In-situ Transmission Electron Microscopy Observations of Sublimation in Silver Nanoparticles

Michael A. Asoro¹, Desiderio Kovar^{1, 2}, Paulo J. Ferreira^{1, 2}

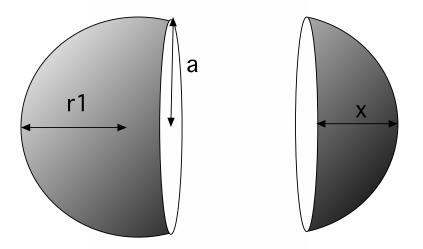
¹Materials Science and Engineering Program and ²Department of Mechanical Engineering,

University of Texas at Austin, Austin, TX 78712, USA

Appendix: Derivation of Sublimation Energy for Facetted and Unfacetted Particles

Consider state 1 as a spherical particle of radius r_1 . The total energy of the particle, E_1 , is given by, $E_1 = \gamma_s (4 \pi r_1^2) + V(G_{vs}) = \gamma_s (4 \pi r_1^2) + (4/3 \pi r_1^3 G_{vs})$, where V = volume of the sphere and G_{vs} is the volume free energy of the solid.

If the particle facets by splitting into two {111} facetted particles of size x and $2r_1 - x$ as shown below, the total energy is given by $E_2 = \gamma_s (4\pi r_1^2) + 2\gamma_{s111}A_{111} + (4/3\pi r_1^3 G_{vs})$



To determine A₁₁₁, we note that the radius of the white circular facetted region, $a_{111} = [(2r_1x)-x^2]^{1/2}$. Thus, $E_2 = \gamma_s (4\pi r_1^2) + 2\pi \gamma_{s111} [(2r_1x) - x^2] + (4/3\pi r_1^3 G_{vs})$.

Then, if the smaller facetted particle on the right subsequently sublimates, then the total energy of the system = E_3 = surface energy of larger facetted particle + volume energy of larger facetted particle + volume energy of smaller facetted particle (which now consists of vapor and therefore has no interfacial area).

The surface area of the smaller particle is $2 \pi r_1 x$, not counting the white facetted portion, and the volume of the smaller particle is $1/6 \pi x (3a^2 + x^2) = (\pi) (r_1 x^2 - x^3/3)$

 $E_3 = \{ [\gamma_s[(4\pi r_1^2) - 2\pi r_1 x] + \pi \gamma_{s111} [(2r_1 x) - x^2] \} + \{ G_{vs} [(4/3\pi r_1^3) - (\pi)(r_1 x^2 - x^3/3)] \} + \{ G_{vv} [(\pi)(r_1 x^2 - x^3/3)] \}, \text{ where } G_{vv} \text{ is the volume free energy of the vapor.}$

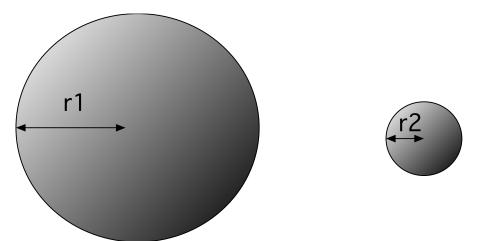
The change in energy on going from state $1 \rightarrow 3$ is $\Delta E_f = E_3 - E_1$. Thus,

$$\Delta E_{\rm f} = \pi \gamma_{s111} (2r_1 x - x^2) - 2 \pi \gamma_s r 1 x + (G_{vv} - G_{vs}) (\pi r 1 x^2) - (G_{vv} - G_{vs}) \pi x^3 / 3$$

If $E_{sub} \stackrel{\text{\tiny def}}{=} \mathbf{G}_{vs} - \mathbf{G}_{vv}$, then

$$\Delta E_{\rm f} = \pi \gamma_{s111} \left(2r_1 x - x^2 \right) - 2 \pi \gamma_s r 1 x + E_{sub} \left(\frac{\pi x^3}{3} - \pi r 1 x^2 \right)$$

The relevant comparison is to compare ΔE_f above to the energy change for the uniform sublimation, ΔE_f , for a spherical particle with radius r_1 to a smaller spherical particle r_2 where the smaller spherical particle has the same volume as the larger facetted particle above.



To determine r_2 , we note that $4/3 \pi r_2^3 = 4/3 \pi r_1^3 \cdot (\pi)(r_1 x^2 - x^3/3) \rightarrow r_2 = [r_1^3 - \frac{3}{4}r_1 x^2 - \frac{x^3}{(4)})]^{1/3}$. The energy change for going from the large to the small particle by uniform sublimation is then given by,

$$\Delta E_{\rm nf} = \{ \gamma_{\rm s} (4 \pi r_2^2) + G_{\rm vs} (4/3 \pi r_2^3) + G_{\rm vv} [(4/3 \pi r_2^3 - 4/3 \pi r_1^3)] \} - [\gamma_{\rm s} (4 \pi r_1^2) + (4/3 \pi r_1^3 G_{\rm vs})]$$

Again, defining $E_{sub} \stackrel{\text{\tiny def}}{=} G_{vs} - G_{vv}$, \rightarrow

$$\Delta E_{\rm nf} = \{4 \ \pi \gamma_{\rm s} \ (r_2^2 - r_1^2) + \ 4/3\pi E_{sub} \ (r_2^3 - r_1^3) \ \text{where} \ r_2 = [r_1^3 - \frac{3}{4}(r_1 \ x^2 - \frac{x^3}{4}(4\pi))]^{1/3}$$

We use the following values for material properties of Ag, $\gamma_s = 1.2 \text{ J/m}^2$, $\gamma_{\{111\}} = 0.62 \text{ J/m}^2$, $E_{sub} = 284 \text{ KJ/mol} = 2.765 \times 10^{10} \text{ J/m}^3$ (this is temperature dependent), and use these to calculate the change in energy for different values of x/r and r.