{\circ} \mathrm{C}$. Flash column chromatography was performed using 40-63 $\mu \mathrm{m}$ silica gel as the stationary phase. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC-400 FT spectrometer using solvent residue as an internal reference ( 7.26 and 77.00 ppm for $\mathrm{CDCl}_{3}$, respectively). High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass).

Table Sı. Reaction Condition Optimization ${ }^{a}$

|  <br> 1a |  | $\begin{array}{r} \mathrm{Pd}(\mathrm{OAc})_{2}( \\ \quad \mathrm{Ligand}, \mathrm{~L} \\ \mathrm{~s} \quad \begin{array}{l} \text { solvent, } \end{array} \\ \hline \end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Entry | Ligand (mol \%) | Solvent | Time | Yield (\%) ${ }^{\text {b }}$ |
| 1 | TFP (15) | PhMe | 3 h | 73 |
| 2 | TFP (15) | DMF | 1.5 h | 76 |
| 3 | TFP (15) | THF | 2 h | $95^{\text {c }}$ |
| 4 | TFP (15) | $\mathrm{CH}_{3} \mathrm{CN}$ | 1 h | 98 |
| 5 | $\mathrm{PPh}_{3}(15)$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 1 h | 98 |
| 6 | $\mathrm{PPh}_{3}(10)$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 1 h | 94 |
| 7 | rac-BINAP (7.5) | $\mathrm{CH}_{3} \mathrm{CN}$ | 5 h | 37 |
| 8 | dppe (7.5) | $\mathrm{CH}_{3} \mathrm{CN}$ | 5 h | 31 |
| $9{ }^{\text {d }}$ | $\mathrm{PPh}_{3}(3)$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 20 min | 93 |
| $10^{e}$ | $\mathrm{PPh}_{3}(15)$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 1 h | NR |
| 11 | - | $\mathrm{CH}_{3} \mathrm{CN}$ | 1 h | $f$ |

[^0]in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ and phosphine. ${ }^{b}$ Isolated yields. ${ }^{c}$ The isolated product was contaminated with small amount of uncharacterized compound. ${ }^{d} 1 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used and the reaction was conducted at $80{ }^{\circ} \mathrm{C}$. ${ }^{e}$ The reaction was conducted in the absence of Pd catalyst. ${ }^{f}$ A complicated mixture was detected.

## Typical Procedures for the preparation of $1 \mathbf{1}^{1,2}$ Preparation of 1a:


$1 \mathbf{1 a}$
Methacryloyl chloride ( $0.12 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2 \mathrm{eq}$ ) was added to a mixture of 2-iodoaniline ( $0.219 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$ ), DMAP ( $6.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ), $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{ml}, 2.0 \mathrm{mmol}, 2.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ dropwise. After stirring at $-20^{\circ} \mathrm{C}$ for 30 min and room temperature overnight, the mixture was quenched with saturated $\mathrm{NaHCO}_{3}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the obtained crude amide was used in next step without purification.
$\mathrm{NaH}(80 \mathrm{mg}, 60 \%$ in mineral oil, $2.0 \mathrm{mmol}, 2.0 \mathrm{eq}$ ) was added to a solution of the above crude amide in THF $(4.0 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ in portions. After stirring for 20 min at 0 ${ }^{\circ} \mathrm{C}$ MeI ( $0.19 \mathrm{ml}, 3.0 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) added dropwise and the reaction mixture was allowed to warm to room temperature and stirred for another 2 h . The reaction was quenched with water and the resulting mixture was extracted with ethyl acetate twice. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography on silica gel ( $10 \%$ ethyl acetate/hexanes) to afford the desired amide $\mathbf{1 a}(0.173 \mathrm{~g}, 57 \%) .{ }^{2}$ Solid, $71-72{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.87(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.35 (dd, $J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1$ H), $4.98(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H})$.


1b
$\mathbf{1 b}^{1,3}(\mathrm{Rf}=0.2, \mathrm{PE}: \mathrm{EA}=10: 1)(1.87 \mathrm{~g}, 74 \%)$ was prepared following the typical procedure in 10.0 mmol scale. Solid, $49-51{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H})$, $5.00(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.9,143.5,140.0,133.7,129.8,129.1,128.4,122.8,118.6,36.3,20.2$.


1c

1c $(\operatorname{Rf}=0.3, \mathrm{PE}: \mathrm{EA}=5: 1)(2.05 \mathrm{~g}, 65 \%)$ was prepared following the typical procedure in 10.0 mmol scale. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.8,144.2,140.5,140.2$, 139.5, 130.1, 128.7, 118.7, 98.8, 36.8, 20.6, 20.4. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ONI}$ $\left[\mathrm{M}^{+}+\mathrm{H}\right] 316.0193$, found 316.0184.


1d
1d $(\operatorname{Rf}=0.3$, PE:EA $=5: 1)(1.92 \mathrm{~g}, 67 \%)$ was prepared following the typical procedure in 8.5 mmol scale. Solid, $60-61^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.86(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $5.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 171.6,145.7,139.9,139.5,133.9,129.7,129.6,119.3,99.3,36.8,20.5$. HRMS (APCI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ON}^{35} \mathrm{CII}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 335.9647, found 335.9643.

## Preparation of $\mathbf{1 f}:{ }^{4}$



Under a nitrogen atmosphere methacryloyl chloride ( $2.3 \mathrm{ml}, 24.0 \mathrm{mmol}, 1.2 \mathrm{eq}$ ) was added to a solution of 2-iodoaniline ( $4.38 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0 \mathrm{eq}$ ), DMAP ( 0.122 g , $1.0 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, $\mathrm{Et}_{3} \mathrm{~N}(5.6 \mathrm{ml}, 40.0 \mathrm{mmol}, 2.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ dropwise. After stirring at $-20^{\circ} \mathrm{C}$ for 30 min and room temperature overnight, the reaction was quenched with saturated $\mathrm{NaHCO}_{3}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice, and the combined organic layer washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was purified by column chromatography ( $5 \%$ ethyl acetate/hexanes) on silica gel to afford $\mathbf{1 f}$ ( $3.10 \mathrm{~g}, 10.8$ $\mathrm{mmol}, 54 \%$ ). Solid, $47-48^{\circ} \mathrm{C}$ (ethyl acetate/hexanes).

## Preparation of 1e


$\mathrm{NaH}(30 \mathrm{mg}, 60 \%$ in mineral oil, $0.75 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added in portions to a solution of $\mathbf{1 f}(0.144 \mathrm{~g}, 0.50 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF $(2.0 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for $20 \mathrm{~min}, \operatorname{BnBr}(70 \mu \mathrm{l}, 0.60 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added dropwise and the reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with water and THF was removed by evaporation. The residue was extracted with ethyl acetate twice, and the organic phase was washed with brine, dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated, and the residue was purified by column chromatography ( $5 \%$ ethyl acetate/hexanes) on silica gel to afford $\mathbf{1 e}(0.175 \mathrm{~g}, 93 \%)$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.88\left(\mathrm{dd}, J_{1}=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37-7.09(\mathrm{~m}, 6 \mathrm{H})$, $6.96(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.4,144.5,140.2,140.1,136.8,131.3,129.4,129.2,128.6,128.4$, 127.5, 118.7, 100.0, 51.8, 20.7. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ONI}\left[\mathrm{M}^{+}+\mathrm{H}\right] 378.0349$, found 378.0346 .

## Preparation of 1g:



Thionyl chloride ( $0.15 .0 \mathrm{ml}, 2.0 \mathrm{mmol}, 2.0 \mathrm{eq}$ ) was added to 2-phenylacrylic acid $(0.178 \mathrm{~g}, 1.2 \mathrm{mmol}, 1.2 \mathrm{eq})$ at $80^{\circ} \mathrm{C}$ dropwise. The reaction was maintain at $80^{\circ} \mathrm{C}$ for about 30 min and then cooled to room temperature. The excess thionyl chloride was removed under vacuum and the resulting crude acid chloride used in next step directly.


The above acid chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{ml})$ was added to a solution of 2-iodoaniline ( $0.219 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$ ), DMAP ( $6.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ), $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{ml}, 2.0 \mathrm{mmol}, 2.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ dropwise. After stirring at $-20^{\circ} \mathrm{C}$ for 30 min and room temperature overnight, the mixture was quenched with saturated $\mathrm{NaHCO}_{3}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the resulting crude amide was used in next step without further purification.
$\mathrm{NaH}(80 \mathrm{mg}, 60 \%$ in mineral oil, $2.0 \mathrm{mmol}, 2.0 \mathrm{eq}$ ) was added to a solution of the above crude amide in THF ( 5.0 ml ) at $0^{\circ} \mathrm{C}$ for portions. After stirring for 20 min at $0{ }^{\circ} \mathrm{C}$ MeI $(0.19 \mathrm{ml}, 3.0 \mathrm{mmol}, 3.0 \mathrm{eq})$ added dropwise and the reaction mixture was allowed to warm to room temperature and stirred for another 2 h . After quenched with water, the residue was extracted with ethyl acetate twice. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated, and purified by column chromatography ( $10 \%$ ethyl acetate/hexanes) on silica gel to afford $\mathbf{1 g}$ ( 0.151 $\mathrm{g}, 42 \%)$. A mixture of rotamers were observed and the followings are selected peaks: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 3 \mathrm{H})$, 7.17-7.09 (m, 2 H), 7.08-6.97 (m, 1 H ), 6.85 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.74 (d, $J=7.6 \mathrm{~Hz}, 1$ H), $5.61(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 170.1$, $145.5,145.2,144.8,139.9,139.7,136.8$, 135.1, 129.7, 129.0, 128.7, 128.2, 127.9, $126.0,117.3,114.8,99.1,98.0,39.3,36.2$. HRMS (APCI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ONI}$ $\left[\mathrm{M}^{+}+\mathrm{H}\right] 364.0193$, found 364.0183.

## Preparation of 1i:



A solution of diethyl azodicarboxylate (DEAD) ( $0.15 \mathrm{ml}, 0.98 \mathrm{mmol}, 1.3 \mathrm{eq}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added slowly to a mixture of 3-methylbut-3-en-1-ol $(100 \mu \mathrm{l}$, $0.98 \mathrm{mmol}, 1.3 \mathrm{eq}$ ), $\mathrm{PPh}_{3}(0.171 \mathrm{~g}, 0.98 \mathrm{mmol}, 1.3 \mathrm{eq}), N$-tosyl-2-iodoaniline ( 0.280 g , $0.75 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulted solution was allowed to warm to room temperature and stirred for 1 h . The reaction was quenched with water and extracted with EtOAc twice. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography on silica gel ( $5 \%$ ethyl acetate/hexanes) to afford compound $\mathbf{1 i}$ ( $0.330 \mathrm{~g}, 0.75 \mathrm{mmol}, 99 \%$ ). Solid, $63-66{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( 400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 3$ H), $7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H})$, 3.85-3.68 (m, 1 H ), 3.60-3.43 (m, 1 H ), 2.44 (s, 3 H ), 2.40-2.25 (m, 1 H$), 2.22-2.06$ $(\mathrm{m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 143.6,142.1,141.5,140.5$, 136.2, 130.6, 129.9, 129.5, 128.7, 128.1, 111.9, 103.1, 50.3, 36.3, 22.6, 21.6. HRMS (APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NIS}\left[\mathrm{M}^{+}+\mathrm{H}\right] 442.0332$, found 442.0326 .

## Preparation of $\mathbf{1 k}$ :


$\mathrm{NaH}(0.120 \mathrm{~g}, 60 \%$ in mineral oil, $3.0 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added to a solution of dimethyl 2- (2-iodobenzyl)malonate ${ }^{5}(0.52 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DMF $(4.0 \mathrm{ml})$ in portions. After stirring at rt for 30 min 3 -chloro-2-methylprop-1-ene $(0.18 \mathrm{ml}, 1.8$ $\mathrm{mmol}, 1.2 \mathrm{eq}$ ) was added dropwise and the reaction mixture was allowed to heat to 40 ${ }^{\circ} \mathrm{C}$ for 3 h . After cooling to rt the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with ethyl acetate twice. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated, and the residue was purified by column chromatography on silica gel ( $5 \%$ ethyl acetate/hexanes) to afford $\mathbf{1 k}(0.40 \mathrm{~g}, 60 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.81$ (dd, $J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.88\left(\mathrm{td}, J=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.89$ (s, 1 H ), $4.74(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.4,140.7,139.9,139.7,130.0,128.4,128.0,115.2$, 102.7, 58.3, 52.5, 42.9, 42.0, 23.5. HRMS (APCI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{I}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 403.0401, found 403.0396.

## Preparation of 1m:


$\mathrm{NaH}(60 \mathrm{mg}, 60 \%$ in mineral oil, $1.5 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added to a solution of $\mathbf{1 f}$ $(0.287 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DMF $(2.0 \mathrm{ml})$ in portions and stirred at room temperature for 30 min before 3-chloro-2-methylprop-1-ene ( $0.12 .0 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ eq) was added dropwise. The reaction mixture was heated to $40{ }^{\circ} \mathrm{C}$ for 3 h . After cooling down the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with ethyl acetate twice. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated, and the residue was purified by column chromatography ( $5 \%$ ethyl acetate/hexanes) on silica gel to afford 1m ( $0.284 \mathrm{~g}, 0.83 \mathrm{mmol}, 83 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.13-4.94 (m, 3 H ), 4.85 ( $\mathrm{s}, 1 \mathrm{H}$ ), 4.71 (s, 1 H ), 3.49 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.86 ( $\mathrm{s}, 3$ $\mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.2,144.9,140.4,140.3,140.2$, $130.8,129.2,128.7,118.7,113.9,99.9,54.1,20.7$. HRMS (APCI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ONI}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 342.0349, found 342.0343.

## Preparation of 1n:



A solution of $\mathrm{NaOH}(1.0 \mathrm{M}, 3.0 \mathrm{ml}, 3.0 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added to a mixture of dimethyl 2-(3-methylbut-3-enyl)malonate ( $0.40 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) in MeOH ( 5.0 ml ) and was stirred at reflux for 1 h . After cooling to room temperature the mixture was acidified by $4.0 \mathrm{M} \mathrm{HCl}(\mathrm{pH} \sim 3.0)$ and extracted with EtOAc three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated.

Diethylamine ( $0.24 \mathrm{ml}, 2.3 \mathrm{mmol}, 1.15 \mathrm{eq}$ ) was added to a mixture of above diacid in $\operatorname{EtOAc}(2.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ followed by polyformaldehyde $(84 \mathrm{mg}, 2.8 \mathrm{mmol}$, 1.4 eq ), and the mixture was heated at reflux for 2 h . After cooling to room temperature, the reaction mixture was acidified by $2.0 \mathrm{M} \mathrm{HCl}(\mathrm{pH} \sim 3.0)$. The mixture was extracted with EtOAc three times, and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography ( $20 \%$ ethyl acetate/hexanes) on silica gel to afford $\mathbf{S 1}^{6}{ }^{6}(0.221$ $\mathrm{g}, 1.56 \mathrm{mmol}, 79 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.67$ (s, 1 H ), 4.74 $(\mathrm{s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 172.6,144.7,139.6,127.3,110.6,36.5,29.7,22.4$. HRMS (APCI) calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 141.0910, found 141.0906.


Thionyl chloride ( $0.18 \mathrm{ml}, 2.5 \mathrm{mmol}, 2.0 \mathrm{eq}$ ) was added to $\mathbf{S 1}(0.21 \mathrm{~g}, 1.5 \mathrm{mmol}$, 1.2 eq) at $80^{\circ} \mathrm{C}$ dropwise and the reaction was maintained at $80^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, the excess thionyl chloride was removed under vacuum and the resulting acid chloride $\mathbf{S} 2$ was used in next step directly.


The above acid chloride $\mathbf{S 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{ml})$ was added to a mixture of 2-iodoaniline ( $0.273 \mathrm{~g}, 1.25 \mathrm{mmol}, 1.0 \mathrm{eq}$ ), DMAP ( $7.6 \mathrm{mg}, 0.0625 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ), $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{ml}, 2.5 \mathrm{mmol}, 2.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ dropwise. After stirring at $-20^{\circ} \mathrm{C}$ for 30 min and room temperature overnight, the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layer was washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was used in next step without purification.
$\mathrm{NaH}(0.100 \mathrm{~g}, 60 \%$ in mineral oil, $2.5 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added to a solution of the above crude amide in THF $(5.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ for portions. After stirring for 20 min at $0{ }^{\circ} \mathrm{C}$ MeI $(0.23 \mathrm{ml}, 3.75 \mathrm{mmol}, 3.0 \mathrm{eq})$ was added dropwise and the reaction mixture was allowed to warm to room temperature and stirred for another 2 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with EtOAc twice. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography ( $10 \%$ ethyl acetate/hexanes) on silica gel to afford $\mathbf{1 n}(0.199 \mathrm{~g}, 45 \%)$. A mixture of rotamers were observed in ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{CDCl}_{3}$ at room temperature. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.25$ (s, 3 H ), 2.40-2.20 (m, 2 H ), 2.20-2.00 (m, 2 H ), 1.69 (s, 3 H ); ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 171.6,146.8,144.9,144.2,140.2,129.6,129.3,129.2,117.7,110.1,99.1$, 36.9, 35.7, 31.7, 22.6. HRMS (APCI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ONI}\left[\mathrm{M}^{+}+\mathrm{H}\right] 356.0506$, found 356.0503.

## Synthesis of (E)-1,3-dimethyl-3-styrylindolin-2-one (3aa):



Typical Procedure for $\operatorname{Pd}(\mathrm{OAc})_{2}$-catalyzed cross-coupling of $\mathbf{1}$ and N -tosyl hydrazones 2: A mixture of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 b}(0.110 \mathrm{~g}, 0.40 \mathrm{mmol}$, $2.0 \mathrm{eq}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}(48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ eq) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 50 min . After complete consumption of starting material 1a, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc twice, and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography on silica gel ( $10 \%$ ethyl acetate/hexanes) to afforded 3aa ( $52.3 \mathrm{mg}, 99 \%$ ). ${ }^{7}$ Solid, 119-122 ${ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.35-7.28(\mathrm{~m}, 3$ H), $7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.11\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $1.58(\mathrm{~s}, 3 \mathrm{H})$.

Procedure for the $\mathbf{5} \mathbf{~ m m o l}$ scale reaction: A mixture of $1 \mathrm{a}(1.51 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ eq), 2a ( $2.74 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.0 \mathrm{eq}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(56 \mathrm{mg}, 0.25 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}$ $(1.20 \mathrm{~g}, 15.0 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{PPh}_{3}(0.197 \mathrm{~g}, 0.75 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 75.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was stirred at $80^{\circ} \mathrm{C}$ for 30 min . After complete consumption of 1a, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and MeCN was removed by evaporation. The residue was extracted with ethyl acetate twice and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica ( $10 \%$ ethyl acetate/hexanes) to afford 3aa ( $1.26 \mathrm{~g}, 96 \%$ ).

## Synthesis of (E)-1,3-dimethyl-3-(2’-methylstyryl)indolin-2-one (3ab):



The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 b}(0.115 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80{ }^{\circ} \mathrm{C}$ for 30 min afforded 3ab $(\mathrm{Rf}=0.4, \mathrm{PE}: \mathrm{EA}=10: 1)(55.0 \mathrm{mg}, 99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.59$ (s, 3 H ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.7,142.9,135.6,135.4,132.9,131.1$, $130.1,128.1,127.9,127.5,126.0,125.6,123.8,122.5,108.3,50.9,26.3,23.2,19.6$.

HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right] 278.1539$, found 278.1533.

## Synthesis of (E)-3-1,3-dimethyl-(2'-methoxystyryl)indolin-2-one (3ac):



The reaction of 1a ( $60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$, 2c $(0.122 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 1 h afforded 3ac $(\mathrm{Rf}=0.4, \mathrm{PE}:$ Acetone $=4: 1)(58.1 \mathrm{mg}, 99 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.40 (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.35-7.28$ (m, 2 H ), 7.22-7.16 (m, 1 H ), 7.13 (t, J = 7.2 $\mathrm{Hz}, 1 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.77$ (m, 2 H ), $6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3$ H), $3.24(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.9$, 156.6, 142.9, 133.2, 130.1, 128.6, 128.0, 126.9, 125.5, 124.9, 124.0, 122.5, 120.5, 110.7, 108.2, 55.3, 51.0, 26.3, 23.1. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 294.1489, found 294.1491.

## Synthesis of (E)-1,3-dimethyl-3-(2'-bromostyryl)indolin-2-one (3ad):



The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 d}(0.141 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}\left(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$ ) in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80{ }^{\circ} \mathrm{C}$ for 50 min afforded 3ad ( $\mathrm{Rf}=0.6, \mathrm{PE}: \mathrm{EA}=5: 1)(61.3 \mathrm{mg}, 90 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.53-7.45 (m, 2 H), 7.37-7.30 (m, 2 H), $7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1$ H), 7.10-7.03 (m, 1 H$), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.4$, 143.0, 136.4, 132.74, 132.66, 132.4, 129.3, 128.9, 128.3, 127.4, 127.1, 124.1, 123.8, 122.7, 108.4, 50.9, 26.4, 23.1. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ONBr}^{79}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 342.0488 , found 342.0491 .

## Synthesis of (E)-1,3-dimethyl-3-(4’-chlorostyryl)indolin-2-one (3ae):



The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 e}(0.124 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$,
$\operatorname{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}(48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{PPh}_{3}\left(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$ ) in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 50 min afforded 3ae ( $\mathrm{Rf}=0.6$, $\mathrm{PE}: \mathrm{EA}=5: 1$ ) $\left(53.4 \mathrm{mg}, 87 \%\right.$ ). Solid, $92-95{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.24$ (dd, $J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.21-7.12 (m, 5 H$), 7.04$ (dd, $J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.5,142.9,135.0,133.2,132.6,130.5,128.8,128.6,128.2$, 127.6, 123.9, 122.6, 108.4, 50.6, 26.4, 23.0. HRMS (APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ONCl}^{35}$ $\left[\mathrm{M}^{+}+\mathrm{H}\right] 298.0993$, found 298.0986.

Synthesis of (E)-1,3-dimethyl-3-(4'-methoxystyryl)indolin-2-one (3af):


1a


2f


3af

The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 f}(0.122 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 1 h afforded 3af $(\mathrm{Rf}=0.4$, PE:Acetone $=4: 1)(58.2 \mathrm{mg}, 99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1$ H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.9$, 159.2, 143.0, 133.0, 129.4, 129.3, 128.1, 127.6, 124.0, 122.6, 113.8, 108.3, 55.2, 50.6, 26.3, 23.1. HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 294.1489, found 294.1487.

Synthesis of (E)-1,3-dimethyl-3-(4'-tert-butylstyryl)indolin-2-one (3ag):


The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 g}(0.132 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 30 min afforded $3 \mathrm{ag}(\mathrm{Rf}=0.7, \mathrm{PE}: \mathrm{EA}=5: 1)(62.0 \mathrm{mg}, 97 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $7.34-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{td}, J=7.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.7,150.7,142.9,133.7,132.9,129.7,129.0,128.0$, 126.1, 125.3, 123.9, 122.5, 108.2, 50.6, 34.4, 31.2, 26.3, 23.1. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right] 320.2009$, found 320.2004 .

Synthesis of (E)-1,3-dimethyl-3-(4'-ethoxycarbonystyryl)indolin-2-one (3ah):


The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 h}(0.139 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$ $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}\left(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$ ) in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 40 min afforded 3ah ( $\mathrm{Rf}=0.4$, $\mathrm{PE}: \mathrm{EA}=5: 1)(65.0 \mathrm{mg}, 97 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 7.93 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.23(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 178.2$ (C), 166.2 (C), 142.9 (C), 140.9 (C), 132.4 [CH=CH], 129.7 $[\mathrm{CH}(\mathrm{Ar})], 129.3(\mathrm{C}), 129.2[\mathrm{CH}=\mathrm{CH}], 128.3[\mathrm{CH}(\mathrm{Ar})], 126.2$ [CH(Ar)], 123.8 $[\mathrm{CH}(\mathrm{Ar})], 122.6[\mathrm{CH}(\mathrm{Ar})], 108.4[\mathrm{CH}(\mathrm{Ar})], 60.8\left(\mathrm{CH}_{2}\right), 50.7(\mathrm{C}), 26.3\left(\mathrm{NCH}_{3}\right), 23.0$ $\left(\mathrm{CCH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ (one quaternary carbon was missing or overlapped with others). HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 336.1594, found 336.1589.

## Synthesis of ( $E$ )-1,3-dimethyl-3-(4'-cyanostyryl)indolin-2-one (3ai):



The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 i}(0.120 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}\left(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$ ) in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 50 min afforded 3ai ( $\mathrm{Rf}=0.2$, $\mathrm{PE}: \mathrm{EA}=5: 1$ ) ( $40.1 \mathrm{mg}, 70 \%$ ). Solid, $115-118{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.40(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.34 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (dd, $J=6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.14 (td, $J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.0,142.9,141.0,133.8,132.2,132.1,128.5$, 128.4, 126.9, 123.8, 122.8, 118.8, 110.8, 108.5, 50.7, 26.4, 22.9. HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ON}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 289.1335, found 289.1331.

Synthesis of (E)-1,3-dimethyl-3-(3'-nitrostyryl)indolin-2-one (3ak):


The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 k}(0.128 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$,
$\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 1 h afforded 3ak ( $\mathrm{Rf}=0.4$, PE:EA $=10: 1$ ) $(58.1 \mathrm{mg}, 95 \%)$. Solid, $162-164{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), 7.63 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td} J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{dd}, J=7.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.50(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.1,148.4,142.9,138.3,133.2,132.24,132.20,129.3$, 128.4, 128.0, 123.8, 122.8, 122.2, 121.0, 108.5, 50.7, 26.4, 22.9. HRMS (APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 309.1234, found 309.1227.

Synthesis of (E)-3-(2'-(furan-2-yl)vinyl)-1,3-dimethylindolin-2-one (3al):


1a
21
3al
The reaction of $\mathbf{1 a}(60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), 2 \mathbf{l}(0.106 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}(48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80{ }^{\circ} \mathrm{C}$ for 50 min afforded 3al $(\mathrm{Rf}=0.5, \mathrm{PE}: \mathrm{EA}=5: 1)(45.0 \mathrm{mg}, 89 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.27-7.21 (m, 2 H), 7.20-7.16 (m, 1 H), 7.04 (td, $J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 6.26-6.14 (m, 3 H ), 6.10 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.15 (s, 3 H ), 1.50 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.5,152.2,142.9,141.9,132.7,128.4,128.2,123.8$, 122.7, 118.7, 111.2, 108.3, 108.2, 50.4, 26.4, 23.0. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}$ $\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 254.1176, found 254.1171.

Synthesis of (E)-1,3-dimethyl-3-(2'-(naphthalen-2-yl)vinyl)indolin-2-one (3am):


The reaction of 1a ( $60.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 m}(0.130 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0$ eq), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}(48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 1 h afforded 3am ( $\mathrm{Rf}=0.6$, $\mathrm{PE}: \mathrm{EA}=10: 1$ ) ( $45.2 \mathrm{mg}, 72 \%$ ). Solid, $111-112{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.82-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H})$, 7.58 (dd, $J=8.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1$ H), $3.26(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.7$, 143.0, 134.0, 133.4, 132.9, 132.8, 130.2, 130.1, 128.2, 128.1, 127.9, 127.6, 126.5, 126.1, 125.8, 124.0, 123.5, 122.6, 108.4, 50.8, 26.4, 23.1. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 314.1539, found 314.1538 .

Synthesis of (E)-1,3-dimethyl-3-styrylindolin-2-one (3aa):


A mixture of $\mathbf{1 b}(50.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), 2 \mathbf{a}(0.110 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}(48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was stirred at $80^{\circ} \mathrm{C}$ for 1 h afforded 3aa ( $51.5 \mathrm{mg}, 98 \%$ ).

## Synthesis of ( $E$ )-1,3,5-trimethyl-3-styrylindolin-2-one (3ca):



The reaction of $\mathbf{1 c}(63.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 a}(0.110 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 30 min afforded 3ca ( $\mathrm{Rf}=0.4$, PE:EA $=10: 1$ ) ( $54.9 \mathrm{mg}, 99 \%$ ). Solid, $83-85{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.36(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.49$ (s, 3 H ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.6,140.5,136.5,132.9,132.1,129.90$, 129.87, 128.4, 128.3, 127.6, 126.4, 124.7, 108.0, 50.7, 26.3, 23.0, 21.1. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right] 278.1539$, found 278.1537.

## Synthesis of (E)-1,3-dimethyl-5-chloro-3-styrylindolin-2-one (3da):



The reaction of $\mathbf{1 d}(67.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 a}(0.110 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 50 min afforded 3da $(\mathrm{Rf}=0.4$, PE:EA $=5: 1)(58.3 \mathrm{mg}, 98 \%)$. Solid, $96-98{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.34-7.08(\mathrm{~m}, 7 \mathrm{H}), 6.72(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}$, 3 H ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.2,141.6,136.3,134.6,130.5,129.1,128.6$, 128.2, 128.0, 127.9., 126.6, 124.5, 109.4, 50.9, 26.6, 23.0. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ON}^{35} \mathrm{Cl}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 298.0993, found 298.0989.

Synthesis of (E)-1-benzyl-3-methyl-3-styrylindolin-2-one (3ea):


The reaction of $\mathbf{1 e}(75.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 a}(0.110 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}\left(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$ ) in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80{ }^{\circ} \mathrm{C}$ for 40 min afforded 3ea $(\mathrm{Rf}=0.7, \mathrm{PE}: \mathrm{EA}=10: 1)(67.4 \mathrm{mg}, 99 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 10 \mathrm{H}), 7.08(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.91(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.8,142.0,136.5,135.8,132.8,130.2,129.9,128.8,128.5,128.0,127.7,127.5$, 127.1, 126.5, 124.0, 122.6, 109.4, 50.7, 43.6, 23.3. HRMS (APCI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right] 340.1696$, found 340.1689 .

## Synthesis of (E)-1-methyl-3-phenyl-3-styrylindolin-2-one (3ga):



The reaction of $\mathbf{1 g}(72.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 a}(0.110 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 30 min afforded 3ga ( $\mathrm{Rf}=0.5$, $\mathrm{PE}: \mathrm{EA}=5: 1$ ) $(63.3 \mathrm{mg}, 97 \%)$. Solid, $128-130{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.43-7.20(\mathrm{~m}, 12 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=72$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1$ H), 3.30 (s, 3 H ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.7,143.2,140.1,136.4,131.6$, 131.5, 128.9, 128.7, 128.5, 128.4, 127.8, 127.5, 127.4, 126.6, 125.5, 122.8, 108.6, 59.6, 26.6. HRMS (APCI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right] 326.1539$, found 326.1538.

## Synthesis of (E)-1-acetyl-3-methyl-3-styrylindoline (3ha):



The reaction of $\mathbf{1 h}(47.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 a}(82.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.0$ eq), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mg}, 0.0075 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $36.0 \mathrm{mg}, 0.45 \mathrm{mmol}, 3.0$ eq) and $\mathrm{PPh}_{3}\left(5.8 \mathrm{mg}, 0.0225 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$ ) in 2.5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 1.5 h afforded 3ha $(\mathrm{Rf}=0.5, \mathrm{PE}: \mathrm{EA}=3: 1)(27.0 \mathrm{mg}, 65 \%)$. A mixture of rotamers were
observed, and the following are selected peaks. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.25$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.40-7.21 (m, 6 H), 7.16-7.05 (m, 2 H ), 6.39 (s, 2 H ), 4.05 (d, $J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.89 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.25 (s, 3 H ), 1.58 (s, 3 H ); ${ }^{13} \mathrm{C}$ NMR ( 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.6,141.9,137.8,136.6,134.9,128.6,128.5,128.2,127.6,126.3$, 123.9, 123.4, 117.1, 62.8, 46.0, 25.8, 24.2. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 278.1539, found 278.1541.

Synthesis
of
(E)-4-(4'-methoxystyryl)-4-methyl-N-tosyl-

1,2,3,4-tetrahydroquinoline (3if):


The reaction of $\mathbf{1 i}(88.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), 2 f(0.122 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 1.5 h afforded 3if $(\mathrm{Rf}=0.2, ~ \mathrm{PE}: \mathrm{EA}=20: 1)(66.7 \mathrm{mg}, 77 \%)$. Solid, 131-132 ${ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.46(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.05(\mathrm{~m}, 7 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1$ H), $5.68(\mathrm{~d}, ~ J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, 1.64-1.54 (m, 1 H), 1.53-1.40 (m, 1 H ), $1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 158.9, 143.6, 136.8, 136.7, 136.1, 135.5, 129.7, 129.5, 129.1, 127.5, 127.3, 127.2, 126.7, 125.0, 124.6, 113.9, 55.3, 43.6, 38.8, 34.5, 28.5, 21.5. HRMS (APCI) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NS}\left[\mathrm{M}^{+}+\mathrm{H}\right] 434.1784$, found 434.1780.
(E)-1-(4'-methoxystyryl)-1-methyl-2,3-dihydro-1H-indene (3jf):


The reaction of $\mathbf{1 j}(54.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 f}(0.122 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}(48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{PPh}_{3}\left(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$ ) in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 70 min afforded $3 \mathbf{j f}(\mathrm{Rf}=0.6, \mathrm{PE}: \mathrm{EA}=40: 1)(51.2 \mathrm{mg}, 97 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 7.30-7.09(\mathrm{~m}, 6 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{dd}, J=7.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.11(\mathrm{~m}, 1 \mathrm{H})$, 2.08-1.92 (m, 1 H ), $1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 158.7$, 149.9, 143.3, 136.2, 130.4, 127.2, 126.6, 126.4, 125.9, 124.6, 123.5, 113.9, 55.2, 49.8, 40.9, 30.2, 25.7. HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 265.1587, found 265.1579.

## Synthesis of (E)-1-(4-methoxystyryl)-1-methyl-3,3-di(methoxycarbonyl)-1,2,3,4tetrahydronaphthalene (3kf):



The reaction of $\mathbf{1 k}(80.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), 2 \mathbf{f}(0.122 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 30 min afforded $3 \mathbf{k f}(\mathrm{Rf}=0.2$, PE:EA $=20: 1)(53.7 \mathrm{mg}, 68 \%)$. Solid, $115-118{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.29 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 172.4,171.0,158.8,139.7,137.1,133.6,130.0,128.8,128.0,127.8,127.2,126.5$, 126.2, 113.8, 55.2, 52.7, 52.6, 52.1, 41.4, 40.0, 35.1, 30.2. HRMS (APCI) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{5}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 395.1853, found 395.1845.

Synthesis of (E)-1-(2'-(furan-2-yl)vinyl)-1-methyl-3,3-di(methoxycarbonyl)-1,2,3,4-tetrahydronaphthalene (3kl):


The reaction of $\mathbf{1 k}(80.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 l}(0.106 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, LiOt-Bu ( $48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq}$ ) and $\mathrm{PPh}_{3}\left(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%\right.$ ) in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 50 min afforded $3 \mathbf{k l}(\mathrm{Rf}=0.3, \mathrm{PE}: E A=20: 1)(42.9 \mathrm{mg}, 61 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : 87.30-7.14 (m, 5 H), $6.28(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1$ H), 5.53 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, 3.02 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (s, 3 H ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 172.3,170.8,152.7,141.4,139.0,137.8$, 133.7, 129.0, 128.0, 126.7, 126.3, 117.5, 111.2, 107.3, 52.7, 52.13, 52.06, 41.2, 40.0, 35.2, 30.1. HRMS (APCI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{5}\left[\mathrm{M}^{+}+\mathrm{H}\right] 355.1540$, found 355.1539 .

Synthesis of (E)-3-methyl-1-(2'-methylallyl)-3-styrylindolin-2-one (3la) and (4la):


The reaction of $\mathbf{1 1}(68.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathbf{2 a}(0.110 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}(48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 1 h afforded 3la $(\mathrm{Rf}=0.70, \mathrm{PE}: E A=10: 1)(42.7 \mathrm{mg}, 78 \%)$ and $4 \mathbf{~ l a}(\mathrm{Rf}=0.67, \mathrm{PE}: \mathrm{EA}=10: 1)(6.1$ $\mathrm{mg}, 10 \%$ ) (3la:4la $=91: 9$ by crude ${ }^{1} \mathrm{H}$ NMR analysis). 3la: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 7.36-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{dd}, J=7.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (s, 3 H ), $1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 178.5,142.2,139.0,136.5$, 129.99, 129.97, 128.4, 128.0, 127.6, 126.4, 123.9, 122.5, 112.3, 109.4, 50.6, 45.6, 23.3, 19.8. HRMS (APCI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 304.1696, found 304.1694; 4la: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.37-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.30(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.8,141.6,136.7,134.6,128.8,128.6,128.0,127.6,126.3,124.3$, 123.6, 29.7, 25.1, 22.7, 19.9. HRMS (APCI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ON}\left[\mathrm{M}^{+}+\mathrm{H}\right] 304.1696$, found 304.1692.

Synthesis of compounds (trans-3mf) and (cis-3nf):


The reaction of $\mathbf{1 m}(71.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}), 2 \mathrm{f}(0.122 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0$ eq), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{LiOt}-\mathrm{Bu}(48.0 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{PPh}_{3}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ for 50 min afforded trans-3mf $(\mathrm{Rf}=0.40, \mathrm{PE}: \mathrm{EA}=10: 1)(31.3 \mathrm{mg}, 45 \%)$ and cis-3mf $(\mathrm{Rf}=0.35$, PE:EA = 10:1) ( $25.1 \mathrm{mg}, 36 \%$ ).

Trans-3mf: Solid, $97-99{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.85(\mathrm{~m}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 182.1,158.9,142.9,137.6,137.2,130.4$, $127.4,127.2,125.7,122.7,114.3,114.0,107.7,55.3,54.3,50.5,46.4,40.5,38.5,26.9$, 26.3. HRMS (APCI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}+\mathrm{H}\right] 348.1958$, found 348.1954. CCDC 938635 contains the supplementary crystallographic data of trans-3mf. These data can be obtained free of charge from Cambridge Crystallographic Data Centre.

Cis-3mf: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.37(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3 H ), $3.21(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 1$ H), 1.91-1.77 (m, 2 H ), $1.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 182.3$, 158.7, 143.1, 137.5, 136.5, 130.6, 127.5, 127.2, 125.2, 122.6, 122.4, 113.9, 107.7, 55.3, 54.4, $50.5,45.8,41.3,38.6,26.2$, 26.1. HRMS (APCI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 348.1958 , found 348.1952 .

## References:

1. Pinto, A.; Jia, Y.-X.; Neuville, L.; Zhu, J.-P. Chem. Eur. J. 2007, 13, 961.
2. Ishikura, M.; Takahashi, N.;Yamada, K.; Yanada, R. Tetrahedron 2006, 62, 11580.
3. Jones, K.; Thompson, M.; Wright, C. J. Chem. Soc., Chem. Commun. 1986. 115.
4. Casaschi, A.; Grigg, R.; Sansano, J. M.; Wilson, D.; Redpath, J. Tetrahedron 2000, 56, 7541.
5. Bi, H.; Guo, L.; Duan, X.; Gou, F.; Huang, S.; Liu, X.; Liang, Y. Org. Lett. 2007, 9, 397.
6. Kummer, D. A.; Chain, W. J.; Morales, M. R.; Quiroga, O.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 13231.
7. Jia, Y.; Katayev, D.; Bernardinelli, G.; Seidel, T. M.;Kündig, E. P. Chem. Eur. J. 2010, 16, 6300.

Proton ccel D：<br>M





##  <br> xleility

部
素

\｜賈

1b


11
il

1c



| 106L．13 Xleiliu02 108 C13CPD CDC13 D：$\backslash 1$ luodeping |  |  | $\underset{\sim}{\stackrel{x}{x}}$ | 等 |  | g 析 I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |





照
$\stackrel{\frac{\pi}{2}}{1}$






| 1 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 |












四城





xleiliu02-161

S1




$\underbrace{\text { and }}$




| $\begin{aligned} & \left.\begin{array}{l} \text { xleiliu02-100-1管 } \\ \text { xleiliu02-100-1 } \end{array} \right\rvert\, \end{aligned}$ |  | 采 \％ d | $\begin{aligned} & \text { N888 } \\ & \text { 筑 } \end{aligned}$ | $\begin{aligned} & \text { 要 } \\ & \text { 咅 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |








106L⿱亠䒑⿰力口
106L⿱亠䒑⿰力口




|  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{T}{\text { en }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | ${ }_{\mathrm{fl}^{1}(\mathrm{ppm})}$ | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | ${ }_{1} 1.0$ | 0.5 | 0.0 |

xleiliu 02－84－1
xleiliu $02-84-1$（C）
㤨

켳

$\stackrel{\pi}{0}$




i
等














$\qquad$

106L13 xleiliu02_101_1
C13CPD CDC13 D: 11 luodep)

$\frac{3}{3}$
$\frac{1}{4}$
1










${\underset{m x n}{\operatorname{man}}=1-1-54(\mathrm{C})}_{\operatorname{man}}$




3al


1 星

$\mathrm{mxn}-1-74$
$\mathrm{mxn}-1-74(\mathrm{C})$
8







等


[^1]

$\mathrm{mxn-1-61}$
$\mathrm{mxn}-1-61$



3ea






xleiliu02-162



（




```
lag
```



$m \times n-1-85$





xleiliu02-166






3la

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | $\stackrel{1}{4.5}$ | ${ }_{\mathrm{fi} 1}{ }^{(\mathrm{pmm})}$ | 3.5 | 3.0 | 2.5 | 2.0 | ${ }_{1}^{1.5}$ | 1.0 | 0.5 | 0.0 |


| $\frac{8}{1}$ |  |
| :---: | :---: |
|  |  |
|  |  |












[^0]:    ${ }^{a}$ The reactions were conducted in $0.15-0.20 \mathrm{mmol}$ scale with 2 equiv of $\mathbf{2 a}, 3.0$ equiv of LiOt - Bu

[^1]:    

