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Supporting Information 
 
X-Ray Diffraction Spectroscopy 

 

X-ray diffraction (XRD) measurements (Figure S1) revealed that nanorods were 

grown with a rutile crystalline structure (JCPDS No. 21-1276) with small traces of the 

anatase polymorph (JCPDS No. 21-1272). It is worthwhile to note, that there are some 

missing crystallographic plane diffractions from the rutile pattern in our XRD spectra 

confirming that these nanorods grew following a preferential orientation. Furthermore, 

several SnO2 peaks corresponding to the FTO in the glass substrate (JCPDS No. 41-

1445) were also detected in the form of rutile phase, suggesting that the FTO layer acted 

as a seed for the TiO2 nanorod growth that ensured an almost perfect interphase thanks 

to the matching of both rutile structures. As a matter of fact, a peculiar and interesting 

unidentified peak appeared between SnO2 and TiO2 (101) peaks that can be attributed to 

a solid solution of Sn and Ti oxides formed in the FTO/nanorods interphase. 

 

 
Figure S1. X-ray diffraction spectra of samples treated at different temperatures in ammonia atmosphere. 

 
Mott-Schottky and EIS measurements. 

 

Mott-Schottky plots from all samples were extracted from the fitting of the data 

obtained with EIS measurements in the dark and at different voltages (Figure S2). EIS 

were fitted using two ZARC’s elements connected in serial, one corresponding to the 

depletion region (highlighted with the black square in the Bode phase plots) and to other 

surface contributions (red square), which are beyond the scope of this article and will be 

not further discussed. From the Mott-Schottky relationship (eq. S1): 

 

 

   
  

 

      
         

  

 
             

         

           
              

 
we can obtain the donor density.  

 
 



 
 

Figure S2. Bode plots (Magnitude, Z, and Phase, ) of all treated samples within a range of voltages between -950 mV and -600 
mV (vs. Ag/AgCl). 

  



Space Charge Region in Semiconductors: Potential Distribution 

 

Debye Length 

 

Assuming that both donors and acceptors are fully ionized, the potential ((x)) 

distribution across the semiconductor follows the self-consistent Poisson-Boltzmann 

equation (eq. S2): 

 

   

   
  

 

    
                                                      

 

where n0 and po are the intrinsic concentrations of electrons and holes, respectively; ND 

and NA are the concentrations of ionized electron donor and acceptors, respectively; r 

and 0 are the relative dielectric constant of the semiconductor (100 for rutile TiO2) and 

the vacuum permettivity (8.85 × 10
-12

 N
-1

C
2
m

-2
), respectively; e is the fundamental 

electric charge (1.602 × 10
-19

 C); k is the Boltzmann constant (1.38 × 10
-23

 J·K
-1

); and T 

is the absolute temperature (K). From the electro-neutrality condition in the bulk of the 

semiconductor (i.e. at x ) (eq. S3): 

 

                        
 

Thus, the boundary conditions are (eq. S4): 

 

                       
  

  
 
   

             

 

If the potential drop at the surface (SC) is sufficiently small so that            , the 

exponential terms on the right side of Eq. S2 can be expanded as a series and taking into 

account Eq. S3, the Poisson-Boltzmann equation reduces to (Eq. S5): 

 

   

   
 

  

      
                         

 

Its analytical solution is easily found (eq. S6): 

 

             
 

  
              

 

where LD is known as the Debye length and is given by (eq. S7): 

 

    
      

         
              

 

In our particular case, as         , eq. S7 can be finally written as (eq. S8): 

 

    
      

    
            



 

 

 

Depletion Layer Width 

 

 Another important case for which eq. S2 can be solved analytically is that of a 

relatively heavily doped n-type semiconductor with a negative surface potential so that a 

significant depletion layer is formed. In this case, the ND term on the right-hand side of 

the eq. S2 dominates, reducing to (eq. S9): 

 

   

   
  

   
    

              

 

Assuming that out from the depletion region (i.e. x > W) the electric field is negligible, 

the boundary conditions are (eq. S10): 

 

           
  

  
 
   

                  

 

In addition, also considering that         , we can solve the above differential 

equation, yielding (eq. S11): 

 

      
 
   
    

               

                                                

                  

 

where the depletion layer thickness (w) is given by (eq. S12): 

 

   
          

    
                 

 

 

 


