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A – Intrinsic damping time determination  

Our measurements are performed in colloidal solution, we thus probe the vibrations of a large 

ensemble of nanoparticles. Consequently, the polydispersity of the sample yields an 

inhomogeneous contribution on damping. When fitting with the following equation,  
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, the measured damping time for the mode i �τ�� contains an intrinsic contribution ���,!�and an 

inhomegeneous contribution ���∗� related to the particle size distribution. To determine the 

intrinsic damping time, we need to remove the inhomogeneous contribution. To achieve this 

task, we need to consider the size distribution of the particles (mean length Lm and standard 

deviation σL). For samples with a weak standard deviation (σL << Lm), we can assume that the 

vibrational period depends linearly with the length of the bipyramids and define the standard 

deviation of the vibrational period from the length standard deviation: 
#$
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'(. For our 

samples, these ratios are estimated around 5%. Moreover, in the weak standard deviation 

regime, we can also approximate the inhomogeneous damping time by τ�∗ * ��+ √2�-%. and 

then estimate the homogeneous damping time τ/ by fitting the signal with the following 

equation:
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Note here we only performed the estimation on the fundamental mode because the results are 

not representative for other modes which present weak signals. To estimate the quality factor, 

we thus calculated 3 � 	� �4,5
%4  for the fundamental extensional mode for core samples and core 

shell samples CSa, CSb and CSc. The results are presented on Figure 1 as a function of the 

length. 
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Figure 1.  Quality factor of the fundamental extensional mode measured in several core 

samples as a function of the nano-bipyramid length. The coloured dots correspond to the core 

shell samples (CSa, CSb and CSc). The dotted line corresponds to the average.  

We see that the quality factor measure for the fundamental extensional mode is barely 

constant and found to be close to the measure in identical particles nm 79 nm long (note here 

one need to remove the fluid component to determine the intrinsic quality factor values).
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Further investigation and discussion would necessitate single particles measurements.
3
  

For the core shell samples, we found the following values: 22.5 for CSa, 18.4 for CSb and 

18.7 for CSc. These values are quite close to the one measured in the core particle on which 

they are synthesized (Qcore = 18.3).  

 

B –Finite element analysis  

We performed finite element analysis using COMSOL software: Solid mechanics module, 

Eigen frequency solver. We calculated the vibration Eigen modes frequencies of 3D solids or 

we used the 2D axisymmetry mode to reduce the calculus times when possible.  We used the 

elastic constants of bulk polycrystalline gold (Young’s modulus E = 78.5 GPa, Poisson’s ratio 

υ=0.42 and ρ = 19 300 kg.m
-3

) or silver (E = 83 GPa, υ=0.36 and  ρ = 10 490  kg.m
-3

).  

 



B-1 Periods for core-shell particles 

To clarify the complex behavior of the calculated periods for bicones as a function of the 

size parameter γ, we also calculated the periods for pure metal particle (gold or silver)  for an 

identical shape. For the Au-Ag core-shell, the core is designed with two triangles, yielding a 

simple bicone and the shell is delimited by a radius ρ depending on the altitude z varying 

between –L/2 and L/2, 6�7� � �+ � 8
+ 	91 ; 9 <

&
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. For the pure Au or Ag particles, the 

shape is simply delimited by 6�7�.  
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Figure 2. Computed periods of the fundamental extensional mode (a) and its first harmonic 

(b), for Au-Ag core-shell particle (black), pure Au (yellow) and pure Ag (grey) as a function 

of the shape parameter γ. The dotted line corresponds to the period of the core biconical 

reference particle (L=100nm, D=30 nm, γ=1). 

 

The pure Au or Ag particles present the same behaviour: the periods increase when γ 

increases, which can be simply associated to a mass increase of the particle. We also remark 

that the periods are smaller in silver which is expected if we consider its elastic constants. For 



core-shell particles, we observe a more complex behaviour that is not a simple average but is 

in between pure Au and Ag particles. This kind of behaviour has also been observed in Au-Pd 

particles in relatively similar geometries and has been associated to stiffening and mass 

addition effects.
4
 The decrease of the period for small γ values is present when stiffening 

dominates whereas the increase of the periods for larger γ values reflects the addition of mass. 

Notice here that the periods does not strongly converge on our plot because we studied small 

variations of shape; stronger modifications of the particles (increasing e1 or e2) would result in 

the convergence of the periods for Au-Ag core-shell and pure Ag particles, as it has been 

evidenced in Au-Pt rods.
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B-2 Amplitudes for core and core-shell particles   

To estimate the amplitude of excitation of the different modes, we calculated the projection of 

the initial condition (dilatation) displacement field (X,Y,Z) onto the orthogonal basis of 

calculated vibrational modes displacement field (u,v,w).
5,6

 We calculated the following 

normalized scalar product for every mode i : 

��>BC � ∭ 6�E� ∗ F � G� ∗ H � I� ∗ J� 	KL
	M∬ 6�E� ∗ E� � G� ∗ G� � I� ∗ I��KL			M∬ 6�F ∗ F � H ∗ H � J ∗ J�KL 

, where ρ correspond to the volume mass of the medium. ��>BC correspond to the excitation 

amplitude. Note that this calculation does not include the influence of the detection 

mechanism over the amplitude.
5
  

In the following discussion, we will principally focus on A0 the excitation amplitude of the 

fundamental extensional mode, A1 the excitation amplitude is first harmonic and Arad the 

excitation amplitude of the radial mode.  

We firstly investigated the shape of the core particle. We performed calculations for four 

kinds of core particles: with a circular section (bicone) or a pentagonal section (bipyramid) 

and with a sharp tip or a rounded tip. The figure 2 presents the two more realistic core shapes 

(a-b), i.e. shapes with a rounded tip. The determination of the periods is not strongly affected 

by these details (<3%) but we find that they impact the amplitudes. We will focus the 

discussion using the results of calculations based on bipyramids with a pentagonal section and 

a rounded tip (Figure2, shape b), i.e. the more realistic shape.  
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Figure 3. 3D shapes of the particle used for finite element analysis calculation of amplitudes 

(a) Core bicone (Length=78 nm, Diameter = 28 nm, tip radius r = 5 nm). (b) Core pentagonal 

bipyramids (L=78 nm, D = 28 nm, tip radius r = 5 nm) on which the core-shell shapes are 

built. (c) Core-shell particle made with an ellipsoidal shape (γ=2). (d) Core-shell particle 

made with the parameterized shape (γ=3). (e) Core-shell particle made with a cylindrical 

shape, ended by a sphere. The length of the core-shell particles are L = 79 nm and D = 34 nm, 

(corresponding to e1 = 0.5 nm and e2 = 3 nm). 

 

The figure 4 presents the excitations amplitudes ad a function of the mode frequency for the 

core shape (a) and shape (b). We see that the amplitudes A0 and A1 are weakly modified by 

the transverse geometry (Table 1), whereas the radial mode amplitude (frequency around 100 

GHz) is quenched by a factor ∼2. Note also the apparition of a new mode at frequency 

∼108GHz for the pentagonal shape (b) (Figure 4b). This mode may correspond to an hybrid 

mode, already observed and simulated in single gold nanowires.
6
 The study of this fine 

feature is further than the scope of the present study and necessitates single particle 

measurements. Finally, we also calculate the excitation amplitude in rounded cylinder in order 

to mimic nanorods. We find that the first harmonic mode is weakly excited whereas the radial 

mode is well excited in this geometry (as observed in experiments).
7
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Figure 4. Excitation amplitude of the vibrational modes versus the frequency for the rounded 

bicone (a) and rounded pentagonal bipyramid (b). 

 

Shape �AA/AP�QRST �ASUV/AP�QRST 

(a) 

 

 

0.188 0.668 

(b) 

 

 

0.186 0.342 

Rounded cylinder 

 

0.0058 0.684 

 

Table  1. Ratio of the excitation amplitudes of several modes for two core particle shapes (a 

and b) and a rounded cylinder. The sizes are L = 79 nm, D = 34 nm, r=5nm. 

 



Secondly, we calculated the amplitudes for core-shell particles with several kinds of shell 

(Table 2). The investigated shell are presented on the figure 3. The shapes (c) and (d) are built 

with the γ-parametrized function  6�7� for γ=2 (ellipsoid) and γ=3 respectively. The shape (d) 

is a bit different; it is made of a rounded cylinder embedding the core. These calculations 

show an enhancement of the radial mode and a quenching of the first harmonic in core-shell 

particles and discussed in the main article. We added data illustrating the impact of γ (Shapes 

c, c1 and d) and the impact of shell thickness lateral of e2 (2, 3 and 4 nm for the shapes d, d1 

and d2).  

 

Shell Shape 

(pentagonal) 

�AA/AP�WX �AP/AA�WX
�AP/AA�QRST 

�ASUV/AP�WX �ASUV/AP�WX
�ASUV/AP�QRST 

(b) D = 28 nm 

 

0.186 1 0.342 1 

(c) γ=2 / 34nm 

 

0.181 

 

1.04 

 

0.838 

 

2.45 

 

(c1) γ=2.5 / 34nm 

  

0.139 1.34 0.720 2.1 

(d) γ=3 / 34nm 0.115 1.62 0.646 1.89 

 

(d1) γ=3 / 32nm 0.122 1.52 0.503 1.47 

(d2) γ=3 / 36nm 0.107 1.73 0.647 1.90 

 

Table 2. Ratio of the excitation amplitudes of several modes for core pentagonal bipyramids 

(b) and five γ parameterized shells based on this core. The length indicated corresponds to the 

total core-shell diameter.  

 

 

 



These calculations confirm the measured trends but fail to predict exactly the amplitudes. The 

origin of this discrepancy can be discussed. Firstly, a very fine correspondence between the 

particles real shape and their numerical model should improve the agreement, but it will 

probably be done combining 3D TEM tomography and single particle measurements. 

Secondly, since we calculate the excitation amplitudes without considering the detection 

mechanism (and thus the detection efficiency), it is reasonable to think discrepancies originate 

from this issue. Very few studies have addressed this problem because they are a numerical 

challenge, especially for complex shapes. Meanwhile, this issue has been addressed in the 

spherical geometry.
5,8,9 

For this simple geometry, the fundamental breathing mode and its 

harmonics have been studied and the following expression of the amplitudes ratio have been 

found:  
YZ[\[]^
Y?[\[]^ � 	 YZ_`a

Y?_`a 	b%Z
%? 	cZ

c? , u being the displacement field at the surface.
9
  If we roughly 

consider our systems follow this dependency, we can correct the calculated ratio Arad/A0 by a 

factor ∼0.4 and the ratio A1/A0
 
 by a factor ∼ 0.7 for core particles. Moreover, this term 

slightly affects (∼4%) the evolution of the ratio 
�defg/dZ�hiejkl2jmm

�defg/dZ�hiej  because the effect is 

compensated. Concerning the effect of the displacement field ratio, we prefer not to discuss it 

here (lack of relevance); the impact of the anisotropic shape of the particle and the 

displacement fields of the modes on the detection efficiency should be addressed carefully, 

which is not easily reachable and is further the scope of this study. 
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