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S-I. Quantum Scattering Theory 

The integral cross sections (ICS) for the atom-triatom reactions are calculated using the 

Chebyshev real wave packet (CRWP) method.
1-2
 The CRWP method for atom-diatom reactions 

has been discussed in detail elsewhere,
3-5
 we therefore focus here on its application to atom-

triatom reactions. The six-dimensional Hamiltonian ( 1=h ) can be written in the ABC+D Jacobi 

coordinates (see Fig. S-1): 

( ) ( )

( )

22
22 2 2

1212 11

2 2 2 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3

1 2 3 1 2

ˆ ˆˆ ˆˆ1 1 1ˆ
2 2 2 2 2 2

, , , , , ,

J jj jj
H

r r r r r r

V r r r

µ µ µ µ µ µ

θ θ ϕ

−−∂ ∂ ∂
= − − − + + +

∂ ∂ ∂

+

      (1) 

where the r1 is the bond length of AB bond, r2 the distance between the centre of mass of AB and 

C, and r3 the distance between D and the centre of mass of triatomic molecule ABC. iµ (i=1, 2, 3) 

are the corresponding reduced masses, 1ĵ , 12ĵ , and Ĵ  are the angular momentum operators for 

AB, ABC and total system, respectively. 

 We choose to work in the body-fixed (BF) frame in which the z' axis lies along the r3 

vector and r2 is in the x'z' plane. The BF frame is related to the space-fixed (SF) frame (xyz) via a 

rotation defined by three Euler angles. The projection of the total angular momentum J onto the 

SF or BF frame is given by M or K. For convenience, we define a molecular-fixed (MF) frame in 

which the z" axis lies along r2 vector and r1 is in the x"z" plane. Note that the BF and MF frames 

for atom–triatom system (ABC+D) are equivalent to the SF and BF frames respectively for the 

atom-diatom subsystem (ABC). As a result, the projection of the j12 onto the BF or MF frame is 

given by K or m, and m is also the projection of j1 onto the MF frame.  



The overall rotational basis used in this work is the so-called primitive or uncoupled 

angular basis,
6-7
 which has the following parity-adapted form:  
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where 1p = ±  is the parity, JMK  is the normalized Wigner rotational matrix defined in terms of 

the Euler angles,
8
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and 12 1j j Km  is, on the other hand, the angular basis of ABC in the MF frame (namely the BF 

frame for ABC itself),
9
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where 12

2( )j

Kmd θ , ime ϕ , and 
1 1( ,0)j my θ  represent the reduced Wigner matrix, exponential Fourier 

function, and the spherical harmonic function, respectively.  

This uncoupled angular basis 12 1 :j j Km JMp  is different from the coupled angular basis 

12 1 2 :j j Kl JMp  used by other authors,
10
 who have adapted a triatomic angular basis 12 1 2j j Kl  in 

the BF frame (namely the SF frame for ABC), where l2 is the orbital momentum of AB with 

respect to C. However, the uncoupled basis is related with the coupled one through a 

transformation,
9
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where  
2 2 12 1 2 12

(2 1) /(2 1) 0
l m

C l j j ml j m= + +  is the Clebsch–Gordan coefficient.
8
 Similar to 

the diatom-diatom system,
6
 the uncoupled basis is advantageous for transformation back and 

forth between a grid and basis representation when computing the action of the potential energy 

operator. We refer the readers to earlier publications
6-7,10-11

 for more details. 

The action of angular kinetic energy operators (KEOs) on this rotational basis give rise to a 

diagonal or tridiagonal form,  
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where the quantity ( 1) ( 1)ab a a b bλ ± = + − ± . 

The action of the potential energy operator is evaluated in the discrete variable representation 

(DVR), which is a direct product of the Gauss-Legendre quadrature points in θ1 and θ2, and a 

Fourier grid in φ.
12-13

 The transformation matrix between the angular basis and the DVR is 

consist of three one-dimensional pseudo-spectral transformations,
14
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where 
1i

ω , 
2i

ω  and 
3i

ω  are corresponding quadrature weights and 
1i

θ , 
2i

θ  and 
3i

ϕ  are 

corresponding quadrature roots. In particular, taking advantage of the inversion symmetry of the 

potential, only a sine (cosine) function only for odd (even) parity is needed when K equals 0.
12
 

While for K>0, which is indeed required in the exact close-coupling (CC) calculation, Eq. (11) 

can be expanded as both sine and cosine functions, resulting in two separate blocks in the vector-

matrix multiplication and both contributing to one calculation of a specific parity.
7
 This allows us 

to perform the wavepacket propagation in a real domain, so that significant memory savings can 

be achieved comparing to a complex wavepacket propagation. On the other hand, sine-DVR
15
 

was used for the two reactive radial degrees of freedom r3 and r2 typically and potential 

optimized DVR (PODVR)
16
 was used for r1 while it is non-reactive. For reactions that both 

channels are open, sine-DVR was used for all radial coordinates. 



 The initial wave packet iΨ  was defined in the space-fixed (SF) representation with a 

direct product of the ro-vibrational eigenfunction 
12,i iv jψ  of the triatom and a Gaussian wave 

packet in the scattering coordinate:
4
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where N is the normalization factor, R0 and δ the mean position and width of the Gaussian 

function, j12i and l12i are the initial total angular momentum of ABC and the initial orbital angular 

momentum of ABC with respect to D, l12i is determined by 12 12 12| | | |i i iJ j l J j− ≤ ≤ + . The mean 

momentum k0 is related to the mean kinetic energy E0 via 00 2 Ek Rµ= . This SF initial wave 

function was converted to the BF frame before propagation. 

 The wave packet propagation was implemented using the modified three-term Chebyshev 

iteration,
17-19
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where 
1 0

ˆΨ = ΨsDH  and 0Ψ = Ψi . D is a damping function defined in the edges of the 

grid to impose outgoing boundary conditions,
17
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where ζ = r3, r2, or r1. The scaled Hamiltonian is defined as:  

 ˆ ˆ( - ) /= ∆sH H H H ,                                  (15) 



to avoid the divergence of the Chebyshev propagator outside the range [-1, 1]. Here, the mean 

and half-width of the Hamiltonian are determined as max min( ) / 2H H H= +  and 

max min( ) / 2H H H∆ = − , where maxH  and minH  define the spectral range of the Hamiltonian and 

can be estimated from the kinetic and potential energies on the grid. 

The initial state-selected reaction probability was obtained directly by analyzing the flux 

through the dividing surface in the product channel ( fr r= ),
3
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where c
E  is the collision energy, s

E  the scaled energy ( ( - ) /= ∆sE E H H ), ( )i ca E  the energy 

amplitude of the initial wave packet, and the dividing surface could be set up in either r1 or r2.

 The initial state-specified integral cross section (ICS) can then be obtained by summing 

initial state-specified reaction probabilities (
12 12, , ( )

i i i

J

v j l cP E ) over all contributing partial waves 
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Both the CC and centrifugal sudden (CS)
20-21

 calculations have been performed. To verify our 

method, calculations for the H + H2O reaction have been performed for several J values at both 

CC and CS levels and the results compare well with the earlier results of Zhang et al.
22
 In Fig. S-

2, the comparison between CC and CS results are presented for both the F + H2O and O + H2O 

reactions. The numerical parameters used in our CRWP calculations are given in Table S-I. 



Table S-I. Numerical parameters used in calculations on three PESs. (Atomic units are used 

unless stated otherwise.) 

Parameters H+H2O
a
 F+H2O O+H2O 

Grid/basis ranges and 

sizes 

3 [1.4, 14.0]r ∈

3 3

tot int72, 25r rN N= =

2 [1.0, 5.0]r ∈

2 2

tot int28, 8r rN N= =

 
1=1.865r           

(Nθ1, Nθ2, Nφ) = 

(15, 30, 15) 

3 [2.0, 18.0]r ∈

3 3

tot int220, 58r rN N= =

2 [1.0, 5.0]r ∈

2 2

tot int25, 7r rN N= =

 
1 [1.2, 5.0]r ∈ , 

NPODVR = 7 

(Nθ1, Nθ2, Nφ) = 

(18, 38, 18) 

 

3 [2.0, 14.0]r ∈

3 3

tot int220, 60
r r

N N= =

2 [1.0, 5.0]r ∈

2 2

tot int25, 5r rN N= =

 
1 [1.0, 4.0]r ∈ , 

NPODVR = 4 

(Nθ1, Nθ2, Nφ) = 

(18, 35, 18) 

Absorbing potential 

For r3: 

dζ =10.5, α=0.1 

For r2: 

dζ =3.2, α=0.1 

For r3: 

dζ =16.0, α=0.1 

For r2: 

dζ =3.2, α=0.1 

For r1: 

dζ =2.4, α=0.1 

For r3: 

dζ =12.0, α=0.1 

For r2: 

dζ =3.0, α=0.1 

Initial wavepacket 
R0 = 10.0,δ = 0.40 

E0 = 1.00 eV 

R0 = 15.8,δ = 0.15 

E0 = 0.25 eV 

R0 = 11.5,δ = 0.10 

E0 = 1.00 eV 

Flux position r2flux=2.9 r2flux=3.1 r2flux=2.8 

Converged Jmax  120 150/170 

Propagation step 1000 7000 2000 
a
: Parameters used for comparison with Ref. 22  



Fig. S-1. The atom-triatom Jacobi coordinates used in the quantum scattering calculations. 

 

 

  



Fig. S-2 Top panel: Comparison of the CC and CS ICSs for the F + H2O(000) reaction. Lower 

panel: Comparison of the CC and CS reaction probabilities for the O + H2O(000) reactions at 

several J values.  
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