Spectroscopic Study of δ Electron Transfer between Two Covalently Bonded Dimolybdenum Units via a Conjugated Bridge Chun Y. Liu,* Xuan Xiao, Miao Meng, Yu Zhang and Mei Juan Han Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China. Department of Chemistry, Tongji University, Shanghai 200092, P. R. China. ## **Supporting Information** ## Contents Page S-2: Figure S1. Vis-Near-IR spectra of the neutral dimolybdenum dimers. *Figure S2.* Vis-Near-IR-mid-IR spectra of $\{[Mo_2(DAniF)_3]_2(\mu-O_2CC_6H_4CO_2)\}PF_6$. Page S-3: Figure S3. Vis-Near-IR-mid-IR spectra of {[Mo₂(DAniF)₃]₂(μ-OSCC₆H₄COS)} PF₆. *Figure S4.* Vis-Near-IR-mid-IR spectra of $\{[Mo_2(DAniF)_3]_2(\mu-S_2CC_6H_4CS_2)\}PF_6$. Page S-4: Figure S5. Vis-Near-IR-mid-IR spectra of $\{[Mo_2(DAniF)_3]_2(\mu-O_2CC_6H_4CS_2)\}PF_6$. *Figure S6.* CV of Mo₂(DAniF)₃(μ -S₂CC₆H₅). Page S-5: *Figure S7.* DPV of Mo₂(DAniF)₃(μ -S₂CC₆H₅). *Figure S8.* CV of Mo₂(DAniF)₃(μ -O₂CC₆H₅). *Figure S9.* DPV of Mo₂(DAniF)₃(μ -O₂CC₆H₅). Page S-6: **Table S1.** Electronic coupling matrix elements from Mulliken-Hush equation. Page S-7: **Table S2.** Effective energy gaps (ΔE_{ML}^{eff}) and effective coupling constants (H_{ML}^{eff}) for metal to ligand transition. **Table S3.** Effective energy gaps (ΔE_{LM}^{eff}) and effective coupling constants (H_{LM}^{eff}) for ligand to metal transition. Page S-8: **Table S4.** Comparison between H_{ab} from Hush model and $H_{MM'}$ from CNS model. *Table S5.* Electron transfer kinetics for the symmetrical complexes based on the electronic coupling matrix elements from Hush and CNS methods. Page S-9: *Table S6.* Electron transfer kinetics for the unsymmetrical complexes based on the electronic coupling matrix elements from CNS methods. *Figure S1.* Vis-Near-IR spectra of the neutral dimolybdenum dimers, recorded in the CH₂Cl₂ solutions at room temperature. *Figure S2.* Combined Vis-Near-IR (black) and IR spectra (red) for $\{[Mo_2(DAniF)_3]_2(\mu-O_2CC_6H_4CO_2)\}$ PF₆ in CH₂Cl₂ solution at room temperature. *Figure S3.* Combined Vis-Near-IR (black) and IR spectra (red) for $\{[Mo_2(DAniF)_3]_2(\mu\text{-OSCC}_6H_4COS)\}$ PF₆ in CH₂Cl₂ solution at room temperature. *Figure S4.* Combined Vis-Near-IR (black) and IR spectra (red) for $\{[Mo_2(DAniF)_3]_2(\mu-S_2CC_6H_4CS_2)\}\ PF_6$ in CH_2Cl_2 solution at room temperature. *Figure S5.* Combined Vis-Near-IR (black) and IR spectra (red) for $\{[Mo_2(DAniF)_3]_2(\mu-O_2CC_6H_4CS_2)\}$ PF₆ in CH₂Cl₂ solution at room temperature. *Figure S6.* CV of Mo₂(DAniF)₃(μ -S₂CC₆H₅). E_{ox} = 0. 651 V, E_{red} = 0.561 V (vs Ag/AgCl). *Figure S7.* DPV of Mo₂(DAniF)₃(μ -S₂CC₆H₅). Half-wave potential $E_p = 0.592$ V (vs Ag/AgCl) *Figure S8.* CV of Mo₂(DAniF)₃(μ -O₂CC₆H₅). E_{ox} = 0. 375 V, E_{red} = 0.291 V (vs Ag/AgCl) **Figure S9.** DPV of Mo₂(DAniF)₃(μ -O₂CC₆H₅). Half-wave potential $E_p = 0.316$ V (vs Ag/AgCl) *Table S1.* Electronic coupling matrix elements from Mulliken-Hush equation. | complex | r _{ab}
(Å) | r _{ab} ' (Å) | E _{IT} (cm ⁻¹) | ε_{IT} (M ⁻¹ cm ⁻¹) | cal. $\Delta v_{1/2}$ (cm ⁻¹) | $\exp.\Delta v_{1/2}$ (cm^{-1}) | H_{ab} (cm ⁻¹) (r_{ab}) | H_{ab} (cm ⁻¹) (r_{ab}') | |--|------------------------|-----------------------|-------------------------------------|---|---|--|---|--| | $\left[\mathrm{O_2\text{-}O_2}\right]^+$ | 11.2 | 5.8 | 4240 | 1470 | 3190 | 4410 | 304 | 589 | | $[\mathbf{OS}\mathbf{-OS}]^{+}$ | 11.6 | 5.8 | 3440 | 3690 | 2820 | 3290 | 360 | 727 | | $\left[S_2\text{-}S_2\right]^+$ | 12.2 | 5.8 | 2640 | 12660 | 2470 | 1770 | 410 | 864 | | $\left[O_2\text{-}S_2\right]^+$ | 11.7 | 5.8 | 6560 | 2270 | 3890 | 4130 | NA | NA | The H_{ab} values were calculated by Hush model (eq. 1). Calculated bandwidth at half-height, cal. $\Delta v_{1/2}$, was determined from eq. 2. Electron transfer distance r_{ab} was the [Mo₂]···[Mo₂] separation determined from the X-ray structure. Effective electron transfer distance, $r_{ab'} = 5.8$ Å, was the geometrical length of the bridging group "-CC₆H₄C-". Spectroscopic data were extracted from the spectra of the mixed-valence complexes [Mo₂-Mo₂]⁺ as seen in Figures 1, 2, 3 and 4. $$Hab = \frac{2.06 \times 10^{-2}}{r} (\varepsilon_{IT} \Delta v_{1/2} E_{IT})^{1/2}$$ (1) $$cal.\Delta v_{1/2} = (2310E_{IT})^{1/2} \tag{2}$$ **Table S2.** Effective energy gaps (ΔE_{ML}^{eff}) and effective coupling constants (H_{ML}^{eff}) for metal to ligand transition. | complex | r _{ML}
(Å) | $E_{\rm ML}$ (cm ⁻¹) | $\varepsilon_{\rm ML}$ (M ⁻¹ cm ⁻¹) | $\Delta v_{1/2}$ (cm ⁻¹) | H_{ML} (cm ⁻¹) | ΔE_{ML}^{eff} (cm ⁻¹) | H_{ML}^{eff} (cm ⁻¹) | |--------------------------------------|------------------------|----------------------------------|--|--------------------------------------|---------------------------------------|---|------------------------------------| | $[\mathbf{O}_2\text{-}\mathbf{O}_2]$ | 5.6 | 20600 | 15230 | 4770 | 4480 | 18230 | 551 | | [OS-OS] | 5.8 | 16040 | 25870 | 3580 | 4300 | 14110 | 655 | | $[S_2-S_2]$ | 6.1 | 13850 | 39960 | 2800 | 4200 | 12390 | 708 | | $[O_2-S_2]$ | 5.8 | 15920 | 22500 | 3290 | 3820 | 11790 | 618 | $H_{\rm ML}$ values were calculated using eq. 1. $H_{\rm ML}^{\rm eff}$ values were calculated by eq. 2 and $\Delta E_{\rm ML}^{\rm eff}$ values were calculated by eq. 3. Electronic coupling distances ($r_{\rm ML}$) are the geometrical distances determined from the X-ray structures. Spectroscopic data were extracted from the spectra of the neutral complexes [Mo₂-Mo₂]. $$H_{ML}^{eff} = \frac{H_{ML}^2}{2\Delta E_{ML}^{eff}} \tag{3}$$ $$\frac{1}{\Delta E_{ML}^{eff}} = 0.5 \times \left(\frac{1}{E_{MLCT} - E_{IT}} + \frac{1}{E_{MLCT}}\right) \tag{4}$$ **Table S3.** Effective energy gaps (ΔE_{LM}^{eff}) and effective coupling constants (H_{LM}^{eff}) for ligand to metal transition. | complex | (Å) | ε_{LM} $(M^{-1}cm^1)$ | $\Delta v_{1/2}$ (cm ⁻¹) | E _{LM} (cm ⁻¹) | H _{LM} (cm ⁻¹) | ΔE_{LM}^{eff} (cm ⁻¹) | H_{LM}^{eff} (cm ⁻¹) | |---|-----|-----------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|---|------------------------------------| | $\left[\mathbf{O_2}\text{-}\mathbf{O_2}\right]^+$ | 5.6 | 0 | 0 | 0 | 0 | 0 | 0 | | [OS-OS] + | 5.8 | 5450 | 2680 | 12330 | 1500 | 10330 | 109 | | $[S_2-S_2]^+$ | 6.1 | 17500 | 1350 | 10630 | 1700 | 9120 | 156 | | $\left[\mathrm{O_2\text{-}S_2}\right]^+$ | 5.8 | 2780 | 3570 | 12970 | 1260 | 8580 | 93 | $H_{\rm LM}$ values were calculated according to eq. 1. $H_{\rm LM}^{\rm eff}$ values were calculated by eq. 4 and $\Delta E_{\rm LM}^{\rm eff}$ values were calculated by eq. 5. Spectroscopic data were extracted from the spectra of the mixed-valence complexes $[{\rm Mo_2\text{-}Mo_2}]^+$. It is assumed that $r_{\rm LM} \approx r_{\rm ML}$ and $r_{\rm LM'} \approx r_{\rm M'L}$. $$H_{LM}^{eff} = \frac{H_{LM}^2}{2\Delta E_{LM}^{eff}} \tag{5}$$ $$\frac{1}{\Delta E_{IM}^{eff}} = 0.5 \times \left(\frac{1}{E_{IMCT} - E_{IT}} + \frac{1}{E_{IM}}\right) \tag{6}$$ **Table S4.** Comparison between H_{ab} from Hush model and $H_{MM'}$ from CNS model. | | | uo | | 141141 | | |---|--------------------------------------|----------------------------|--|---------------------------------------|--------------| | complex | $H_{\rm ab}({\rm cm}^{\text{-}1})^a$ | $H_{ab}(\text{cm}^{-1})^b$ | $H_{\scriptscriptstyle ext{ML}}^{\scriptscriptstyle ext{eff}}$ | $H^{e\!f\!f}_{\scriptscriptstyle LM}$ | $H_{ m MM'}$ | | complex | $(r_{ab}=Mo_2\cdots Mo_2)$ | $(r_{ab}'=5.8\text{Å})$ | (cm^{-1}) | (cm^{-1}) | (cm^{-1}) | | $\left[\mathbf{O_2}\text{-}\mathbf{O_2}\right]^+$ | 304 | 589 | 551 | 0 | 551 | | $[\mathbf{OS}\mathbf{-OS}]^+$ | 360 | 727 | 655 | 109 | 764 | | $\left[\mathbf{S_2}\text{-}\mathbf{S_2}\right]^+$ | 410 | 864 | 708 | 156 | 864 | | $\left[\mathbf{O_2}\text{-}\mathbf{S_2}\right]^+$ | NA | NA | 618 | 93 | 711 | $H_{\rm MM'}$ values were calculated by summation of $H_{\rm ML}^{\rm eff}$ and $H_{\rm LM}^{\rm eff}$ (eq. 7). $$H_{MM'} = H_{ML}^{eff} + H_{LM}^{eff} \tag{7}$$ *Table S5.* Electron transfer kinetics for the symmetrical complexes based on the electronic coupling matrix elements from Hush and CNS methods. | | | Hush | | CNS | | | | |---|-----------------------------------|----------------------------------|----------------------------------|---------------------------|--------------------------------|----------------------------------|--| | complex | $v_{\rm el}({\rm s}^{\text{-}1})$ | ΔG^* (cm ⁻¹) | $k_{\rm et}({ m s}^{\text{-}1})$ | $V_{\rm el}({ m s}^{-1})$ | $\Box G^*$ (cm ⁻¹) | $k_{\rm et}({ m s}^{\text{-}1})$ | | | $\left[\mathbf{O_2}\text{-}\mathbf{O_2}\right]^+$ | 1.2×10^{14} | 553 | 3.5×10^{11} | 1.1×10^{14} | 581 | 3.0×10^{11} | | | $[\mathbf{OS}\mathbf{-OS}]^{+}$ | 2.1×10^{14} | 287 | 1.2×10^{12} | 2.3×10^{14} | 266 | 1.4×10^{12} | | | $[S_2-S_2]^+$ | 3.4×10^{14} | 79 | 3.4×10^{12} | 3.4×10^{14} | 79 | 3.4×10^{12} | | For the symmetrical complexes, $\lambda = E_{\rm IT}$. The free energies of activation were calculated from eq. 7. Electronic frequencies calculated from eq. 8 are in order of 10^{14} s⁻¹ and the rates of ET reactions were calculated from eq. 9, where $\kappa = 1$ and $\nu_n = 5 \times 10^{12}$ s⁻¹. $$\Delta G^* = \frac{(\lambda - 2H)^2}{4\lambda} \tag{8}$$ $$vel = \frac{2H^2}{h} \sqrt{\frac{\pi^3}{\lambda RT}}$$ (9) $$k_{et} = \kappa v_n \exp(-\Delta G^* / k_B T) \tag{10}$$ *Table S6.* Electron transfer kinetics for the unsymmetrical complexes based on the electronic coupling matrix elements from CNS methods. | | diab | atic | adiabatic | | | |--|--|---|--|---------------------------------|--| | complex | ΔG^* (dia) (cm ⁻¹) | $k_{\mathrm{et}}(\mathrm{s}^{\text{-1}})$ | $\Box \Delta G^*$ (adia) (cm ⁻¹) | $k_{\rm et}({ m s}^{ ext{-}1})$ | | | $[\mathbf{O_2}\text{-}\mathbf{S_2}]^+$ (forward) | 2482 | 3.1×10^{7} | 2430 | 4.1×10^{7} | | | $[\mathbf{O_2}\text{-}\mathbf{S_2}]^+$ (reverse) | 256 | 1.5×10^{12} | 364 | 8.6×10^{11} | | For the unsymmetrical complex, the diabatic free energies of activation (ΔG_{dia}^*) were calculated from eq.11 and the adiabatic ΔG_{adia}° and ΔG_{adia}^* were calculated using eq. 12 and 13 based on the $H_{\rm MM'}$ derived from the CNS equations (ref. 42 in the text). $$\Delta G^* = \frac{\lambda}{4} \left(1 + \frac{\Delta G^0}{\lambda} \right)^2 \tag{11}$$ $$\Delta G_{\rm ad}^{\rm o} = \Delta G^{\rm o} \left(1 - \frac{2H_{\rm ab}^2}{(\lambda + \Delta G^{\rm o})(\lambda - \Delta G^{\rm o})} \right) \tag{12}$$ With $\Delta G^{\circ} = 2226 \text{ cm}^{-1}$, $H_{ab} = 711 \text{ cm}^{-1}$ and $\lambda = 4334 \text{ cm}^{-1}$ $$\Rightarrow \Delta G_{\rm ad}^{\rm o} = 2063 \ {\rm cm}^{-1}$$ $$\Delta G^*(adia) = \frac{\lambda}{4} + \frac{\Delta G^{\circ}}{2} + \frac{(\Delta G^{\circ})^2}{4(\lambda - 2H_{ab})} - H_{ab} + \frac{H_{ab}^2}{(\lambda + \Delta G^{\circ})}$$ (13)