Supporting Information

Toward the Electrochemical Valorization of Glycerol: Fourier Transform Infrared Spectroscopic and Chromatographic Studies

Yaovi Holade, Cláudia Morais*, Karine Servat, Teko W. Napporn and K. Boniface Kokoh

Université de Poitiers, IC2MP CNRS UMR 7285, 4 rue Michel Brunet – B27, BP 633, 86022 Poitiers cedex, France

*corresponding author: <u>claudia.gomes.de.morais@univ-poitiers.fr</u>

1- Physicochemical data about the synthesized catalyst by "Bromide Anion Exchange Method"

Table S1: Lattice parameter (a), metal loading (wt. %), crystallites (L_v), particles size (d_{TEM}), of the catalytic particles as determined by TGA, XRD, TEM respectively for PdM/C (M = Ni or Ag).

Pd:M atomic ratio		100:0	90:10	80:20	70:30	60:40	50:50	30:70	0:100
	a/Å	3.91	3.92	3.92	3.92	3.91	3.91	/	/
PdNi/C	L _V / nm	4.1	3.2	3.3	3.2	2.8	3.6	/	/
	(wt. %)	29	29	25	30	30	26	30	30
	d _{TEM} / nm	3.7	/	/	/	3.7	/	/	/
PdAg/C	a/Å	3.91	3.95	3.95	4.00	3.99	4.03	4.06	4.09
	L _V / nm	4.1	3.5	3.8	3.0	3.2	3.6	6.4	39.5
	(wt. %)	29	28	29	25	24	26	29	24
	d _{TEM} / nm	3.7	/	4.0	/	/	/	/	/

Figure S1: Successive cyclic voltammograms of $Pd_{30}Ag_{70}/C$ electrode recorded in 0.1 mol L⁻¹ NaOH at 50 mV s⁻¹.

3- Description of the method used for specific electrochemical surface area (SECSA) evaluation.

Various methods can be used to evaluate the electrochemical active surface are of metal: adsorption/desorption of hydrogen, stripping of probe molecule (CO), stripping of under potential deposition (UPD) or reduction of oxide.¹⁻⁴ It is well-known that Pd (more especially NPs) has an ability to absorb hydrogen into its crystal lattice. ⁵⁻¹⁰ To avoid this phenomenon, we used the reduction peak of palladium oxide (PdO). Silver does not present hydrogen region as can be seen in figure S4(b). A charge density of 424 μ C cm⁻² (Q_{monolayer}) was associated to the reduction of the formed PdO monolayer.^{11,12} For the reduction of Ag₂O

monolayer, this charge was 420 μ C cm⁻² (Q_{monolayer}).¹³ Because of the presence of Ni(OH)₂ species in the PdNi/C catalysts, it is not possible to evaluate their active surface areas.¹⁴ The figure S4 shows the integrated region. The exchange charge (Q_{exchanged charge}) was obtained by using Eq. (2) on Origin8[®] software. But for confirmation, we used the old method named "weighing method" to get this exchange charge. This method use tracing paper. Briefly, it involves cutting a known surface of tracing paper and to weigh it. This charge is calculated by using the Eq. (3) that we do not develop it establishment. The variables a, b, *x*, *y* and *v* used in Eq. (3) are represented on figure S4(c); s₀ is the surface of the tracing paper which is cut. The variable m₀ is the weight of the tracing paper while m₁ is the weight of the shaded curve printed on any paper.

SA (cm²) =
$$\frac{Q_{\text{exchangedcharge}}^{(\mu C)}}{Q_{\text{monolwer}}^{(\mu C \text{ cm}^{-2})}}$$
(Eq.1)

$$Q_{\text{exchangedcharge}}(\mu C) = \frac{1}{v(mV s^{-1})} \left(\int_{E_{\text{onset}}}^{E_{\text{end}}} i(E) dE \right), i(\mu A) \text{ and } E(mV)$$
(Eq. 2)

$$\mathbf{Q}_{\text{exchangedcharge}} = \frac{1}{v(\mathbf{mV} \, \mathbf{s}^{-1})} \left(\frac{\mathbf{m}_{1}}{\mathbf{m}_{0}} \times \frac{\mathbf{s}_{0}}{x \times y} \times \frac{\mathbf{a} \times \mathbf{b}}{v} \right)$$
(Eq. 3)

SECSA(m²g⁻¹) =
$$\frac{SA(m^2)}{Total metal weight (g)}$$
 (Eq. 4)

 $Q_{\text{monolayer}}$ is associated to the reduction of the complete first oxide monolayer to free metallic. The Eq. (4) serves to get SECSA in $\mathbf{m}^2 \, \mathbf{g}^{-1}$ while Eq. (5) was used to obtain SECSA in $\mathbf{m}^2 \, \mathbf{g}^{-1}_{Pd}$. The latter is used to express the active surface area by the noble metal weight.

SECSA(m²g_{Pd}⁻¹) =
$$\frac{SA(m^2)}{palladium metal weight (g)}$$
 (Eq. 5)

Figure S2: Illustration of the method used for real active surface area evaluation by cyclic voltammetry on Pd/C and b) Ag/C electrode. The blue solid line represents the complete stationary cyclic voltammograms while the shaded curve shows the integrated region. The experiments were recorded in 0.1 mol L⁻¹ NaOH at 50 mV s⁻¹. c) An illustration of "weighing method".

4- Effect of scan rate on glycerol electrooxidation at $Pd_{60}Ni_{40}/C$ electrode

Figure S3: Voltammograms of a $Pd_{60}Ni_{40}/C$ electrode recorded at different sweep rates in 0.1 mol L⁻¹ NaOH and in the presence of 0.1 mol L⁻¹ glycerol.

5- Electrolysis of glycerol

Figure S4: Electrolysis of 0.1 mol L⁻¹ glycerol (in 0.1 mol L⁻¹ NaOH) on Pd/C: a) Reports the current measured during the 240 min electrolysis; b), c) and d) Current measured during the first 30 min of electrolysis of 0.1 mol L⁻¹ of glycerol on Pd/C, Pd₅₀Ni₅₀/C and Pd₅₀Ag₅₀/C catalysts, respectively.

Figure S5: Potential program used for prolonged electrolysis.

Figure S6: Products distribution on Pd/C (a), Pd₆₀Ni₄₀/C (b) and Pd₈₀Ag₂₀/C (c) catalysts respectively: Glyce. A (Glyceric Acid); Tartro. A (Tartronic Acid); Glyco. A (Glycolic Acid); Oxal. A (Oxalic Acid); Form. A (Formic Acid).

Figure S7: SPAIR spectra recorded in 0.1 mol L⁻¹ NaOH electrolyte containing 0.1 mol L⁻¹ of glycerol at 1 mV s⁻¹ on Pd₈₀Ag₂₀/C catalyst at potentials ranging from 0.30 to 1.45 V vs. RHE.

Figure S8: (a-d) Reflectance FTIR spectra of the different possible products or intermediates recorded in 0.1 mol·L⁻¹ NaOH aqueous solution.

Figure S9: FTIR spectra recorded during chronoamperomety at 0.8 V *vs*. RHE in 0.1 mol L^{-1} NaOH electrolyte containing 0.1 mol L^{-1} of glycerol on PdNi/C catalyst.

References

- (1) Trasatti, S.; Petrii, O. A. J. Electroanal. Chem. 1992, 327, 353.
- (2) Herrero, E.; Buller, L. J.; Abruña, H. D. Chem. Rev. 2001, 101, 1897.

(3) Jerkiewicz, G. Electrocatal. 2010, 1, 179.

(4) Chen, D.; Tao, Q.; Liao, L.; Liu, S.; Chen, Y.; Ye, S. *Electrocatal.* 2011, 2, 207.

(5) Tateishi, N.; Yahikozawa, K.; Nishimura, K.; Takasu, Y. *Electrochim. Acta* **1992**, *37*, 2427.

(6) Jewell, L. L.; Davis, B. H. Appl. Catal. A: Gen. 2006, 310, 1.

(7) Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. J. Am. Chem. Soc. 2008, 130, 1818.

(8) Narehood, D. G.; Kishore, S.; Goto, H.; Adair, J. H.; Nelson, J. A.; Gutiérrez, H. R.; Eklund, P. C. *Int. J. Hydrogen Energy* **2009**, *34*, 952.

(9) Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. J. Am. Chem. Soc. **2010**, *132*, 5576.

- (10) Hu, C.-C.; Wen, T.-C. Electrochim. Acta 1995, 40, 495.
- (11) Grden, M.; Lukaszewski, M.; Jerkiewicz, G.; Czerwinski, A. *Electrochim. Acta* **2008**, *53*, 7583.
 - (12) Simões, M.; Baranton, S.; Coutanceau, C. J. Phys. Chem. C 2009, 113, 13369.
 - (13) Maheswari, S.; Sridhar, P.; Pitchumani, S. *Electrocatal.* 2012, *3*, 13.

(14) Holade, Y.; Morais, C.; Arrii-Clacens, S.; Servat, K.; Napporn, T. W.; Kokoh, K. B. *Electrocatal.* **2013**, *4*, 167.