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Figure S1. Experimental set up used to investigate ozone uptake by iodide  

in PBS, pH 8, and quantify gaseous molecular iodine emission.   

Figure S2. Pseudo first order ozone uptake to iodide PBS (pH8). Empty diamonds, 5 x 10
-6
 

M 
1
; filled diamonds, 1 x 10

-5
 M [I

−
].The y error bars are calculated from the propagation of 

the quoted MFC error (2.5%), the calibration error and the standard deviation of replicate 

analyses. 

Table S1. Calculated reaction rate constants, λ, for DOC + O3 reactions in seawater at 298K.   
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Supporting Information 

Description of the parallel resistance approach of the ozone uptake potential of seawater, 

figures S1-S2 and table S1. This material is available free of charge via the Internet at 

http://pubs.acs.org. 

 

The parallel resistance approach  

The ozone uptake potential of seawater can be considered as a mechanism involving two 

layers, an overlying air and surface water layer. The overlying air layer offers an 

aerodynamic resistance (ra) to ozone deposition from the air to seawater and the surface water 

layer provides an aqueous phase resistance (rs). The total resistance (rt) is the sum of the 

resistances in these layers, as shown in equation (1), which is related to the deposition 

velocity (vd) by equation (7), in manuscript
2-3
.  The term ra is determined by mixing in the 

atmosphere and will be similar in value to the corresponding resistance to the transfer of heat 

and other trace gases
4
.  Being relatively insoluble, atmospheric ozone deposition is 

determined (∼95%) by rs in the surface seawater which is a function of the chemical loss rate 

(λ, s
-1
) in seawater 

5-6
, where H is the dimensionless Henry’s law constant, D is the molecular 

diffusivity of O3 in water (m
2
 s

-1
),  ki is the second order kinetic rate constant and Ci is the 

reactant concentration, equations 8 and 9, in manuscript. Considering equation (1), it follows 

that the ozone deposition rate is dependent on the assumed value for the (pH dependent) O3 + 

I
−
 reaction rate constant k1 as well as competing reactions for O3 in surface seawater.   

 

rt = ra + rs     (1) 
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The aerodynamic resistance (ra) of the experimental system was determined from the ozone 

deposition velocity over 0.02 M [I
-
] solutions, wherein rs is considered negligible. At an 

ozone concentration of 70 ppbv and a flow rate of 0.2 L min
-1
 (i.e. the same experimental 

conditions as used throughout the study), ra was determined as 7.7 m
-1
 s.     

 

Equation (8), in manuscript, represents the deposition velocity due solely to molecular gas-

transfer including molecular diffusion and chemical reactions, and is applicable in laboratory 

conditions or when wind speed is low.  Wanninkhof (1992)
7
 assumed that deposition was 

also controlled by interactions between wind-induced turbulent transport and chemical 

enhancement, and Chang et al. (2004)
8
 proposed a general formula for rs to account for this 

as follows: 

 

rs = H / ( αkw +  (λ D)
1/2
 )       (2) 

 

where kw is the gas-transfer velocity, a function of wind speed at 10 m height, and α the 

chemical enhancement factor.   

 

Note that whilst the parallel resistance approach to oceanic ozone deposition is used 

extensively, improved models have been developed more recently that describe the 

dependencies of deposition on atmospheric and oceanic processes from a more fundamental 

perspective 
9
. 
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               Gas transfer lines (PFA, covered with black tape) 

MFC      Mass flow controller 

Figure S1. Experimental set up used to investigate ozone uptake by iodide in PBS (pH 8, 293 

K) and quantify gaseous molecular iodine emission.   
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Figure S2. Pseudo first order ozone uptake to iodide PBS (pH8). Empty diamonds, 5 x 10
-6
 

M [I
−
]; filled diamonds, 1 x 10

-5
 M [I

−
]. The y error bars are calculated from the propagation 

of the quoted MFC error (2.5%), the calibration error and the standard deviation of replicate 

analyses. 
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Compound Molarity 

(10
-9
mol dm

-3
) 

k 

(mol
-1
dm

3
 s
-1
) 

λ (s
-1
) References 

DMS 5(0.04 – 316)  8.6 x 10
8
 4.3 (0.04 – 272) 

10-11
 

Ethene 0.5  1.8 x 10
5 
 1.8 x 10

-4
 

12-13
 

Propene 0.2  8.0 x 10
5 
 3.2 x10

-4
 

12-13
 

Isoprene 0.05  4.0 x 10
5
 2 x 10

-5
 

14
 

Chlorophyll a 2000 – 10,000
 
 6 x 10

7 
 120 – 1200* 

15
 

Phenol 2.34  1.3 x 10
3 
 3.0 x 10

-6
 

16-17
 

Phenolate 0.23  1.4 x 10
9 
 0.32 

16-17
 

P-cresol 0.14  3.0 x 10
4 
 0.56 

16, 18
 

TOTAL   (126 – 1473)  

Table S1. Calculated reaction rate constants, λ, for DOC + O3 reactions in seawater at 298K.   

* Calculated assuming Chl a concentrations were free to react at the surface of solution. 
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