Control of mode/bond selectivity and product energy disposal by the transition state: The X $+\mathrm{H}_{2} \mathrm{O}\left(\mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{O}\left({ }^{3} \mathrm{P}\right)\right.$, and Cl$)$ reactions

Bin Jiang and Hua Guo*
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131

Supporting Information

S-I. Quantum Scattering Theory

The integral cross sections (ICS) for the atom-triatom reactions are calculated using the Chebyshev real wave packet (CRWP) method. ${ }^{1-2}$ The CRWP method for atom-diatom reactions has been discussed in detail elsewhere, ${ }^{3-5}$ we therefore focus here on its application to atomtriatom reactions. The six-dimensional Hamiltonian $(\hbar=1)$ can be written in the ABC + D Jacobi coordinates (see Fig. S-1):

$$
\begin{align*}
\hat{H} & =-\frac{1}{2 \mu_{1}} \frac{\partial^{2}}{\partial r_{1}^{2}}-\frac{1}{2 \mu_{2}} \frac{\partial^{2}}{\partial r_{2}^{2}}-\frac{1}{2 \mu_{3}} \frac{\partial^{2}}{\partial r_{3}^{2}}+\frac{\hat{j}_{1}^{2}}{2 \mu_{1} r_{1}^{2}}+\frac{\left(\hat{j}_{12}-\hat{j}_{1}\right)^{2}}{2 \mu_{2} r_{2}^{2}}+\frac{\left(\hat{J}-\hat{j}_{12}\right)^{2}}{2 \mu_{3} r_{3}^{2}} \tag{1}\\
& +V\left(r_{1}, r_{2}, r_{3}, \theta_{1}, \theta_{2}, \varphi\right),
\end{align*}
$$

where the r_{1} is the bond length of AB bond, r_{2} the distance between the centre of mass of AB and C , and r_{3} the distance between D and the centre of mass of triatomic molecule $\mathrm{ABC} . \mu_{i}(i=1,2,3)$ are the corresponding reduced masses, $\hat{j}_{1}, \hat{j}_{12}$, and \hat{J} are the angular momentum operators for $\mathrm{AB}, \mathrm{ABC}$ and total system, respectively.

We choose to work in the body-fixed (BF) frame in which the z^{\prime} axis lies along the r_{3} vector and r_{2} is in the $x^{\prime} z^{\prime}$ plane. The BF frame is related to the space-fixed (SF) frame (xyz) via a rotation defined by three Euler angles. The projection of the total angular momentum J onto the SF or BF frame is given by M or K. For convenience, we define a molecular-fixed (MF) frame in which the $z^{\prime \prime}$ axis lies along r_{2} vector and r_{1} is in the $x^{\prime \prime} z^{\prime \prime}$ plane. Note that the BF and MF frames for atom-triatom system $(\mathrm{ABC}+\mathrm{D})$ are equivalent to the SF and BF frames respectively for the atom-diatom subsystem (ABC). As a result, the projection of the j_{12} onto the BF or MF frame is given by K or m, and m is also the projection of j_{1} onto the MF frame.

The overall rotational basis used in this work is the so-called primitive or uncoupled angular basis, ${ }^{6-7}$ which has the following parity-adapted form:

$$
\begin{align*}
\left|j_{12} j_{1} K m: J M p\right\rangle & =\sqrt{\frac{1}{2\left(1+\delta_{K 0} \delta_{m 0}\right)}} \tag{2}\\
& \times\left[|J M K\rangle\left|j_{12} j_{1} K m\right\rangle+p(-1)^{J}|J M-K\rangle\left|j_{12} j_{1}-K-m\right\rangle\right]
\end{align*}
$$

where $p= \pm 1$ is the parity, $|J M K\rangle$ is the normalized Wigner rotational matrix defined in terms of the Euler angles, ${ }^{8}$

$$
\begin{equation*}
|J M K\rangle=\sqrt{\frac{2 J+1}{8 \pi^{2}}} D_{M K}^{J}{ }^{*}(\alpha, \beta, 0), \tag{3}
\end{equation*}
$$

and $\left|j_{12} j_{1} K m\right\rangle$ is, on the other hand, the angular basis of ABC in the MF frame (namely the BF frame for ABC itself), ${ }^{9}$

$$
\begin{equation*}
\left|j_{12} j_{1} K m\right\rangle=D_{K m}^{j_{12}}\left(0, \theta_{2}, \varphi\right) y_{j_{1} m}\left(\theta_{1}, 0\right)=d_{K m}^{j_{1}}\left(\theta_{2}\right) e^{i m \varphi} y_{j_{1} m}\left(\theta_{1}, 0\right), \tag{4}
\end{equation*}
$$

where $d_{K m}^{j_{1}}\left(\theta_{2}\right), e^{i m \varphi}$, and $y_{j_{1^{m}}}\left(\theta_{1}, 0\right)$ represent the reduced Wigner matrix, exponential Fourier function, and the spherical harmonic function, respectively.

This uncoupled angular basis $\left|j_{12} j_{1} K m: J M p\right\rangle$ is different from the coupled angular basis $\left|j_{12} j_{1} K l_{2}: J M p\right\rangle$ used by other authors, ${ }^{10}$ who have adapted a triatomic angular basis $\left|j_{12} j_{1} K l_{2}\right\rangle$ in the BF frame (namely the SF frame for ABC), where l_{2} is the orbital momentum of AB with respect to C. However, the uncoupled basis is related with the coupled one through a transformation, ${ }^{9}$

$$
\begin{align*}
& \left|j_{12} j_{1} K l_{2}: J M p\right\rangle \\
& =\sqrt{\frac{1}{2\left(1+\delta_{K 0}\right)}} \times\left[|J M K\rangle\left|j_{12} j_{1} K l_{2}\right\rangle+p(-1)^{J+j_{12}+j_{1}+l_{2}}|J M-K\rangle\left|j_{12} j_{1}-K l_{2}\right\rangle\right] \tag{5}\\
& =\sum_{m} \sqrt{\frac{\left(1+\delta_{K 0} \delta_{m 0}\right)}{\left(1+\delta_{K 0}\right)}} C_{j_{2} m}\left|j_{12} j_{1} K m: J M p\right\rangle,
\end{align*}
$$

where $C_{l_{2} m}=\sqrt{\left(2 l_{2}+1\right) /\left(2 j_{12}+1\right)}\left\langle j_{1} m l_{2} 0 \mid j_{12} m\right\rangle$ is the Clebsch-Gordan coefficient. ${ }^{8}$ Similar to the diatom-diatom system, ${ }^{6}$ the uncoupled basis is advantageous for transformation back and forth between a grid and basis representation when computing the action of the potential energy operator. We refer the readers to earlier publications ${ }^{6-7,10-11}$ for more details.

The action of angular kinetic energy operators (KEOs) on this rotational basis give rise to a diagonal or tridiagonal form,

$$
\begin{align*}
& \quad \frac{\hat{j}_{1}^{2}}{2 \mu_{r_{1}} r_{1}^{2}}\left|j_{12} j_{1} K m: J M p\right\rangle=\frac{j_{1} \times\left(j_{1}+1\right)}{2 \mu_{r_{1}} r_{1}^{2}}\left|j_{12} j_{1} K m: J M p\right\rangle, \tag{6}\\
& \frac{\left(\hat{j}_{12}-\hat{j}_{1}\right)^{2}}{2 \mu_{1} r_{2}^{2}}\left|j_{12} j_{1} K m: J M p\right\rangle \\
& = \tag{7}\\
& \frac{j_{12} \times\left(j_{12}+1\right)+j_{1} \times\left(j_{1}+1\right)-2 m^{2}}{2 \mu_{1} r_{2}^{2}}\left|j_{12} j_{1} K m: J M p\right\rangle \\
& - \\
& -\frac{\lambda_{j_{12} m}^{+} \lambda_{j_{1} m}^{+} \sqrt{1+\delta_{K 0} \delta_{m 0}}\left|j_{12} j_{1} K, m+1: J M p\right\rangle+\lambda_{j_{12} m}^{-} \lambda_{j_{1} m}^{-} \sqrt{1+\delta_{K 0} \delta_{m 1}}\left|j_{12} j_{1} K, m-1: J M p\right\rangle}{2 \mu_{1} r_{2}^{2}}, \tag{8}\\
& \\
& =\frac{\left(\hat{J}-\hat{j}_{12}\right)^{2}}{2 \mu_{3} r_{3}^{2}}\left|j_{12} j_{1} K m: J M p\right\rangle \\
& = \\
& -\frac{J(J+1)+j_{12}\left(j_{12}+1\right)-2 K^{2}}{2 \mu_{3} r_{3}^{2}}\left|j_{12} j_{1} K m: J M p\right\rangle \\
& \\
& -\frac{\lambda_{J K}^{+} \lambda_{j_{12} K}^{+} \sqrt{1+\delta_{K 0} \delta_{m 0}}\left|j_{12} j_{1} K+1, m: J M p\right\rangle+\lambda_{J K}^{-} \lambda_{j_{2} K}^{-} K \sqrt{1+\delta_{K 1} \delta_{m 0}}\left|j_{12} j_{1} K-1, m: J M p\right\rangle}{2 \mu_{3} r_{3}^{2}}
\end{align*}
$$

where the quantity $\lambda_{a b}^{ \pm}=\sqrt{a(a+1)-b(b \pm 1)}$.

The action of the potential energy operator is evaluated in the discrete variable representation (DVR), which is a direct product of the Gauss-Legendre quadrature points in θ_{1} and θ_{2}, and a Fourier grid in $\varphi .{ }^{12-13}$ The transformation matrix between the angular basis and the DVR is consist of three one-dimensional pseudo-spectral transformations, ${ }^{14}$

$$
\begin{align*}
& U_{j_{1} i_{1}}^{m}=\sqrt{\omega_{i_{1}}} y_{j_{1} m}\left(\theta_{i_{1}}, 0\right), \tag{9}\\
& U_{j_{12} i_{2}}^{K m}=\sqrt{\omega_{i_{2}}} d_{K m}^{j_{12}}\left(\theta_{i_{2}}\right), \tag{10}\\
& U_{m i_{3}}=\sqrt{\omega_{i_{3}}} e^{i m \varphi_{i_{3}}}, \tag{11}
\end{align*}
$$

where $\omega_{i_{1}}, \omega_{i_{2}}$ and $\omega_{i_{3}}$ are corresponding quadrature weights and $\theta_{i_{1}}, \theta_{i_{2}}$ and $\varphi_{i_{3}}$ are corresponding quadrature roots. In particular, taking advantage of the inversion symmetry of the potential, only a sine (cosine) function only for odd (even) parity is needed when K equals $0 .{ }^{12}$ While for $K>0$, which is indeed required in the exact close-coupling (CC) calculation, Eq. (11) can be expanded as both sine and cosine functions, resulting in two separate blocks in the vectormatrix multiplication and both contributing to one calculation of a specific parity. ${ }^{7}$ This allows us to perform the wavepacket propagation in a real domain, so that significant memory savings can be achieved comparing to a complex wavepacket propagation. On the other hand, sine-DVR ${ }^{15}$ was used for the two reactive radial degrees of freedom r_{3} and r_{2} typically and potential optimized DVR (PODVR) ${ }^{16}$ was used for r_{1} while it is non-reactive. For reactions that both channels are open, sine-DVR was used for all radial coordinates.

The initial wave packet $\left|\Psi_{i}\right\rangle$ was defined in the space-fixed (SF) representation with a direct product of the ro-vibrational eigenfunction $\left|\psi_{v_{i}, j_{12 i}}\right\rangle$ of the triatom and a Gaussian wave packet in the scattering coordinate: ${ }^{4}$

$$
\begin{equation*}
\left|\Psi_{i}\right\rangle=N e^{-\left(R-R_{0}\right)^{2} / 2 \delta^{2}} \cos k_{0} R\left|\psi_{v_{i}, j_{12 i}}\right\rangle\left|j_{12 i} l_{12 i}, J p\right\rangle \tag{12}
\end{equation*}
$$

where N is the normalization factor, R_{0} and δ the mean position and width of the Gaussian function, $j_{12 i}$ and $l_{12 i}$ are the initial total angular momentum of ABC and the initial orbital angular momentum of ABC with respect to $\mathrm{D}, l_{12 i}$ is determined by $\left|J-j_{12 i}\right| \leq l_{12 i} \leq\left|J+j_{12 i}\right|$. The mean momentum k_{0} is related to the mean kinetic energy E_{0} via $k_{0}=\sqrt{2 \mu_{R} E_{0}}$. This SF initial wave function was converted to the BF frame before propagation.

The wave packet propagation was implemented using the modified three-term Chebyshev iteration, ${ }^{17-19}$

$$
\begin{equation*}
\left|\Psi_{k}\right\rangle=2 D \hat{H}_{s}\left|\Psi_{k-1}\right\rangle-D^{2}\left|\Psi_{k-2}\right\rangle, \quad k \geq 2 \tag{13}
\end{equation*}
$$

where $\left|\Psi_{1}\right\rangle=D \hat{H}_{s}\left|\Psi_{0}\right\rangle$ and $\left|\Psi_{0}\right\rangle=\left|\Psi_{i}\right\rangle . D$ is a damping function defined in the edges of the grid to impose outgoing boundary conditions, ${ }^{17}$

$$
D(\zeta)=\left\{\begin{array}{cc}
1 & \zeta<\zeta_{d} \tag{14}\\
e^{-\alpha\left(\frac{\zeta-\zeta_{d}}{\zeta_{\max }-\zeta_{d}}\right)^{2}} & \zeta \geq \zeta_{d}
\end{array}\right.
$$

where $\zeta=r_{3}, r_{2}$, or r_{1}. The scaled Hamiltonian is defined as:

$$
\begin{equation*}
\hat{H}_{s}=(\hat{H}-\bar{H}) / \Delta H \tag{15}
\end{equation*}
$$

to avoid the divergence of the Chebyshev propagator outside the range $[-1,1]$. Here, the mean and half-width of the Hamiltonian are determined as $\bar{H}=\left(H_{\max }+H_{\min }\right) / 2$ and $\Delta H=\left(H_{\max }-H_{\min }\right) / 2$, where $H_{\max }$ and $H_{\min }$ define the spectral range of the Hamiltonian and can be estimated from the kinetic and potential energies on the grid.

The initial state-selected reaction probability was obtained directly by analyzing the flux through the dividing surface in the product channel $\left(r=r_{f}\right),{ }^{3}$

$$
\begin{align*}
& P_{v_{i}, j_{22}, l_{2 i i}}^{J}\left(E_{c}\right)=\frac{1}{2 \pi \mu_{r}\left|a_{i}\left(E_{c}\right)\right|^{2} \Delta H^{2}\left(1-E_{s}^{2}\right)} \times \\
& \operatorname{Im}\left[\left\langle\sum_{k=0}\left(2-\delta_{k 0}\right) e^{-i k \arccos E_{s}} \Psi_{k}\right| \times \delta\left(r-r_{f}\right) \frac{\partial}{\partial r}\left|\sum_{k^{\prime}=0}\left(2-\delta_{k^{\prime} 0}\right) e^{-i k^{\prime} \arccos E_{s}} \Psi_{k^{\prime}}\right\rangle\right]_{r=r_{f}}, \tag{16}
\end{align*}
$$

where E_{c} is the collision energy, E_{s} the scaled energy $\left(E_{s}=(E-\bar{H}) / \Delta H\right), a_{i}\left(E_{c}\right)$ the energy amplitude of the initial wave packet, and the dividing surface could be set up in either r_{1} or r_{2}. The initial state-specified integral cross section (ICS) can then be obtained by summing initial state-specified reaction probabilities $\left(P_{v_{i}, j_{12}, l_{2 i}}^{J}\left(E_{c}\right)\right)$ over all contributing partial waves

$$
\begin{equation*}
\sigma_{v_{i}, j_{12 i}}\left(E_{c}\right)=\frac{1}{2 j_{12 i}+1} \sum_{l_{12 i}}\left\{\frac{\pi}{2 \mu_{r_{3}} E_{c}} \sum_{J}(2 J+1) P_{v_{i}, j_{12 i}, l_{12 i}}^{J}\left(E_{c}\right)\right\} . \tag{17}
\end{equation*}
$$

Both the CC and centrifugal sudden (CS $)^{20-21}$ calculations have been performed. To verify our method, calculations for the $\mathrm{H}+\mathrm{H}_{2} \mathrm{O}$ reaction have been performed for several J values at both CC and CS levels and the results compare well with the earlier results of Zhang et al. ${ }^{22}$ In Fig. S2, the comparison between CC and CS results are presented for both the $\mathrm{F}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ reactions. The numerical parameters used in our CRWP calculations are given in Table S-I.

Table S-I. Numerical parameters used in calculations on three PESs. (Atomic units are used unless stated otherwise.)

Parameters	$\mathrm{H}+\mathrm{H}_{2} \mathrm{O}^{\text {a }}$	$\mathrm{F}+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
Grid/basis ranges and sizes	$\begin{gathered} r_{3} \in\left[\begin{array}{ll} 1.4, & 14.0 \end{array}\right] \\ N_{r_{3}}^{\mathrm{tot}}=72, \quad N_{r_{3}}^{\text {int }}=25 \\ r_{2} \in\left[\begin{array}{ll} 1.0, & 5.0 \end{array}\right] \\ N_{r_{2}}^{\mathrm{tot}}=28, \quad N_{r_{2}}^{\mathrm{int}}=8 \\ r_{1}=1.865 \\ \left(N_{\theta 1}, N_{\theta 2}, N_{\varphi \varphi}\right)= \\ (15,30,15) \end{gathered}$	$\begin{gathered} r_{3} \in\left[\begin{array}{ll} 2.0, & 18.0 \end{array}\right] \\ N_{r_{3}}^{\text {tot }}=220, \\ N_{r_{3}}^{\text {int }}=58 \\ r_{2} \in\left[\begin{array}{ll} 1.0, & 5.0 \end{array}\right] \\ N_{r_{2}}^{\text {tot }}=25, \\ N_{r_{2}}^{\text {int }}=7 \\ r_{1} \in\left[\begin{array}{ll} 1.2, & 5.0 \end{array}\right] \\ N_{\text {PODVR }}=7 \\ \left(N_{\theta 1}, N_{\theta 2}, N_{\varphi}\right)= \\ (18,38,18) \end{gathered}$	$\begin{gathered} r_{3} \in\left[\begin{array}{ll} 2.0, & 14.0 \end{array}\right] \\ N_{r_{3} \text { tot }}^{\text {to }}=220, \\ N_{r_{3}}^{\text {int }}=60 \\ r_{2} \in\left[\begin{array}{ll} 1.0, & 5.0 \end{array}\right] \\ N_{r_{2}}^{\text {tot }}=25, \quad N_{r_{2}}^{\text {int }}=5 \\ r_{1} \in[1.0,4.0], \\ N_{\text {PODVR }}=4 \\ \left(N_{\theta 1}, N_{\theta 2}, N_{\varphi \varphi}\right)= \\ (18,35,18) \end{gathered}$

For r_{3} :

$$
\text { For } r_{3}: \quad \zeta_{d}=16.0, \alpha=0.1 \quad \text { For } r_{3}:
$$

$$
\zeta_{d}=10.5, \alpha=0.1 \quad \text { For } r_{2}: \quad \zeta_{d}=12.0, \alpha=0.1
$$

$$
\text { For } r_{2}: \quad \zeta_{d}=3.2, \alpha=0.1 \quad \text { For } r_{2}:
$$

$$
\zeta_{d}=3.2, \alpha=0.1 \quad \text { For } r_{1}: \quad \zeta_{d}=3.0, \alpha=0.1
$$

$$
\zeta_{d}=2.4, \alpha=0.1
$$

Initial wavepacket	$R_{0}=10.0, \delta=0.40$	$R_{0}=15.8, \delta=0.15$	$R_{0}=11.5, \delta=0.10$
Flux position	$E_{0}=1.00 \mathrm{eV}$	$E_{0}=0.25 \mathrm{eV}$	$E_{0}=1.00 \mathrm{eV}$
Converged $J_{\max }$	$r_{2 \text { flux }}=2.9$	$r_{2 \text { flux }}=3.1$	$r_{2 \text { flux }}=2.8$
Propagation step		120	$150 / 170$

${ }^{\text {a }}$: Parameters used for comparison with Ref. 22

Fig. S-1. The atom-triatom Jacobi coordinates used in the quantum scattering calculations.

Fig. S-2 Top panel: Comparison of the CC and CS ICSs for the $\mathrm{F}+\mathrm{H}_{2} \mathrm{O}(000)$ reaction. Lower panel: Comparison of the CC and CS reaction probabilities for the $\mathrm{O}+\mathrm{H}_{2} \mathrm{O}(000)$ reactions at several J values.

References:

(1) Goldfield, E. M.; Gray, S. K. Adv. Chem. Phys. 2007, 136, 1.
(2) Guo, H. Int. Rev. Phys. Chem. 2012, 31, 1.
(3) Lin, S. Y.; Guo, H. J. Chem. Phys. 2003, 119, 11602.
(4) Lin, S. Y.; Guo, H. Phys. Rev. A 2006, 74, 022703.
(5) Ma, J.; Lin, S. Y.; Guo, H.; Sun, Z.; Zhang, D. H.; Xie, D. J. Chem. Phys. 2010, 133, 054302.
(6) Chen, R.; Ma, G.; Guo, H. J. Chem. Phys. 2001, 114, 4763.
(7) Goldfield, E. M.; Gray, S. K. J. Chem. Phys. 2002, 117, 1604.
(8) Zare, R. N. Angular Momentum; Wiley: New York, 1988.
(9) Zhang, J. Z. H. Theory and Application of Quantum Molecular Dynamics; World Scientific: Singapore, 1999.
(10) Zhang, D. H.; Light, J. C. J. Chem. Phys. 1996, 104, 4544.
(11) Lin, S. Y.; Guo, H. J. Chem. Phys. 2002, 117, 5183.
(12) Yu, H.-G.; Muckerman, J. T. J. Molec. Spectrosc. 2002, 214, 11.
(13) Jiang, B.; Xie, D.; Guo, H. J. Chem. Phys. 2011, 135, 084112.
(14) Corey, G. C.; Tromp, J. W.; Lemoine, D. In Numerical Grid Methods and Their Applications to Schroedinger's Equation; Cerjan, C., Ed.; Kluwer: Dordrecht, 1993, p 1.
(15) Colbert, D. T.; Miller, W. H. J. Chem. Phys. 1992, 96, 1982.
(16) Echave, J.; Clary, D. C. Chem. Phys. Lett. 1992, 190, 225.
(17) Mandelshtam, V. A.; Taylor, H. S. J. Chem. Phys. 1995, 103, 2903.
(18) Chen, R.; Guo, H. J. Chem. Phys. 1998, 108, 6068.
(19) Gray, S. K.; Balint-Kurti, G. G. J. Chem. Phys. 1998, 108, 950.
(20) Pack, R. T. J. Chem. Phys. 1974, 60, 633.
(21) McGuire, P.; Kouri, D. J. J. Chem. Phys. 1974, 60, 2488.
(22) Zhang, D. H.; Yang, M.; Lee, S.-Y. J. Chem. Phys. 2002, 117, 10067.
(23) Fu, B.; Zhang, D. H. J. Chem. Phys 2013, 138, 184308.

