Supporting Information

n-BuLi/LiCH₂CN-mediated one-carbon homologation of aryl epoxides into conjugated allyl alcohols

Takashi Tomioka*, Rambabu Sankranti, Tsuyoshi Yamada, and Courtney Clark

Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, USA

tomioka@olemiss.edu

Table of Contents

Materials and Methods	
General Experimental Procedure	S2
Spectral Data	
NMR Spectra of Compounds	

Materials and Methods

All experiments were performed in flame-dried glassware fitted with rubber septa under an argon atmosphere. Tetrahydrofuran (THF) was distilled over sodium/benzophenone ketyl. All aryl epoxides except styrene oxide and 2-methyl-3-phenyloxirane were prepared in accordance with literature procedure.¹ Unless otherwise noted, reagents were obtained from commercial sources and used as received. ¹H Nuclear Magnetic Resonance (NMR) spectra were recorded at 300 or 500 MHz. Data are presented as follows: chemical shift (in ppm on the δ scale relative to δ H 7.26 for the residual protons in CDCl₃), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (*J*/Hz), integration. Coupling constants were taken directly from the spectra and are uncorrected. ¹³C NMR spectra were recorded at 75 or 125 MHz, and all chemical shift values are reported in ppm on the δ scale, with an internal reference of δ C 77.0 for CDCl₃. Analytical TLC was performed on silica gel plates using UV light and/or potassium permanganate stain followed by heating. Flash column chromatography was performed on silica gel 60A (32-63D).

General Experimental Procedure

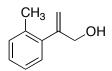
An original step-wise method for Table 1

CH₃CN
$$\xrightarrow{i)}$$
 n-BuLi, THF, -78°C, ~20 min
ii) aryl epoxide, -78°C \rightarrow r.t., overnight Ar OH

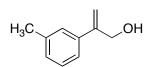
Into a flame-dried 10 mL round-bottomed flask was added dry THF (3.0 mL) under an argon atmosphere. After cooling to -78° C (acetone/dry-ice bath), *n*-BuLi (1.64 mL, 2.5 M in hexane, 4.1 mmol) and dry CH₃CN (110 µL, 2.1 mmol) were slowly added respectively. After stirring for 15–20 min, aryl epoxide (2.0 mmol) was then added. The reaction mixture was gradually warmed up to room temperature overnight and quenched with saturated NaHCO₃ (3 mL). After the phase separation, the aqueous layer was extracted with Et₂O (x2). The combined organics were washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by SiO₂ column chromatography (Hex/EtOAc = 7/3). <u>Caution:</u> due to the generation of cyanide ion during the course of the reaction, all operations, including work-up, should be carried out in a fume hood and the cyanide-containing waste should be properly handled and disposed.

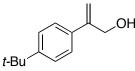
A modified, concise method for Schemes 6 and 7

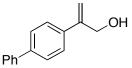
CH₃CN + aryl epoxide
$$\xrightarrow{n-BuLi (2 \text{ equiv.})}$$
 Ar \xrightarrow{OH}

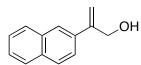

Into a flame-dried 10 mL round-bottomed flask were added aryl epoxide (2.0 mmol), dry CH₃CN (110 μ L, 2.1 mmol), and dry THF (3.0 mL) under an argon atmosphere. After

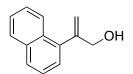
cooling to -78° C (acetone/dry-ice bath), *n*-BuLi (1.64 mL, 2.5 M in hexane, 4.1 mmol) was added dropwise. The reaction mixture was then gradually warmed up to room temperature overnight and quenched with saturated NaHCO₃ (3 mL). After the phase separation, the aqueous layer was extracted with Et₂O (x2). The combined organics were washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by SiO₂ column chromatography (Hex/EtOAc = 7/3 for **2a** and **2b**, and Hex/EtOAc = 9/1 for **2m**). <u>Caution:</u> due to the generation of cyanide ion during the course of the reaction, all operations, including work-up, should be carried out in a fume hood and the cyanide-containing waste should be properly handled and disposed.

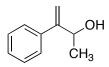

Spectral data


2-phenylprop-2-en-1-ol (2a): Column chromatography yielded **2a** as a colorless liquid (215 mg, 80%). R_f 0.30 (Hex/EtOAc = 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.47–7.44 (m, 2H), 7.39–7.29 (m, 3H), 5.48 (s, 1H), 5.36 (d, J = 1.2 Hz, 1H), 4.56 (d, J = 6.0 Hz, 2H), 1.55 (t, J = 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 147.2. 138.5, 128.5, 127.9, 126.0, 112.5, 64.9; HRMS (TOF MS ES⁺) calcd for C₉H₁₁O 135.0810 [M + H]⁺, found 135.0781. The spectral data matched those reported previously.²

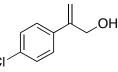

2-(*o***-tolyl)prop-2-en-1-ol (2b):** Column chromatography yielded **2b** as a colorless liquid (240 mg, 81%). R_f 0.37 (Hex/EtOAc = 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.10 (m, 4H), 5.49 (d, J = 1.5 Hz, 1H), 5.06 (d, J = 1.2 Hz, 1H), 4.31 (d, J = 6.3 Hz, 2H), 2.32 (s, 3H), 1.75 (t, J = 6.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 149.0, 139.6, 135.4, 130.2, 128.7, 127.5, 125.6, 113.2, 66.1, 19.7; HRMS (TOF MS ES⁺) calcd for C₁₀H₁₃O 149.0966 [M + H]⁺, found 149.0957.


2-(*m***-tolyl)prop-2-en-1-ol (2c):** Column chromatography yielded **2c** as a colorless liquid (213 mg, 72%). R_f 0.32 (Hex/EtOAc = 7/3); ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.23 (m, 3H), 7.15–7.11 (m, 1H), 5.45 (s, 1H), 5.33 (d, J = 1.0 Hz, 1H), 4.54 (d, J = 5.5 Hz, 2H), 2.37 (s, 3H), 1.64 (t, J = 5.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 147.4, 138.5, 138.1, 128.7, 128.4, 126.8, 123.2, 112.4, 65.1, 21.5; HRMS (TOF MS ES⁺) calcd for C₁₀H₁₃O 149.0966 [M + H]⁺, found 149.0940.

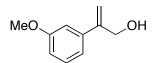

2-(4-(tert-butyl)phenyl)prop-2-en-1-ol (2d): Column chromatography yielded **2d** as a colorless liquid (194 mg, 51%). R_f 0.36 (Hex/EtOAc = 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.36 (m, 4H), 5.46 (s, 1H), 5.31 (d, J = 1.2 Hz, 1H), 4.55 (d, J = 6.0 Hz, 2H), 1.54 (t, J = 6.0 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 151.0, 147.0, 135.5, 125.7, 125.4, 111.9, 65.1, 34.5, 31.3. The spectral data matched those reported previously.³


2-([1,1'-biphenyl]-4-yl)prop-2-en-1-ol (2e): Column chromatography yielded **2e** as a yellow solid (269 mg, 64%). R_f 0.24 (Hex/EtOAc = 7/3); ¹H NMR (500 MHz, CDCl₃) δ 7.65–7.30 (m, 9H), 5.54 (s, 1H), 5.39 (d, J = 1.0 Hz, 1H), 4.60 (d, J = 6.5 Hz, 2H), 1.56 (t, J = 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 146.8, 140.8, 140.6, 137.3, 128.8, 127.4, 127.2, 127.0, 126.5, 112.7, 65.1. The spectral data matched those reported previously.³

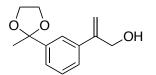
2-(naphthalen-2-yl)prop-2-en-1-ol (2f): Column chromatography yielded **2f** as a white solid (261 mg, 71%). R_f 0.28 (Hex/EtOAc = 7/3); ¹H NMR (300MHz, CDCl₃) δ 7.90–7.80 (m, 4H), 7.64–7.60 (m, 1H), 7.51–7.45 (m, 2H), 5.63 (s, 1H), 5.47 (d, J = 0.9 Hz, 1H), 4.68 (d, J = 5.1 Hz, 2H), 1.55 (t, J = 5.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 135.7, 133.4, 133.0, 128.2, 128.1, 127.6, 126.3, 126.1, 124.8, 124.3, 113.2, 65.2. The spectral data matched those reported previously.⁴



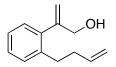
2-(naphthalen-1-yl)prop-2-en-1-ol (2g): Column chromatography yielded **2g** as a colorless liquid (284 mg, 77%). R_f 0.30 (Hex/EtOAc = 7/3); ¹H NMR (300 MHz, CDCl₃): δ 8.05–8.01 (m, 1H), 7.89–7.79 (m, 2H), 7.52–7.31 (m, 4H), 5.71 (d, J = 1.5 Hz, 1H), 5.27 (d, J = 1.5 Hz, 1H), 4.48 (d, J = 6.0 Hz, 2H), 1.67 (t, J = 6.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 147.8, 137.9, 133.7, 131.5, 128.3, 127.8, 126.1, 125.8, 125.7, 125.4, 125.2, 114.8, 66.7. The spectral data matched those reported previously.⁵



3-phenylbut-3-en-2-ol (2h): Column chromatography yielded **2h** as a colorless liquid (193 mg, 65%). R_f 0.36 (Hex/EtOAc = 7/3); ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.30 (m, 5 H), 5.37 (s, 1 H), 5.28 (s, 1H), 4.85–4.78 (m, 1H), 1.68 (d, J = 3.5 Hz, 1H), 1.33 (d, J = 6.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 153.1, 139.9, 128.4, 127.6, 126.8, 111.6, 69.5, 22.6. The spectral data matched those reported previously.⁶

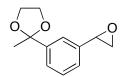

2-methyl-3-phenylbut-3-en-2-ol (2i): Column chromatography yielded **2i** as a white solid (211 mg, 65%). R_f 0.42 (Hex/EtOAc = 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.33–7.27 (m, 5H), 5.43 (d, J = 1.2 Hz, 1H), 4.97 (d, J = 0.9 Hz, 1H), 1.56 (s, 1H), 1.42 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 157.1, 141.5, 128.8, 127.8, 127.0, 112.5, 73.0, 29.7; HRMS (TOF MS ES⁻) calcd for C₁₁H₁₃O 161.0966 [M – H]⁻, found 161.0945.

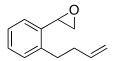
2-(4-chlorophenyl)prop-2-en-1-ol (2j): Column chromatography yielded **2j** as a light yellow liquid (148 mg, 44%). R_f 0.25 (Hex/EtOAc = 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.41–7.30 (m, 4H), 5.47 (d, J = 0.9, 1H), 5.37 (d, J = 0.9, 1H), 4.52 (d, J = 4.8 Hz, 2H), 1.55 (t, J = 5.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 146.2, 136.9, 133.8, 128.7, 127.4, 113.3, 65.0. The spectral data matched those reported previously.²



2-(3-methoxyphenyl)prop-2-en-1-ol (2k): Column chromatography yielded **2k** as a colorless liquid (197 mg, 60%). R_f 0.24 (Hex/EtOAc = 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.31–7.25 (m, 1H), 7.06–6.98 (m, 2H), 6.88–6.84 (m, 1H), 5.47 (d, J = 0.9 Hz, 1H), 5.36 (d, J = 1.2 Hz, 1H), 4.53 (d, J = 6.0 Hz, 2H), 3.83 (s, 3H), 1.60 (t, J = 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 147.2, 140.0, 129.5, 118.6, 113.2, 112.8, 112.1, 65.1, 55.2; HRMS (TOF MS ES⁻) calcd for C₁₀H₁₁O₂ 163.0759 [M – H]⁻, found 163.0788.

2-(3-(2-methyl-1,3-dioxolan-2-yl)phenyl)prop-2-en-1-ol (2l): Column chromatography yielded **2l** as a colorless liquid (287 mg, 65%). R_f 0.17 (Hex/EtOAc = 7/3); ¹H NMR


(500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.45–7.31 (m, 3H), 5.50 (s, 1H), 5.37 (s, 1H), 4.56 (d, J = 6.0 Hz, 2H), 4.05 (t, J = 7.0 Hz, 2H), 3.79 (t, J = 7.0 Hz, 2H), 1.67 (s, 3H), 1.55 (t, J = 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 147.3, 143.7, 138.5, 128.4, 125.6, 124.9, 122.9, 112.8, 108.8, 65.0, 64.5, 27.7; HRMS (TOF MS ES⁺) calcd for C₁₃H₁₇O₃ 221.1178 [M + H]⁺, found 221.1151.

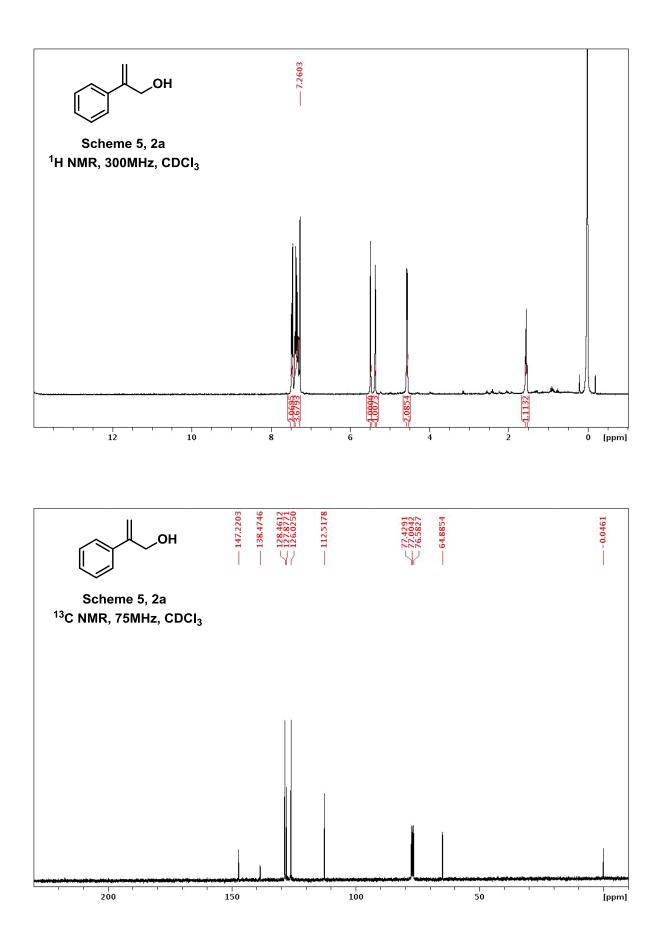

2-(2-(but-3-en-1-yl)phenyl)prop-2-en-1-ol (2m): Column chromatography yielded **2m** as a light orange liquid (149 mg, 40%). R_f 0.31 (Hex/EtOAc = 9/1); ¹H NMR (300 MHz, CDCl₃) δ 7.26–7.09 (m, 4H), 5.86 (ddt, J = 16.8, 10.2, 6.6 Hz, 1H), 5.49 (d, J = 0.9 Hz, 1H), 5.10–4.95 (m, 3H), 4.31 (s, 2H), 2.72 (t, 7.8 Hz, 2H), 2.34 (apparent q, J = 7.5 Hz, 2H), 1.72 (bs,1H); ¹³C NMR (125 MHz, CDCl₃) δ 148.7, 139.4, 139.3, 138.1, 129.2, 129.0, 127.6, 125.7, 114.8, 113.2, 66.6, 35.7, 32.3; HRMS (TOF MS ES⁺) calcd for C₁₃H₁₇O 189.1279 [M + H]⁺, found 189.1260.

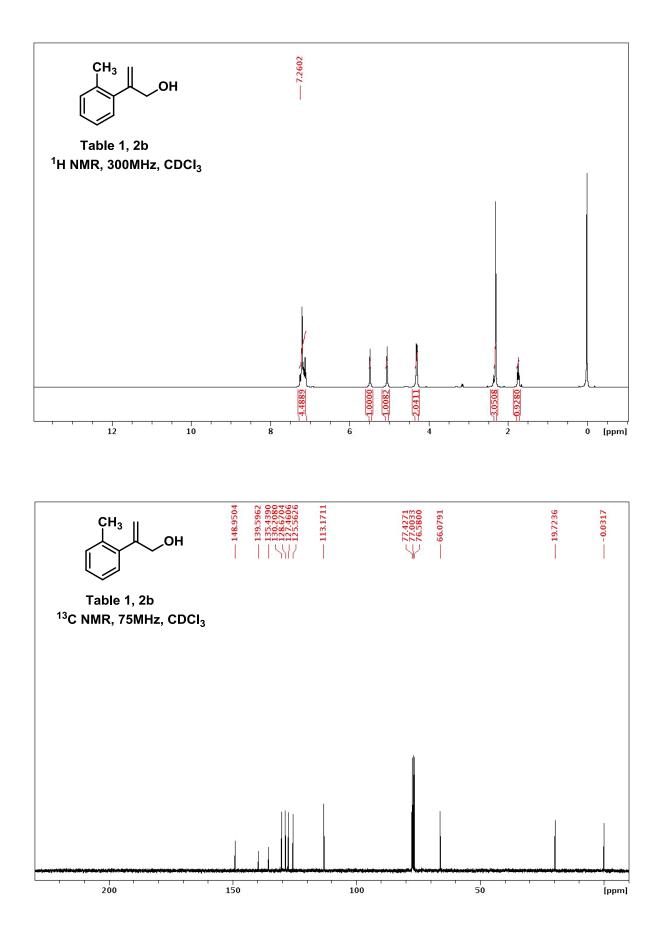
cyclopropane (9): The initial column chromatography (Hex/EtOAc = 9/1) separated **2m** and **9**, but **9** was still impure. The second column chromatography (CHCl₃/EtOAc = 3/1) yielded pure **9** as a white solide (94 mg, 27%). R_f 0.21 (Hex/EtOAc = 9/1), R_f 0.64 (CHCl₃/EtOAc = 3/1); ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, J = 7.8 Hz, 1H), 7.22–7.14 (m, 1H), 7.11–7.00 (m, 2H), 4.07 (d, J = 11.7 Hz, 1H), 3.57 (d, J = 11.7 Hz, 1H), 2.63 (ddd, J = 15.9, 5.1, 2.4 Hz, 1H), 2.47 (ddd, J = 15.9, 12.6, 6.0 Hz, 1H), 2.15–1.98 (m, 2H), 1.86–1.72 (m, 1H), 1.52–1.43 (m, 1H), 0.95 (apparent t, J = 5.1 Hz, 1H), 0.79 (dd, J = 8.4, 5.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.2, 135.0, 128.8, 126.3, 126.0, 125.0, 69.0, 26.4, 24.3, 21.5, 19.7, 13.1; HRMS (TOF MS ES⁺) calcd for C₁₂H₁₅O 175.1123 [M + H]⁺, found 175.1114.

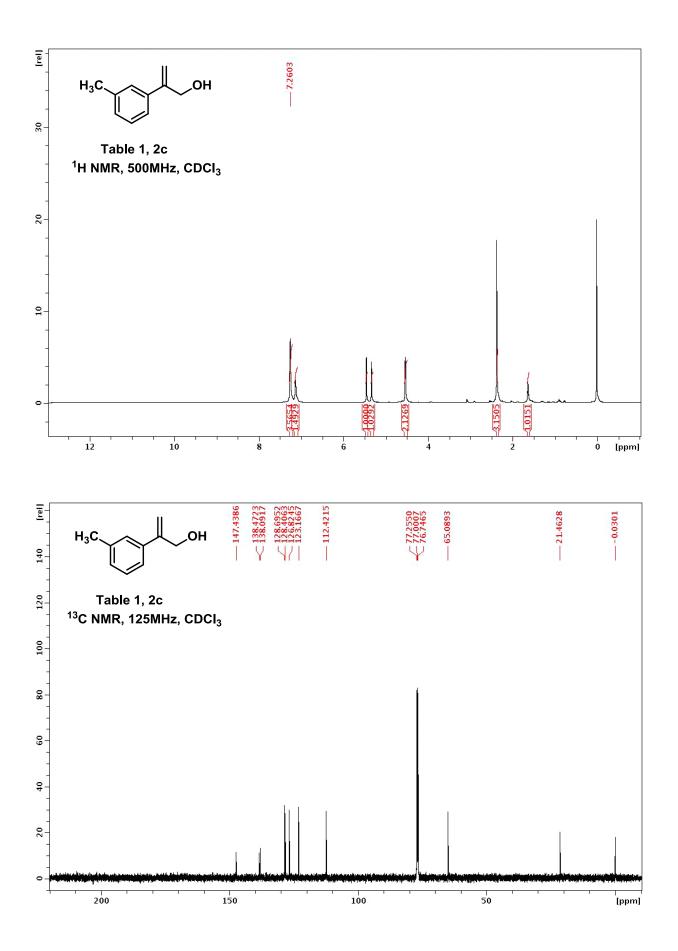
epoxide (entry 11 in table 1): The epoxide was prepared from 3-(2-methyl-1,3-dioxolan-2-yl)benzaldehyde⁷ and was obtained as a colorless liquid. R_f 0.21 (Hex/EtOAc = 99:1); ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.41 (m, 2H), 7.36–7.29 (m, 1H), 7.22–7.18 (m, 1H), 4.08–4.00 (m, 2H), 3.89–3.85 (m, 1H), 3.81–3.74 (m, 2H), 3.15 (dd, J = 5.4, 4.2 Hz, 1H), 2.83 (dd, J = 5.4, 2.7 Hz, 1H), 1.65 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.9, 137.7, 128.5, 125.2, 124.9, 122.7, 108.7, 64.5, 64.4, 52.4, 51.1, 27.6; HRMS (TOF MS ES⁺) calcd for C₁₂H₁₅O₃ 207.1021 [M + H]⁺, found 207.0993.

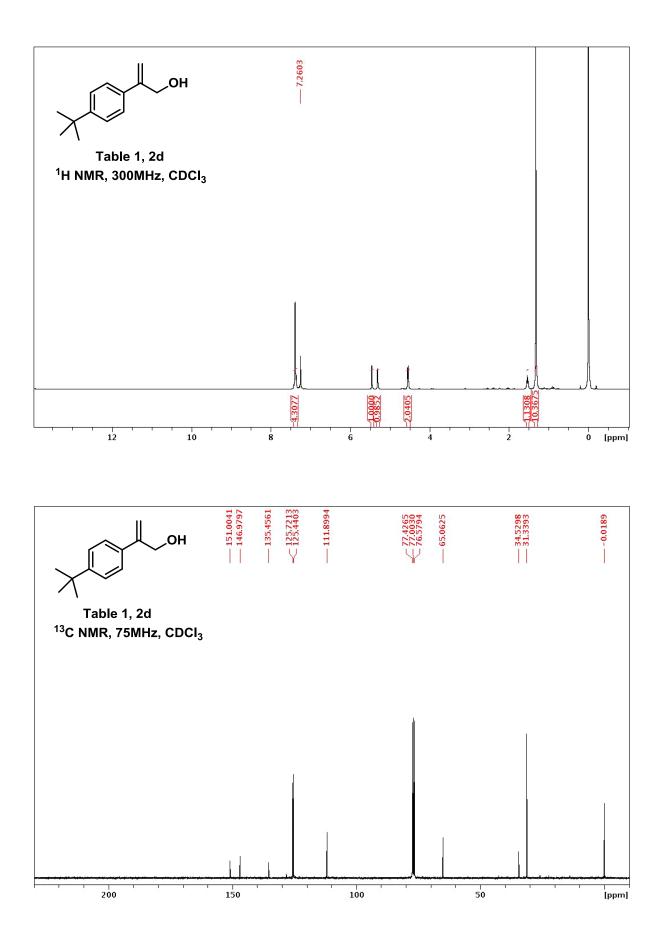
epoxide (8): The epoxide was prepared from 2-(but-3-en-1-yl)benzaldehyde⁸ and was obtained as a colorless liquid. R_f 0.64 (toluene); ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.19 (m, 4H), 5.92 (ddt, J = 17.1, 10.2, 6.6 Hz, 1H), 5.14–5.02 (m, 2H), 4.07 (dd, J = 3.9, 2.7 Hz, 1H), 3.17 (dd, J = 5.7, 4.2 Hz, 1H), 2.92–2.85 (m, 2H), 2.72 (dd, J = 5.7, 2.7 Hz, 1H), 2.48–2.38 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 140.0, 137.6, 135.4, 128.9, 127.6, 126.3, 124.1, 115.1, 50.3, 50.0, 35.0, 32.0; HRMS (TOF MS ES⁺) calcd for C₁₂H₁₅O 175.1123 [M + H]⁺, found 175.1096.

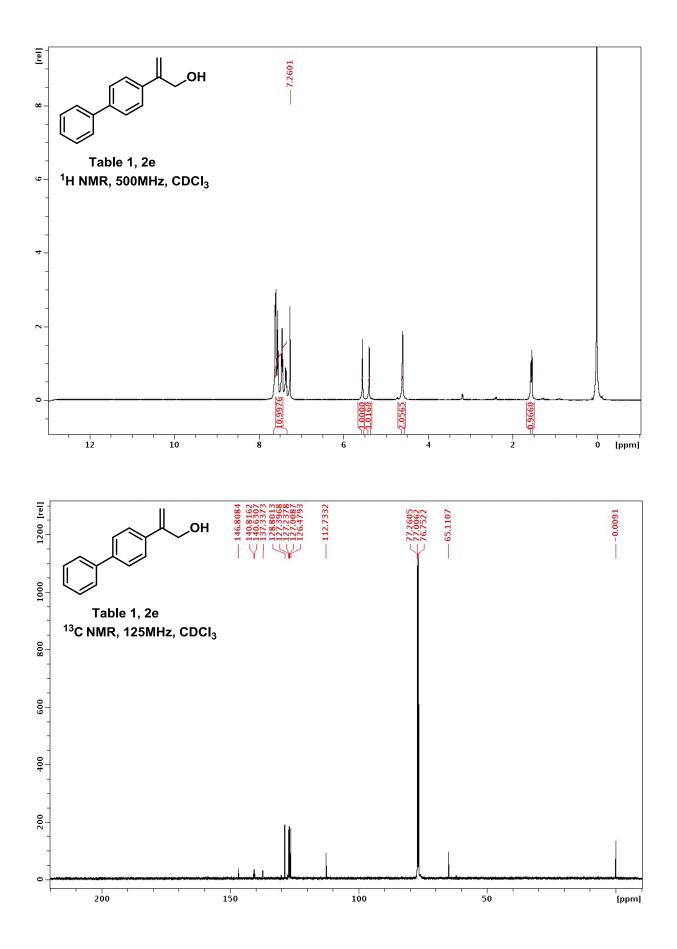
References:


- ¹ (a) Nielsen, D. K.; Doyle, A. G. *Angew. Chem. Int. Ed.* **2011**, *50*, 6056. (b) Ebner, C.; Muller, C. A.; Markert, C.; Pfaltz, A. J. Am. Chem. Soc. **2011**, *133*, 4710.
- ² Sun, X.; Frimpong, K.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 11841.
- ³ Hollingworth, C.; Hazari, A.; Hopkinson, M. N.; Tredwell, M.; Benedetto, E.; Huiban, M.; Gee, A. D.; Brown, J. M.; Gouverneur, V. *Angew. Chem. Int. Ed.* **2011**, *50*, 2613.
- ⁴ Mo, L.; Xu, L.; Ruan, J.; Liu, S.; Xiao, J. Chem. Commun. 2006, 3591.


⁵ Piel, I.; Steinmetz, M.; Hirano, K.; Frohlich, R.; Grimme, S.; Glorius, F. *Angew. Chem. Int. Ed.* **2011**, *50*, 4983.


- ⁶ Gao, G.-Y.; Jones, J. E.; Vyas, R.; Harden, J. D.; Zhang, X. P. J. Org. Chem. 2006, 71, 6655.
- ⁷ (a) Suh, Y.-G.; Kim, N.-J.; Koo, B.-W.; Lee, K.-O.; Moon, S.-H.; Shi, D.-H.; Jung, J.-W.; Paek,
- S.-M.; Chang, D.-J.; Li, F.; Kang, H.-J.; Le, T. V. T.; Chae, Y. N.; Shin, C. Y.; Kim, M.-K.; Lim,
- J. I.; Ryu, J.-S.; Park, H.-J. J. Med. Chem. 2008, 51, 6318. (b) Chun, J.; Yin, Y. I.; Yang, G.;


Tarassishin, L.; Li, Y.-M. J. Org. Chem. 2004, 69, 7344.


⁸ Watson, I. D. G.; Ritter, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2058.

