Supporting Information

A "Strongly" Self-Catenated Metal-Organic Framework With the Highest Topological Density among (3,4)-Coordinated Nets

Huiqing Ma, ${ }^{\text {a }}$ Di Sun, ${ }^{\text {a }}$ LiangLiang Zhang, ${ }^{\text {c }}$ Rongming Wang, ${ }^{\text {c }}$ Vladislav A. Blatov, ${ }^{*, b, d}$ Jie Guo, ${ }^{\text {a }}$Daofeng Sun*, ${ }^{*, \mathrm{c}}$${ }^{a}$ Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and ChemicalEngineering ,Shandong University, Jinan, People's Republic of China. E-mail: dfsun@sdu.edu.cn (D.F.S)${ }^{b}$ Department of Chemistry, Samara State University, Ac. Pavlov St. 1, Samara, Russia. E-mail:blatov@samsu.ru(V.A.B)${ }^{c}$ Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.${ }^{d}$ College of Science, China University of Petroleum (East China), Qingdao Shandong, People's Republic ofChina.E-mail: dfsun@upc.edu.cn (D.F.S)
Materials and Methods 2
Synthesis of ligand $\mathrm{H}_{3} \mathrm{~L}$, compounds SDU-9 3
Preparation of 4-Methoxycarbonylphenylboronic 3
Preparation of hydroxytris(4-bromophenyl)silane: 3
Preparation of 4,4`, \(4^{`}\)-(hydroxysilanetriyl)tris(triphenyl-4-carboxylic acid): 4
Compound SDU-9 5
X-ray Crystallography 6
Table S1. The table of self-catenation produced in the output of TOPOS 7
Table S2. Crystallographic Data for SDU-9 11
Table S3. Bond Distances (\AA) and Angles $\left(^{\circ}\right)$ for SDU-9. 12
Table S4. Bond Distances (\AA) and Angles $\left(^{\circ}\right)$ for SDU-9. 13
Fig. S1: PXRD spectrum of SDU-9 14
Fig. S2: IR spectrum of SDU-9 15
Fig. S3: TGA curve of SDU-9 16
Fig. S4: Conformations of four non-equivalent 12-rings in SDU-9. 17

Materials and Methods

All of the reagents and solvents employed were commercially available and used as received without further purification. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AVANCE-400 NMR Spectrometer. Elemental analysis was carried out on a CE instruments EA 1110 elemental analyzer. The FT-IR spectra were recorded from KBr pellets in the range $4000-400 \mathrm{~cm}^{-1}$ with a Nicolet AVATAR FT-IR360 spectrometer. X-ray powder diffractions were measured on a Bruker AXS D8 Advance with $\mathrm{Cu} K_{\alpha}$ $(\lambda=1.5418 \AA, 40.0 \mathrm{kV}, 30.0 \mathrm{~mA})$ radiation. Photoluminescence spectra were measured on a Hitachi F-4500 Fluorescence Spectrophotometer (slit width: 5 nm ; sensitivity: high). Thermogravimetric analysis (TGA) was carried out in a static N_{2} with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Synthesis of ligand $H_{3} L$, compounds SDU-9

Preparation of 4-Methoxycarbonylphenylboronic

4.6 g 4-Boronobenzoic acid was dissolved in 100 mL anhydrous MeOH. 12.5 $\mathrm{mL} \mathrm{SOCl}_{2}$ was added very slowly through the flask wall under magnetic stirring. The solution was disturbed at $45-50^{\circ} \mathrm{C}$ for 2 hours and then concentrated on rotary evaporator. 50 mL brine was added. The mixture was extracted with ether acetate (50 * 3). The organic phase was dried over anhydrous magnesium sulfate and dried on rotary evaporator to give white powder $(4 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.95,3 \mathrm{H} ; 8.14$, $2 \mathrm{H} ; 8.27,2 \mathrm{H}$.

Preparation of hydroxytris(4-bromophenyl)silane:

A solution of $\mathrm{n}-\mathrm{BuLi}\left(20 \mathrm{~mL}, 50 \mathrm{mmol}, 2.5 \mathrm{M}\right.$ in hexanes) in $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added to a solution of 1,4-dibromobenzene ($11.8 \mathrm{~g}, 50 \mathrm{mmol}$) in $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ at -78 ${ }^{\circ} \mathrm{C}$ and stirred for 3 hours under N_{2}. Perchlorosilane ($2.84 \mathrm{~g}, 16.7 \mathrm{mmol}$) was then added dropwise and the reaction mixture was heated at reflux for 2 h . After being quenched with $50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, the organic layer was separated, washed with brine, and dried over anhydrous MgSO_{4}. Removal of the solvents under a vacuum yielded a yellow oil, which was recrystallized from hot $\mathrm{CHCl}_{3}: \mathrm{EtOH}(\mathrm{v}: \mathrm{v}=1: 3$) to obtain white solids $\mathrm{HOSi}\left(4-\mathrm{C} 6 \mathrm{H}_{4} \mathrm{Br}\right)_{3}(4.1 \mathrm{~g}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}: 7.34(\mathrm{t}, 4 \mathrm{H}), 7.49$ (dd, 4H).

Preparation of 4,4`,4`-(hydroxysilanetriyl)tris(triphenyl-4-carboxylic acid):
4-Methoxycarbonylphenylboronic (3.2 g, 18 mmol), hydroxytris(4bromophenyl)silane ($2 \mathrm{~g}, 4.13 \mathrm{mmol}$) , and $\operatorname{CsF}(6 \mathrm{~g}, 39.5 \mathrm{mmol})$ were mixed in DME $(50 \mathrm{~mL})$, and the mixture was deaerated using N_{2} for $10 \mathrm{~min} . \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.3 \mathrm{~g}, 0.26$ mmol) was added to the stirred reaction mixture and the mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 48 h under N_{2}, after which DME was removed under a vacuum. The resultant solid was washed with water $(30 \mathrm{~mL})$ and methylene dichloride $(60 \mathrm{~mL})$, respectively, and then dried under a vacuum. The pale solid was filtered and dried after refluxing in MeOH for 24 h . Yield: 59%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=0.98(\mathrm{~s}, 1 \mathrm{H})$, $3.943(\mathrm{~s}, 3 \mathrm{H}), 7.6(\mathrm{~h}, 6 \mathrm{H}), 8.0(\mathrm{~d}, 2 \mathrm{H}), 8.7(\mathrm{t}, 1 \mathrm{H})$. The ester ($1.1 \mathrm{~g}, 1.7 \mathrm{mmol}$) was then suspended in a mixture of THF (20 mL) and $\mathrm{MeOH}(20 \mathrm{~mL})$, to which 5 mL of 2 M NaOH aqueous solution was added. The mixture was stirred under reflux overnight and THF and MeOH were removed under a vacuum. Dilute HCl was added to the remaining aqueous solution until the solution was at $\mathrm{pH}=2$. The solid was collected by filtration, washed with water and MeOH , and dried to give $\mathrm{H}_{3} \mathbf{L}$ ($0.95 \mathrm{~g}, 95.9 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, ~ D M S O$): $\delta / \mathrm{ppm}: 7.7(\mathrm{~d}, 2 \mathrm{H}), 7.8(\mathrm{t}, 1 \mathrm{H}), 7.8(\mathrm{t}, 2 \mathrm{H}), 8.0(\mathrm{t}$, 1H), 13.4 (s, 1H).

Compound SDU-9

The $\mathrm{H}_{3} \mathbf{L}(2.5 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mg}, 0.018 \mathrm{mmol})$ were dissolved in DMF/EtOH/ $\mathrm{H}_{2} \mathrm{O}(1 / 1 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}, 1 \mathrm{~mL})$. Then it was heated in a sealed tube, slowly heated to $75^{\circ} \mathrm{C}$ from room temperature in 500 min , kept at $75^{\circ} \mathrm{C}$ for 2000 min , and then slowly cooled to $30^{\circ} \mathrm{C}$ in 600 min . The green crystalline block that formed was collected, washed with DMF, and dried in the air. Yield: Ca. 40% based on Cu . Elemental analysis: Anal. Calc. for $\mathrm{C}_{78} \mathrm{H}_{80} \mathrm{Cu}_{3} \mathrm{Si}_{2} \mathrm{O}_{29}$: C 54.21, H 4.67 \%. Found: C 54.39, H 4.31 \%.

X-ray Crystallography

Single-crystal X-ray diffraction was performed using a Bruker Apex II CCD diffractometer equipped with a fine-focus sealed-tube X-ray source ($\mathrm{MoK} \alpha$ radiation, graphite monochromated). All absorption corrections were performed with the SADABS program [S1]. All the structures were solved by direct methods using SHELXS-97 [S2] and refined by full-matrix least-squares techniques using SHELXL-97 [S3]. Non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. Hydrogen atoms were placed in calculated positions with isotropic displacement parameters set to $1.2 \times U_{\mathrm{eq}}$ of the attached atom. The crystallographic details of the crystal are summarized in Table S1, S2 and S3. The treatment for the guest molecules in the SDU-9 involves the use of the SQUEEZE program of PLATON [S4].

References

[S1] R.H. Blessing, Acta. Crystallogr. 1995, A51, 33.
[S2] G.M. Sheldrick, SHELXS 97: Program for Crystal Structure Solution, University of Göttingen: Göttingen, Germany, 1997.
[S3] G.M. Sheldrick, SHELXL 97: Program for Crystal Structure refinement, University of Göttingen: Göttingen, Germany, 1997.
[S4] Spek, A. J. Appl. Crystallogr. 2003, 36, 7-13.

Table S1. The table of self-catenation produced in the output of TOPOS

Ring links

12a	12d	3	3	1	*	\|	2
12a	12d	2	1	1	*	\|	10
12a	12d	2	2	0		।	5
12a	12d	2	3	1	*	\|	2
12a	12d	1	1	1	*	\|	6
12a	12d	1	2	0		\|	2
12a	12d	1	4	0		।	1
12b	12a	4	1	1	*	\|	12
12b	12a	4	3	1	*	\|	2
12b	12a	4	5	1	*	\|	2
12b	12a	4	6	0		\|	8
12b	12a	3	1	1	*	\|	24
12b	12a	3	2	0		।	4
12b	12a	3	4	0		।	2
12b	12a	3	5	1	*	\|	6
12b	12a	3	6	0		।	2
12b	12a	2	1	1	*	\|	12
12b	12a	2	2	0		\|	8
12b	12a	2	4	0		\|	2
12b	12a	2	6	0		\|	2
12b	12a	1	1	1	*	\|	10
12b	12a	1	2	0		\|	6
12b	12a	1	3	1	*	\|	2
12b	12b	5	1	1	*	।	2
12b	12b	5	2	2	M	।	1
12b	12.b	4	2	2	M	\|	1
12b	12b	3	1	1	*	\|	14
12b	12b	3	3	1	*	।	2
12b	12.b	3	5	1	*	।	4
12b	12b	3	6	0		।	2
12b	12b	2	1	1	*	\|	10
12b	12b	2	2	0		।	2
12b	12b	2	6	0		\|	2
12b	12b	1	2	0		।	2
12b	12b	1	6	0		।	2
12b	12c	4	1	1	*	\|	4
12b	12c	4	6	0		।	2
12b	12c	3	1	1	*	।	6
12b	12c	3	5	1	*	।	2
12b	12c	3	6	0		।	2
12b	12c	3	7	1	*	\|	2
12b	12c	2	1	1	*	।	10
12b	12c	2	2	0		\|	6
12b	12c	1	1	1	*	।	4
12b	12c	1	2	0		\|	2
12b	12c	1	6	0		।	2
12b	12d	5	1	1	*	\|	2
12b	12d	4	1	1	*	।	8
12b	12d	4	5	1	*	\|	2
12b	12d	3	1	1	*	।	10
12b	12d	3	2	0		।	2
12b	12d	3	3	1	*	\|	2
12b	12d	3	4	0		\|	2
12b	12d	3	5	1	*		2

12. ${ }^{\text {b }}$	12d	3	7	\|	1	*	\|	2	
12b	12d	2	1	\|	1	*	।	8	
12b	12d	2	2	\|	0		\|	2	
12b	12d	2	5	।	1	*	\|	2	
12b	12d	2	6	\|	0		\|	2	
12b	12d	1	1	\|	1	*	\|	6	
12b	12d	1	2	\\|	0		\|	2	
12c	12a	4	1	\|	1	*	\|	8	
12c	12a	3	1	\|	1	*	\|	24	
12c	12a	3	2	\|	2	M	\|	2	
12c	12a	2	1	\|	1	*	\|	30	
12c	12a	2	2	\|	0		\|	4	
12c	12a	1	1	\\|	1	*	\|	12	
12 c	12a	1	2	\|	0		।	2	
12 c	12b	4	1	\|	1	*	\|	4	
12 c	12b	3	1	\|	1	*	I	10	
12c	12b	2	1	\|	1	*	\|	10	
12c	12b	2	2	\|	0		\|	6	
12c	12b	1	1	\|	1	*	\|	4	
12c	12c	5	1	\|	1	*	।	2	
12c	12c	5	2	\\|	2	M	\|	1	
12 c	12c	3	1	।	1	*	\|	10	
12c	12c	3	2	\|	0		।	2	
12 c	12c	2	1	\|	1	*	।	18	
12 c	12c	1	1	\|	1	*	\|	4	
12c	12d	5	1	\|	1	*	\|	2	
12 c	12d	4	1	\|	1	*	।	4	
12c	12d	3	1	\|	1	*	\|	14	
12c	12d	2	1	\|	1	*	,	18	
12c	12d	1	1	\|	1	*	।	2	
12c	12d	1	2	\\|	0		।	2	
12 d	12a	4	1	I	1	*	\|	24	
12d	12a	4	2	\|	0		।	6	
12d	12a	4	3	I	1	*	\|	2	
12d	12a	4	4	\|	0		।	2	
12d	12a	3	1	I	1	*	\|	24	
12d	12a	3	2	\|	0		।	6	
12d	12a	3	3	।	1	*	\|	2	
12d	12a	2	1	I	1	*	I	22	
12d	12a	2	2	I	0		,	8	
12d	12a	2	3	।	1	*	\|	2	
12d	12a	1	1	\\|	1	*	\|	12	
12d	12a	1	2	।	0		,	12	
12d	12b	5	1	।	1	*	\|	2	
12d	12b	4	1	।	1		।	8	
12d	12b	4	3	\|	1	*	\|	2	
12d	12b	3	1	I	1	*	,	12	
12d	12 b	3	2	\|	0		।	6	
12d	12b	3	3	\|	1	*	\|	4	
12d	12b	2	1	\|	1	*	\|	10	
12d	12b	2	2	।	0		,	2	
12d	12b	1	1	।	1	*	\|	2	
12d	12b	1	2	।	0		।	2	
12d	12b	1	3		1	*	,	4	

12d	12c	5	1	1	*	।	2
12d	12c	4	1	1	*	\|	2
12d	12c	4	3	1	*	\|	2
12d	12c	3	1	1	*	।	10
12d	12c	3	2	0		\|	4
12d	12c	3	3	1	*	\|	4
12d	12c	2	1	1	*	\|	18
12d	12c	2	2	0		\|	2
12d	12c	1	1	1	*	।	2
12d	12c	1	2	0		\|	8
12d	12d	5	1	1	*	।	6
12d	12d	4	1	1	*	\|	6
12d	12d	4	2	0		।	4
12d	12d	4	4	0		I	1
12d	12d	3	1	1	*	\|	16
12d	12d	3	2	0		I	2
12d	12d	3	3	1	*	।	2
12d	12d	2	1	1	*	।	10
12d	12d	2	2	0		\|	4
12d	12d	2	3	1	*	।	2
12d	12d	1	1	1	*	\|	4
12d	12d	1	2	0		\|	4

Table S2. Crystallographic Data for SDU-9

Complexes	SDU-9
Formula	$\mathrm{C}_{78} \mathrm{Cu}_{3} \mathrm{O}_{17} \mathrm{Si}_{2} \mathrm{H}_{50}$
M_{r}	1505.98
Crystal system	cubic
Space group	F 432
$\mathrm{a}(\AA)$	$33.4952(7)$
$\mathrm{b}(\AA)$	$33.4952(7)$
$\mathrm{c}(\AA)$	$33.4952(7)$
$\alpha(\mathrm{deg})$	90
$\beta(\mathrm{deg})$	90
$\gamma(\mathrm{deg})$	90
Z	16
$V\left(\AA^{3}\right)$	$37579.2(14)$
$\mathrm{D}_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.065
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.47
$\mathrm{~F}(000)$	12304.0
no. of unique reflns	2546
no. of obsd reflns $[\mathrm{I}>2 \sigma(\mathrm{I})]$	5827
Parameters	143
GOF	0.914
Final R indices $[I>2 \sigma(I)]^{\mathrm{a}, \mathrm{b}}$	$R_{1}=0.0939$,
	$w R_{2}=0.2770$
R indices $($ all data $)$	$R_{1}=0.1400$,
	$w R_{2}=0.3138$
$\otimes \rho\left(\mathrm{e} \AA^{-3}\right)$	0.56
	and -0.29

Table S3. Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ for SDU-9.

C1-O1	1.225 (13)	C9-C8	1.3900
C1-O2	1.284 (12)	C9-H9	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.508 (16)	C8-C13	1.3900
C2-C3	1.379 (17)	C8-H8	0.9300
C2-C7	1.401 (15)	C13-Si	1.914 (7)
C3-C4	1.454 (16)	$\mathrm{Cu}-\mathrm{O} 2^{\text {i }}$	1.951 (6)
C3-H3	0.9300	$\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {ii }}$	1.951 (6)
$\mathrm{C} 4-\mathrm{C} 5$	1.335 (14)	$\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {iii }}$	1.951 (6)
C4-H4	0.9300	$\mathrm{Cu} 1-\mathrm{O} 2$	1.951 (6)
C5-C6	1.410 (15)	$\mathrm{Cu}-\mathrm{O} 1 \mathrm{~W}$	2.289 (13)
C5-C10	1.471 (12)	$\mathrm{Cu} 1-\mathrm{Cu} 2$	2.615 (3)
C6-C7	1.401 (17)	$\mathrm{Cu} 2-\mathrm{O} 1^{\text {iii }}$	1.943 (8)
C6-H6	0.9300	$\mathrm{Cu} 2-\mathrm{O} 1^{\text {ii }}$	1.943 (8)
C7-H7	0.9300	$\mathrm{Cu} 2-\mathrm{O} 1^{1}$	1.943 (8)
C12-C11-H11	120.0	$\mathrm{O} 1{ }^{11}-\mathrm{Cu} 2-\mathrm{Cu} 1$	84.0 (2)
C11-C10-C9	120.0	$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Cu} 2-\mathrm{Cu} 1$	84.0 (2)
C11-C10-C5	119.7 (8)	$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{Cu} 1$	84.0 (2)
C9-C10-C5	120.1 (8)	$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cu} 2-\mathrm{Cu} 1$	180.0
C10-C9-C8	120.0	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 2$	122.9 (7)
C10-C9-H9	120.0	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cu} 1$	120.0 (8)
C8- $\mathrm{C} 9-\mathrm{H} 9$	120.0	$\mathrm{Si}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
C13-C8-C9	120.0	$\mathrm{O} 3-\mathrm{Si}-\mathrm{C} 13{ }^{\text {iv }}$	106.4 (8)
C13-C8-H8	120.0	$\mathrm{O} 3-\mathrm{Si}-\mathrm{C} 13$	106.4 (5)
C9-C8-H8	120.0	C13 ${ }^{\text {1v }}-\mathrm{Si}-\mathrm{C} 13$	112.4 (7)
C8-C13-C12	120.0	$\mathrm{O} 3-\mathrm{Si}-\mathrm{C} 13{ }^{\text {v }}$	106.4 (9)
$\mathrm{C} 8-\mathrm{C} 13-\mathrm{Si}$	120.3 (7)	$\mathrm{C} 13{ }^{\text {iv }}-\mathrm{Si}-\mathrm{C} 13{ }^{\text {v }}$	112.4 (7)
C12-C13-Si	118.4 (7)	$\mathrm{C} 13-\mathrm{Si}-\mathrm{C} 13{ }^{\text {v }}$	112.4 (7)

Symmetry codes: (i) $-x+2, y,-z$; (ii) $-z+1, y, x-1$; (iii) $z+1, y,-x+1$; (iv) $-y+1,-z+1 / 2, x-1 / 2$; (v)

Table S4. Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ for SDU-9.

\begin{tabular}{|c|c|c|c|}
\hline C12-C11 \& 1.3900 \& Cu2-O1 \& 1.943 (8)

\hline C12-C13 \& 1.3900 \& $\mathrm{Cu} 2-\mathrm{O} 2 \mathrm{~W}$ \& 2.123 (13)

\hline C12-H12 \& 0.9300 \& $\mathrm{O} 3-\mathrm{Si}$ \& 1.65 (3)

\hline C11-C10 \& 1.3900 \& O3-H3A \& 0.8200

\hline C11-H11 \& 0.9300 \& $\mathrm{Si}-\mathrm{C} 13{ }^{\text {iv }}$ \& 1.914 (10)

\hline C10-C9 \& 1.3900 \& $\mathrm{Si}-\mathrm{C} 13{ }^{\text {v }}$ \& 1.914 (14)

\hline $\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$ \& 127.0 (11) \& $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$ \& 89.50 (4)

\hline $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ \& 120.7 (10) \& $\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {iii }}$ \& 89.50 (4)

\hline $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ \& 112.0 (11) \& $\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {iii }}$ \& 169.3 (4)

\hline C3-C2-C7 \& 117.6 (11) \& $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2$ \& 169.3 (4)

\hline C3-C2-C1 \& 120.5 (11) \& $\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 2$ \& 89.50 (4)

\hline C7-C2-C1 \& 121.7 (11) \& $\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 2$ \& 89.50 (4)

\hline C2-C3-C4 \& 121.9 (11) \& $\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 1 \mathrm{~W}$ \& 95.4 (2)

\hline $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$ \& 119.1 \& $\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~W}$ \& 95.4 (2)

\hline $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$ \& 119.1 \& $\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~W}$ \& 95.4 (2)

\hline C5-C4-C3 \& 119.2 (12) \& $\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 1 \mathrm{~W}$ \& 95.4 (2)

\hline C5-C4-H4 \& 120.4 \& $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{Cu} 2$ \& 84.6 (2)

\hline C3-C4-H4 \& 120.4 \& $\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{Cu} 2$ \& 84.6 (2)

\hline C4-C5-C6 \& 118.6 (11) \& $\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{Cu} 2$ \& 84.6 (2)

\hline C4-C5-C10 \& 119.3 (11) \& O2-Cu1-Cu2 \& 84.6 (2)

\hline C6-C5-C10 \& 122.0 (10) \& $\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu} 1-\mathrm{Cu} 2$ \& 180.0

\hline C7-C6-C5 \& 122.6 (9) \& $\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O}^{\text {ii }}$ \& 168.0 (5)

\hline C7-C6-H6 \& 118.7 \& $\mathrm{O} 1^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 1^{\text {i }}$ \& 89.37 (5)

\hline C5-C6-H6 \& 118.7 \& $\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Ol}^{\text {i }}$ \& 89.37 (5)

\hline C6-C7-C2 \& 119.1 (11) \& $\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 1$ \& 89.37 (5)

\hline C6-C7-H7 \& 120.5 \& $\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{O} 1$ \& 89.37 (5)

\hline C2-C7-H7 \& 120.5 \& $\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{O} 1$ \& 168.0 (5)

\hline C11-C12-C13 \& 120.0 \& $\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 2 \mathrm{~W}$ \& 96.0 (2)

\hline $\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$ \& 120.0 \& $\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{O} 2 \mathrm{~W}$ \& 96.0 (2)

\hline $\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$ \& 120.0 \& $\mathrm{Ol}^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{O} 2 \mathrm{~W}$ \& 96.0 (2)

\hline C10-C11-C12 \& 120.0 \& $\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 2 \mathrm{~W}$ \& 96.0 (2)

\hline C10-C11-H11 \& 120.0 \& $\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{Cu} 1$ \& 84.0 (2)

\hline Symmetry codes: (i) - \& (ii) $\begin{array}{r}-z+1, y \\ z+1 / 2\end{array}$ \& (ii) $z+1, y,-x+1$; (iv)

$+1 / 2$ \& 1/2, $x-1 / 2$;

\hline
\end{tabular}

Fig. S1: PXRD spectrum of SDU-9

Fig. S2: IR spectrum of SDU-9

Fig. S3: TGA curve of SDU-9

Fig. S4: Conformations of four non-equivalent 12-rings in SDU-9.

