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Figure S1. Experimental set up used to investigate ozone uptake by iodide
in PBS, pH &, and quantify gaseous molecular iodine emission.

Figure S2. Pseudo first order ozone uptake to iodide PBS (pHS). Empty diamonds, 5 x 10°
M !; filled diamonds, 1 x 10° M [I'].The y error bars are calculated from the propagation of
the quoted MFC error (2.5%), the calibration error and the standard deviation of replicate
analyses.

Table S1. Calculated reaction rate constants, A, for DOC + O; reactions in seawater at 298K.
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Supporting Information

Description of the parallel resistance approach of the ozone uptake potential of seawater,
figures S1-S2 and table S1. This material is available free of charge via the Internet at

http://pubs.acs.org.

The parallel resistance approach

The ozone uptake potential of seawater can be considered as a mechanism involving two
layers, an overlying air and surface water layer. The overlying air layer offers an
aerodynamic resistance (7,) to ozone deposition from the air to seawater and the surface water
layer provides an aqueous phase resistance (7). The total resistance (7;) is the sum of the
resistances in these layers, as shown in equation (1), which is related to the deposition
velocity (vq) by equation (7), in manuscript’™>. The term 7, is determined by mixing in the
atmosphere and will be similar in value to the corresponding resistance to the transfer of heat
and other trace gases’. Being relatively insoluble, atmospheric ozone deposition is
determined (~95%) by 7, in the surface seawater which is a function of the chemical loss rate
(4, s) in seawater *°, where H is the dimensionless Henry’s law constant, D is the molecular
diffusivity of O3 in water (m” s™), & is the second order kinetic rate constant and C; is the
reactant concentration, equations 8 and 9, in manuscript. Considering equation (1), it follows
that the ozone deposition rate is dependent on the assumed value for the (pH dependent) O3 +

I reaction rate constant k; as well as competing reactions for Os in surface seawater.

Pi=r, T (D)
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The aerodynamic resistance (7,) of the experimental system was determined from the ozone
deposition velocity over 0.02 M [I] solutions, wherein r; is considered negligible. At an
ozone concentration of 70 ppbv and a flow rate of 0.2 L min™ (i.e. the same experimental

conditions as used throughout the study), 7, was determined as 7.7 m™ .

Equation (8), in manuscript, represents the deposition velocity due solely to molecular gas-
transfer including molecular diffusion and chemical reactions, and is applicable in laboratory
conditions or when wind speed is low. Wanninkhof (1992)" assumed that deposition was
also controlled by interactions between wind-induced turbulent transport and chemical
enhancement, and Chang et al. (2004)® proposed a general formula for 7, to account for this

as follows:

ry=H/(adk,+ (AD)"*) )

where k,, is the gas-transfer velocity, a function of wind speed at 10 m height, and o the

chemical enhancement factor.

Note that whilst the parallel resistance approach to oceanic ozone deposition is used
extensively, improved models have been developed more recently that describe the
dependencies of deposition on atmospheric and oceanic processes from a more fundamental

9
perspective .
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Figure S1. Experimental set up used to investigate ozone uptake by iodide in PBS (pH 8, 293

K) and quantify gaseous molecular iodine emission.
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Figure S2. Pseudo first order ozone uptake to iodide PBS (pHS8). Empty diamonds, 5 x 10
M [I']; filled diamonds, 1 x 10 M [I"]. The y error bars are calculated from the propagation
of the quoted MFC error (2.5%), the calibration error and the standard deviation of replicate

analyses.
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Compound Molarity k AT References

(10°mol dm™)  (mol'dm’ s™)

DMS 5(0.04 —316)  8.6x 10° 4.3(0.04—-272) 1
Ethene 0.5 1.8x 10’ 1.8x10™ 12:13
Propene 0.2 8.0x 10° 3.2x10* 12-13
Isoprene 0.05 4.0x10° 2x 107 14
Chlorophyll a 2000 — 10,000 6 x 10’ 120 — 1200%* 1
Phenol 2.34 1.3x 10’ 3.0x10° 16-17
Phenolate 0.23 1.4x 10° 0.32 16-17
P-cresol 0.14 3.0x 10* 0.56 16,18
TOTAL (126 — 1473)

Table S1. Calculated reaction rate constants, A, for DOC + O; reactions in seawater at 298K.

* Calculated assuming Chl a concentrations were free to react at the surface of solution.
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