Catalytic C-C Bond Formation Promoted by Organo- and Amido-Magnesium(II) Compounds

Ryan J. Schwamm, Martyn P. Coles*

School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box600, Wellington, New Zealand

Page	Content		
3	Experimental Procedures		
9	Fig. S1	¹ H NMR Spectrum of Mg(mesC{NCy} ₂)(N{SiMe ₃ } ₂)(THF) (1)	
10	Fig. S2	¹ H NMR Spectrum of Mg(mesC{NCy} ₂) ₂ (THF) (2)	
11	Fig. S3	$^{13}C{^{1}H}$ NMR Spectrum of Mg(mesC{NCy} ₂) ₂ (THF) (2)	
12	Fig. S4	¹ H NMR Spectrum of Mg($\{Me_3Si\}_2NC\{Ni-Pr\}_2\}_2(THF)$ (3)	
13	Fig. S5	$^{13}C{^{1}H} NMR Spectrum of Mg({Me_3Si}_2NC{Ni-Pr}_2)_2(THF) (3)$	
14	Fig. S6	¹ H NMR Spectrum of Mg(C \equiv CPh) ₂ (THF) ₄ (4)	
15	Fig. S7	¹³ C{ ¹ H} NMR Spectrum of Mg(C \equiv CPh) ₂ (THF) ₄ (4)	
16	Fig. S8	¹ H NMR Spectrum of Mg(PhC \equiv C{N <i>i</i> -Pr} ₂) ₂ (THF) ₂ (5)	
17	Fig. S9	¹³ C{ ¹ H} NMR Spectrum of Mg(PhC \equiv C{N <i>i</i> -Pr} ₂) ₂ (THF) ₂ (5)	
18	Fig. S10	¹ H NMR Spectrum of Mg(PhC \equiv C{N <i>i</i> -Pr} ₂)Br(Et ₂ O) (6)	
19	Fig. S11	¹³ C{ ¹ H} NMR Spectrum of Mg(PhC \equiv C{N <i>i</i> -Pr} ₂)Br(Et ₂ O) (6)	
20	Fig. S12	¹ H NMR Spectrum of Mg(mesC{NCy} ₂)(C \equiv CPh)(THF) (A)	
21	Fig. S13	¹³ C{ ¹ H} NMR Spectrum of Mg(mesC{NCy} ₂)(C \equiv CPh)(THF) (A)	
22	Fig. S14	¹ H NMR Spectrum of the NMR scale reaction of 1 with one equivalent	
		<i>i</i> Pr-N=C=N <i>i</i> -Pr	
23	Fig. S15	$^{13}C{^{1}H}$ NMR Spectrum of a mixture of Mg(mesC{NCy} ₂) ₂ (THF) (2),	
		$Mg({Me_{3}Si}_{2}NC{Ni-Pr}_{2})_{2}(THF)$ (3) and	
		$Mg(mesC{NCy}_2)({Me_3Si}_2NC{Ni-Pr}_2)(THF)_n (B)$	
24	Fig. S16	¹ H NMR Spectrum of the NMR scale reaction of \mathbf{A} with one equivalent	
		<i>i</i> Pr-N=C=N <i>i</i> -Pr	
25	Fig. S17	$^{13}C{^{1}H}$ NMR Spectrum of a mixture of Mg(mesC{NCy} ₂) ₂ (THF) (2),	
		$Mg(PhC \equiv C \{Ni-Pr\}_2)_2(THF)_2$ (5) and	
		$Mg(mesC{NCy}_2)(PhC \equiv C{Ni-Pr}_2)(THF)_n (C)$	

26	Fig. S18	Stacked ¹ H NMR plot of catalytic coupling of PhC=CH + <i>i</i> -PrN=C=N <i>i</i> -Pr
		with 1 (Room Temp)
27	Fig. S19	Stacked ¹ H NMR plot of catalytic coupling of PhC=CH + <i>i</i> -PrN=C=N <i>i</i> -Pr
		with 1 (50 °C)
28	Fig. S20	Stacked ¹ H NMR plot of catalytic coupling of PhC=CH + <i>i</i> -PrN=C=N <i>i</i> -Pr
		with 1 (80 °C)
29	Fig. S21	Assigned ¹ H NMR spectrum of catalytic coupling of PhC \equiv CH +
		<i>i</i> -PrN=C=N <i>i</i> -Pr with 1 (80 °C, 1876 mins)
30	Fig. S22	¹ H NMR Spectrum of PhC \equiv C{N <i>i</i> -Pr} ₂ {NH <i>i</i> -Pr}
31	Table S1	Crystal structure and refinement data for $Mg(mesC{NCy}_2)_2(THF)$ (2)
32	Fig. S23	ORTEP of Mg(mesC{NCy} ₂) ₂ (THF) (2)
33	Table S2	Crystal structure and refinement data for Mg($\{Me_3Si\}_2NC\{Ni-Pr\}_2$) ₂ (THF)
		(3)
34	Fig. S24	ORTEP of Mg($\{Me_3Si\}_2NC\{Ni-Pr\}_2\}_2(THF)$ (3)
35	Table S3	Crystal structure and refinement data for $Mg(C \equiv CPh)_2(THF)_4$ (4)
36	Fig. S25	ORTEP of $Mg(C \equiv CPh)_2(THF)_4$ (4)
37	Table S4	Crystal structure and refinement data for $Mg(PhC \equiv C \{Ni-Pr\}_2)_2(THF)_2$
		(5 (THF))
38	Fig. S26	ORTEP of Mg(PhC \equiv C{N <i>i</i> -Pr} ₂) ₂ (THF) ₂ (5 (THF))
39	Table S5	Crystal structure and refinement data for $[Mg(PhC \equiv C \{Ni-Pr\}_2)Br(Et_2O)]_2$
		([6] ₂)
40	Fig. S27	ORTEP of $[Mg(PhC \equiv C \{Ni - Pr\}_2)Br(Et_2O)]_2$ ([6] ₂)

Experimental Procedures

General

All manipulations were carried out under dry nitrogen using standard Schlenk-line and cannula techniques, or in a conventional nitrogen-filled glovebox. Solvents were dried using a PureSolv. system (Innovative Technologies). NMR spectra were recorded in C_6D_6 at 298 K (unless otherwise stated), using a Varian INOVA system at 300 MHz (¹H) or 75 MHz (¹³C{¹H}). Proton and carbon chemical shifts were referenced internally to residual solvent resonances. Elemental analyses were performed S. Boyer at London Metropolitan University. All compounds were purchased from Sigma-Aldrich chemical company. Liquids were subjected to 3 x freeze-pump-thaw cycles, and stored under nitrogen in the glovebox. Compound **1** was made according to literature procedures.¹

Mg(mesC{NCy}₂)₂(THF) (2)

Compound **2** was isolated from the attempted preparation of **A** (see below for details). Anal. Calcd. for $C_{48}H_{74}N_4MgO(747.43)$: C, 77.13; H, 9.98; N, 7.50 %. Found: C, 76.86; H, 10.12; N, 7.56 %. ¹H NMR: δ 6.85 (s, 4H, C₆H₂), 3.74 (m, 4H, THF-CH₂), 2.87 (m, 4H, α -C₆H₁₁), 2.47 (s, 12H, 2,6-*Me*₂), 2.13 (s, 6H, 4-Me), 2.13-1-23 (m, 40H, C₆H₁₁), 1.45 (THF-CH₂). ¹³C NMR: δ 174.3 (*C*N₂), 136.7, 134.2, 134.1, 128.4 (*C*₆H₂), 67.9 (THF-CH₂), 54.7 (α -C₆H₁₁), 37.8, 26.5, 25.9 (*C*₆H₁₁), 25.8 (THF-CH₂), 21.2 (4-*Me*), 20.7 (2,6-*Me*).

$Mg({Me_3Si}_2NC{Ni-Pr}_2)_2(THF) (3)$

A solution of *N*,*N*'-di*iso* propylcarbodiimide (0.12 mL, 0.73 mmol.) in THF (5 mL) was added dropwise to a stirring solution of $Mg(N{SiMe_3}_2)_2$ (0.25 g, 0.73 mmol.) in THF (5 mL). The resulting solution was stirred at room temperature for 24 h followed by concentration of the solution *in vacuo*. Clear, colourless crystals suitable for X-ray diffraction were obtained upon storage of the solution at –

30 °C for 24 h. Yield 0.31 g, 78 %. Anal. Calcd. for $C_{30}H_{72}N_6MgOSi_4$ (*669.58*): C, 53.81; H, 10.84; N, 12.55 %. Found: C, 53.60; H, 10.77; N, 12.54 %. ¹H NMR: δ 3.69 (sept, $J_{HH} = 6.2$ Hz, 4H, $CH(CH_3)_2$), 3.59, 1.41 (m, 4H, THF-C H_2), 1.17 (d, $J_{HH} = 6.2$ Hz, 24H, $CH(CH_3)_2$), 0.32 (s, 36H, N{Si Me_3 }2). ¹³C NMR: δ 167.2 (CN_2), 67.9 (THF-C H_2), 44.7 ($CH(CH_3)_2$), 27.4 ($CH(CH_3)_2$), 25.7 (THF-C H_2), 2.5 (Si Me_3).

$Mg(C \equiv CPh)_2(THF)_4$ (4)

A solution of MgBu₂ in heptane (1.2 mL of a 1.0M solution, 1.2 mmol.) was added dropwise to a stirring solution of phenyl acetylene (0.31 mL, 2.4 mmol.) in THF (5 mL). The resultant solution was stirred for 24 h followed by removal of the solvent *in vacuo* to give a white powder. Clear colourless crystals were obtained by recrystallisation from a hexane/THF solution. Yield 0.54 g, 84 %. ¹H NMR: δ 7.89 (d, J_{HH} = 7.2 Hz, 2H, o-C₆ H_5), 7.10 (t, J_{HH} = 7.2 Hz, 2H, p-C₆ H_5), 7.00 (d, J_{HH} = 7.2 Hz, 4H, m-C₆ H_5), 3.61, 1.40 (m, THF-CH₂). ¹³C NMR: δ^* 132.2, 129.3, 128.5, 127.0 (C_6 H₅), 68.0, 25.8 THF-CH₂). * Resonances for the C=C carbons not observed.

$Mg(PhC \equiv CC \{Ni-Pr\}_2)_2(THF)_2 (5)$

A solution of MgBu₂ in heptane (0.88 mL of a 1.0 M solution, 0.88 mmol.) was added drop wise to a stirring solution of PhC=CC{N*i*-Pr} {NH*i*-Pr} (0.40 g, 1.8 mmol.) in THF (5 mL). The solution was allowed to stir for 24 h followed by removal of the volatiles. Clear yellow crystals suitable for X-ray analysis were obtained by recrystallization from hexane at -30 °C. Yield 0.36 g, 66 %. Anal. Calcd. for $C_{38}H_{54}N_4MgO_2$ (*623.17*): C, 73.24; H, 8.73; N, 8.99 %. Found: C, 73.15; H, 8.61; N, 9.05 %. ¹H NMR: δ 7.48 (m, 4H, *o*-C₆*H*₅), 6.95 (m, 6H, *m*- and *p*-C₆*H*₅), 4.38 (sept, *J*_{HH} = 6.4 Hz, 4H, *CH*(CH₃)₂), 3.62 (m, THF-C*H*₂), 1.44 (d, *J*_{HH} = 6.4 Hz, 24H, CH(CH₃)₂), 1.34 (m, THF-C*H*₂). ¹³C NMR: δ 157.9 (*C*N₂), 132.3, 128.9, 128.7, 123.1 (*C*₆H₅), 95.9, 80.8 (*C*=*C*), 68.0 (THF-CH₂), 48.9 (*C*H(CH₃)₂), 26.7 (CH(*C*H₃)₂), 25.6 (THF-*C*H₂).

$Mg(PhC \equiv CC \{N-i-Pr\}_2)Br(OEt_2)$ (6)

A solution of MeMgBr in Et₂O (0.48 mL of a 3.0 M solution, 1.45 mmol.) was added drop wise to a stirring solution of PhC=CC{N*i*-Pr} {NH*i*-Pr} (0.33 g, 1.45 mmol.) in Et₂O (5 mL). The resultant solution was left to stir for 24 h, followed by concentration to ca. 1 mL and storage at -30 °C. Yellow crystals of **6** were obtained after 24 h. Yield 0.47 g, 81 %. Anal. Calcd. for C₁₉H₂₉MgN₂OBr (*405.66*): C, 56.26; H, 7.21; N, 6.91 %. Found: C, 56.05; H, 7.27; N, 6.75 %. ¹H NMR: δ 7.38 (br, 2H, *o*-C₆H₅), 6.94 (m, 3H, *m*- and *p*-C₆H₅), 4.35 (br sept, 2H, *CH*(CH₃)₂), 3.53 (q, *J*_{HH} = 6.9 Hz, 4H, *CH*₂CH₃), 1.73, 1.52 (br d, 12H, CH(CH₃)₂), 1.07 (t, *J*_{HH} = 6.9 Hz, 6H, CH₂CH₃). ¹³C NMR (C₆D₆, 75 MHz, 298K) δ 158.9 (*C*N₂), 132.3, 129.3, 128.7, 122.5 (*C*₆H₅), 97.1, 80.1 (*C*=C), 65.6 (*C*H₂CH₃), 49.1 (*C*H(CH₃)₂), 26.1 (CH(*C*H₃)₂), 14.7 (CH₂CH₃).

$Mg(mesC{NCy}_2)(C\equiv CPh)(THF) (A)$

NMR scale

Phenylacetylene (0.0045 mL, 0.034 mmol.) was added to a J. Young NMR tube charged with a solution of **1** (20 mg, 0.034 mmol.) in C_6D_6 (0.5 mL). The solution was allowed to sit for 10 mins at room temperature followed by ¹H NMR analysis.

¹H NMR: δ 7.84 (d, $J_{\text{HH}} = 7.2$ Hz, 2H, *o*-C₆*H*₅), 7.10 (t, $J_{\text{HH}} = 7.2$ Hz, 2H, *m*-C₆*H*₅), 7.02 (d, $J_{\text{HH}} = 7.2$ Hz, 1H, *p*-C₆*H*₅), 6.84 (s, 2H, C₆*H*₂), 3.96 (m, THF-C*H*₂), 2.81 (br m, 2H, α-C₆*H*₁₁), 2.46 (br s, 6H, 2,6-*Me*₂), 2.13 (br s, 3H, 4-*Me*), 1.95-1.00 (m, 24H, C₆*H*₁₁ + THF-C*H*₂), 0.09 (s, 18H, HN(Si*Me*₃)₂). ¹³C NMR (C₆D₆, 75 MHz, 298K) δ 173.9 (CN₂), 136.6, 134.5, 134.3, 132.2, 129.3, 128.40, 127.4, 126.4 (C₆H₅ and C₆H₂), 120.1, 117.7 (C≡C), 68.9 (THF-CH₂), 55.9, 55.2 (α-C₆H₁₁), 37.9, 26.4 (br), 26.1, 25.6 (C₆H₁₁), 21.2 (4-Me), 20.8 (2,6-*Me*), 2.7 (HN(Si*Me*₃)₂).

Attempted isolation of *A* - preparative scale

Phenylacetylene (0.065 mL, 0.62 mmol.) was added drop wise to a rapidly stirring solution of **1** (0.36g, 0.62 mmol.) in toluene (10 mL). The resulting solution was left to stir for 24 h at room temperature, followed by removal of volatiles *in vacuo* to give a yellow oil. The addition of hexane (5 mL) and THF (1 mL) to the oil, followed by storage at -30 °C for 24 h yielded a white powder, identified as **4** by ¹H NMR spectroscopy. Yield 0.027 g, 16 %. Additional crops of clear, colourless crystals were obtained by further concentration of the solution identified as **2**. Yield 0.060 g, 26 %.

$Mg(mesC{NCy}_2)({Me_3Si}_2NC{Ni-Pr}_2)(THF)_n (B)$

NMR scale

N,*N*'-dii*so*propylcarbodiimide (0.0056 mL, 0.034 mmol.) was added to a J. Young NMR tube charged with a solution of **1** (20 mg, 0.034 mmol.) in C₆D₆ (0.5 mL). The solution was allowed to sit for 2 h at room temperature followed by ¹H NMR analysis, showing formation of a mixture of **2**, **3** and **B**. ¹H NMR: δ 6.85 (s, C₆*H*₂ **{2**}), 6.82 (s, C₆*H*₂ **{B**}), 3.79, 3.51, 3.39 (overlapping sept, C*H*(CH₃)₂ **{3/B}**), 3.71 (m, THF-C*H*₂ **{2/3/B}**), 2.87 (m, *α*-C₆*H*₁₁ **{2**}), 2.87 (m, *α*-C₆*H*₁₁ **{B**}), 2.47 (s, 2,6-*Me*₂ **{2**}), 2.42, 2.41 (s, 2,6-*Me*₂ **{B**}), 2.13 (s, 4-*Me* **{2**}), 2.12 (s, 4-*Me* **{2**}), 1.90-1.38 (overlapping m, C₆*H*₁₁ **{2/B**}), 1.42 (m, THF-C*H*₂ **{2/3/B**}), 1.30, 1.27, 1.26, 1.22, 1.20, 1.18 (overlapping d, CH(C*H*₃)₂ **{3/B**}), 1.17 (d, CH(C*H*₃)₂ **{3**}), 1.07 (d, CH(C*H*₃)₂ **{B**}), 0.37, 0.36, 0.32 (s, N{Si*Me*₃}₂ **{B**}), 0.32 (s, N{Si*Me*₃}₂ **{3**}). ¹³C NMR (C₆D₆, 75 MHz, 298K) δ 174.0 (*C*N₂ **{2**}), 173.8 (*C*N₂ **{B**}), 166.4 (*C*N₃ **{3/B**}), 136.5, 136.4, 134.6, 134.3, 134.2, 128.4 (*C*₆H₂ **{2/B**}), 68.1 (THF-CH₂ **{2/3/B**}), 55.3 (*α*-C₆H₁₁ **{B**}), 54.9 (*α*-C₆H₁₁ **{2**}), 45.3 (overlapping *C*H(CH₃)₂), **{3/B**}), 37.9, 37.8, 27.5, 27.4, 27.0, 26.5, 26.4, 26.3, 26.2, 26.1, 25.9, 25.6, 25.3, 24.9, 24.8 (*C*₆H₁₁, CH(CH₃)₂ and THF-CH₂ **{2/3/B**}), 21.2 (4-*Me* **{2/B**}), 20.8 (2,6-*Me*₂ **{B**}), 20.7 (2,6-*Me* **{2**}).

$Mg(mesC{NCy}_2)(PhC \equiv CC{Ni-Pr}_2)$ (THF) (C)

NMR scale

Phenylacetylene (0.0045 mL, 0.034 mmol.) was added to a J. Young NMR tube charged with a solution of **1** (20 mg, 0.034 mmol.) in C_6D_6 (0.5 mL). The solution was allowed to sit for 2 h at room temperature followed by the addition of *N*,*N*'-di*iso*propylcarbodiimide (0.0056 mL, 0.034 mmol.). ¹H NMR analysis showed formation of a mixture of **2**, **5** and **C**.

¹H NMR: δ 7.48 (m, *o*-C₆H₅ {5}), 7.46 (m, *o*-C₆H₅ {C}), 6.98 (m, *m*- and *p*-C₆H₅ {C}), 6.95 (m, *m*and *p*-C₆H₅ {5}), 6.84 (s, C₆H₂ {2}), 6.81 (s, C₆H₂ {C}), 4.37 (overlapping sept, CH(CH₃)₂, {5/C}), 3.77 (m, THF-CH₂ {2/5/C}), 2.79 (m, *α*-C₆H₁₁ {5/C}), 2.45 (s, 2,6-Me₂ {2}), 2.44 (s, 2,6-Me₂ {C}), 2.13 (s, 4-Me {5/C}), 1.84-1.12 (m, C₆H₁₁ {2/C} and THF-CH₂ {2/5/C}), 1.44 (d, CH(CH₃)₂ {5}), 1.41, 1.05 (d, CH(CH₃)₂ {C}), 0.09 (s, HN{SiMe₃}₂). ¹³C NMR: δ 174.0 (CN₂ {2}), 173.8 (CN₂ {C}), 157.9 (CN₂ {5}), 157.7 (CN₂ {C}), 136.5, 136.4, 134.7, 134.4, 132.3, 132.2, 128.9, 128.7, 123.1 (C₆H₅ and C₆H₂ {2/5/C}), 95.9 (C≡C {5}), 95.8 (C≡C {C}), 81.0 (C≡C {C}), 80.8 (C≡C {5}), 68.0 (THF-CH₂ {2/5/C}), 55.7, 55.1 (*α*-C₆H₁₁ {2/C}), 48.9, 48.8 (CH(CH₃)₂ {5/C}), 37.9, 37.8, 27.5, 27.3, 26.9, 26.7, 26.5, 26.4, 26.1, 25.6, 24.8 (C₆H₁₁, CH(CH₃)₂ and THF-CH₂ {2/5/C}), 21.2, 20.8, 20.7 (2,6-Me₂ and 4-Me {2/C}), 2.7 (HN(SiMe₃)₂).

Preparative scale

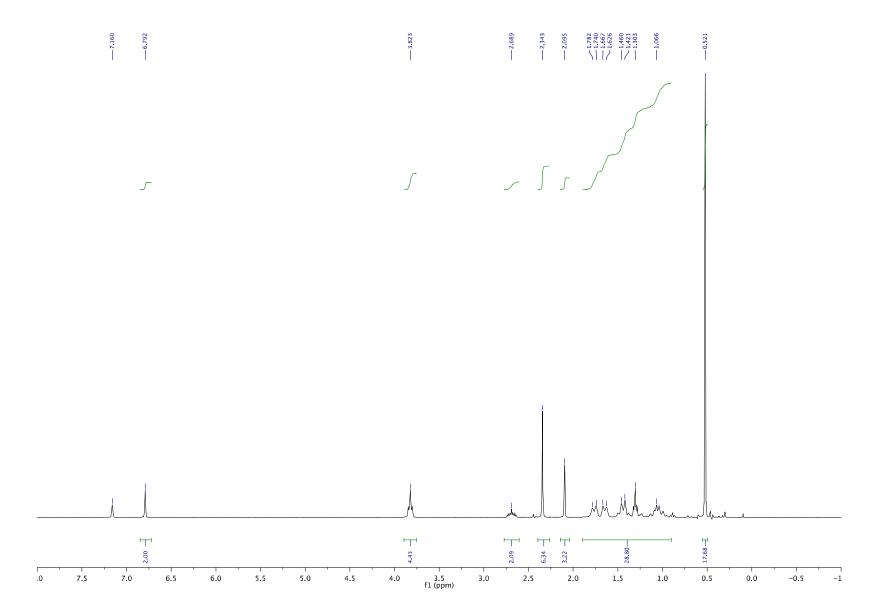
Phenylacetylene (0.065 mL, 0.62 mmol.) was added drop wise to a rapidly stirring solution of **1** (0.36 g, 0.62 mmol.) in toluene (10 mL). The solution was allowed to stir for 4 h at room temperature, followed by the addition of *N*,*N*'-di*iso* propylcarbodiimide (0.10 mL, 0.62 mmol.). The resulting solution was stirred for 24 h followed by removal of volatiles *in vacuo* to give a crude yellow solid. The addition of hexane (5 mL) to the solid, followed by storage at -30 °C for 24 h yielded clear colourless crystals, identified as **2**. Yield 0.11 g, 47 %. Additional crops of clear, yellow crystals were

obtained by further concentration of the solution and storage at -30 °C, identified as 5(THF) by ¹H NMR spectroscopy. Yield 0.070 g, 36 %.

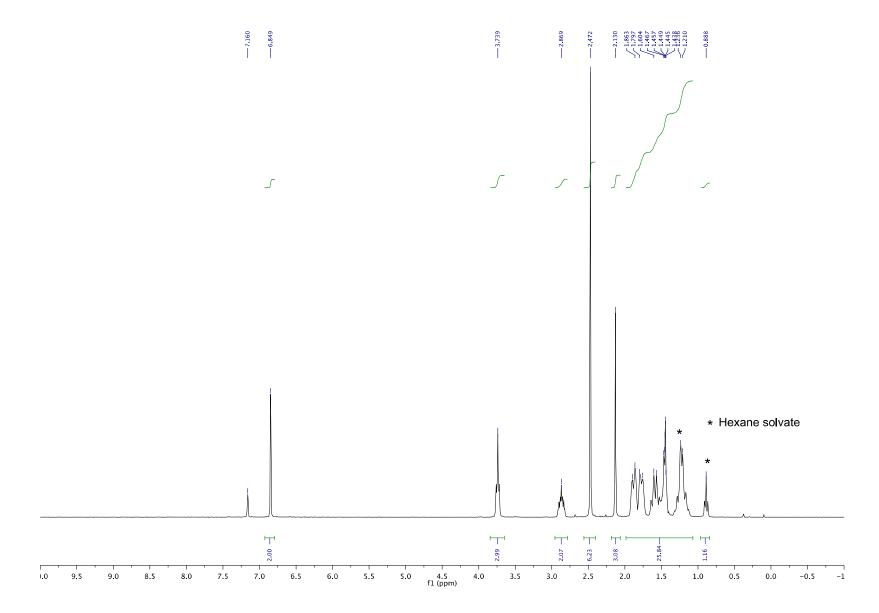
General procedure for catalytic study

NMR scale

To a J. Young NMR tube charged with a mixture of phenyl acetylene (0.022 mL, 0.17 mmol.) and N,N'-di*iso* propylcarbodiimide (0.028 mL, 0.17 mmol) was added a solution of **1** in C₆D₆ (0.5 mL of a 0.0034 M standard solution, 1.7 µmol). The NMR tube was heated to 80 °C for 24 h with regular monitoring of the progress of the catalysis using ¹H NMR spectroscopy. Yields of the propargylamidine were determined using peaks corresponding to the THF from **1** as an internal standard.


Preparative scale

A solution of **1** (10 mg, 0.017 mmol.) in toluene (2.5 mL) was added to a stirring solution of phenyl acetylene (0.22 mL, 1.7 mmol.) and *N*,*N*'-di*iso*propylcarbodiimide (0.28 mL, 1.7 mmol.) in toluene (2.5 mL). The solution was heated to 80 °C and allowed to stir for 24 h, followed by removal of the volatiles *in vacuo* to give a yellow oil. Clear, yellow crystals of propargylamidine were obtained by recrystallisation from hexane. Yield 0.28 g, 73 %.


References

1. Day, B. M.; Knowelden, W.; Coles, M. P., *Dalton Trans.* **2012**, *41*, 10930-10933.

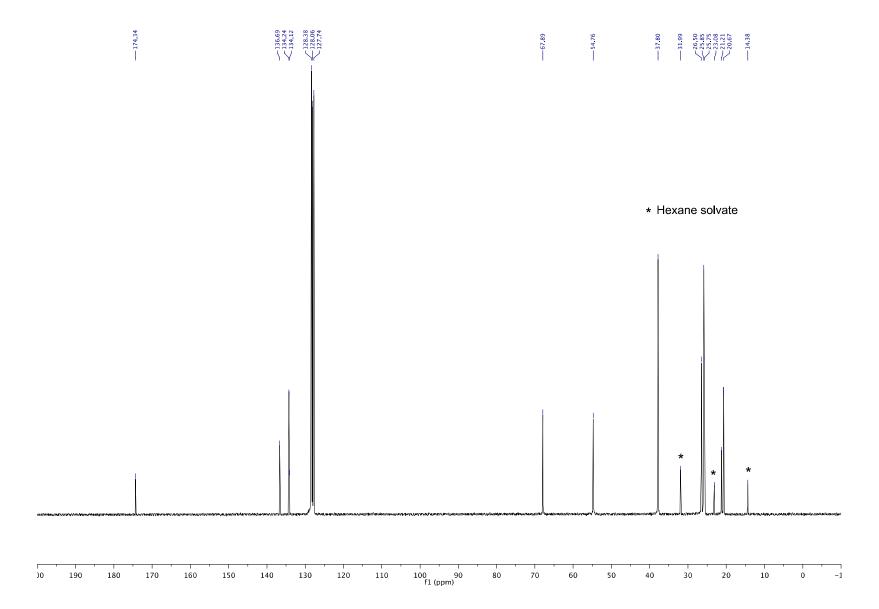
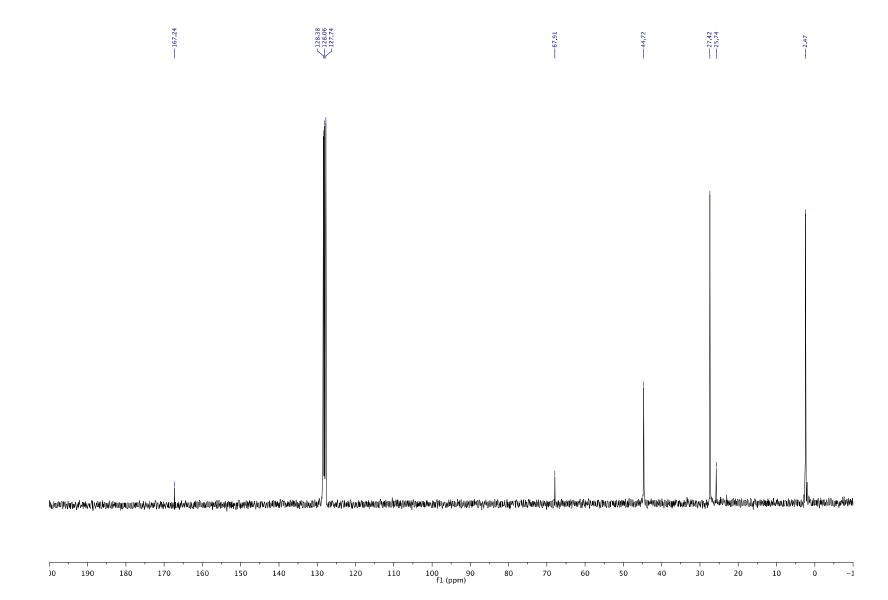
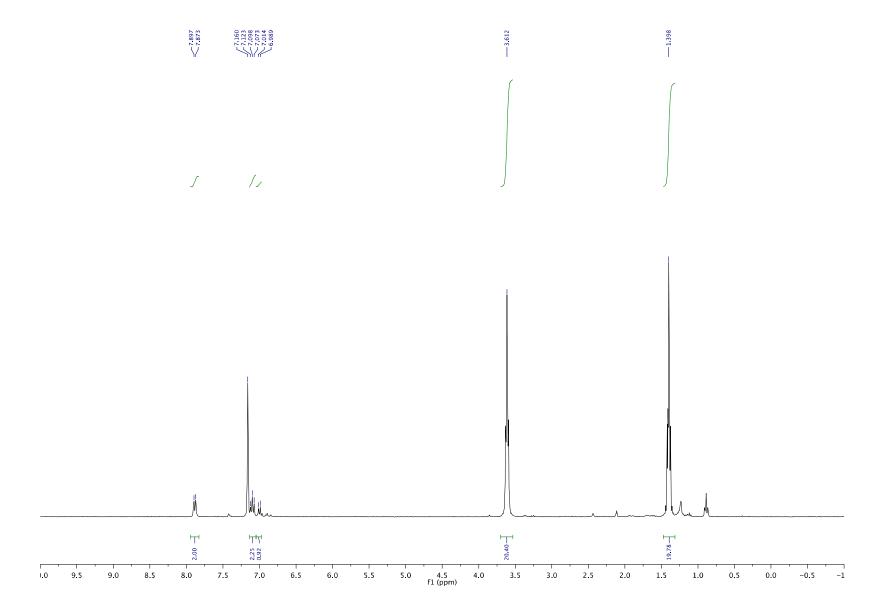
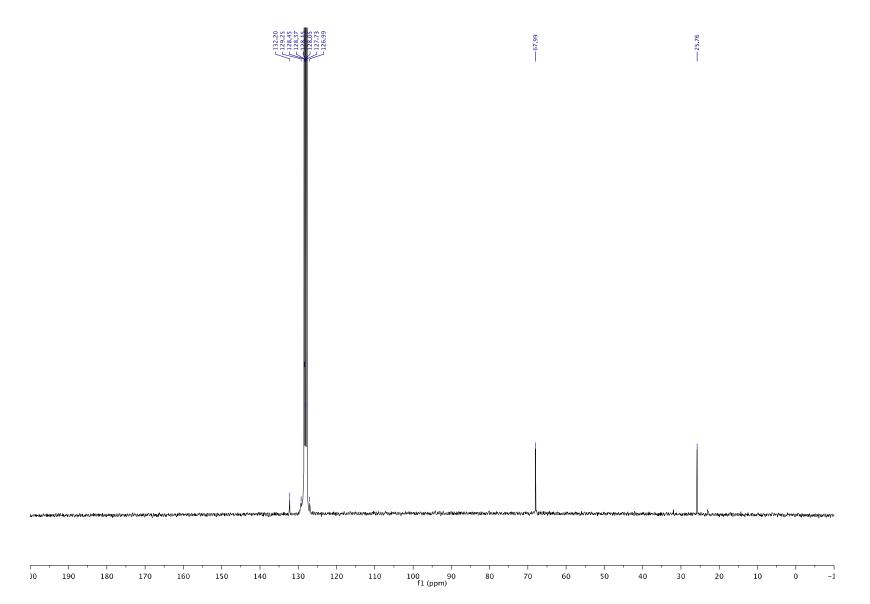
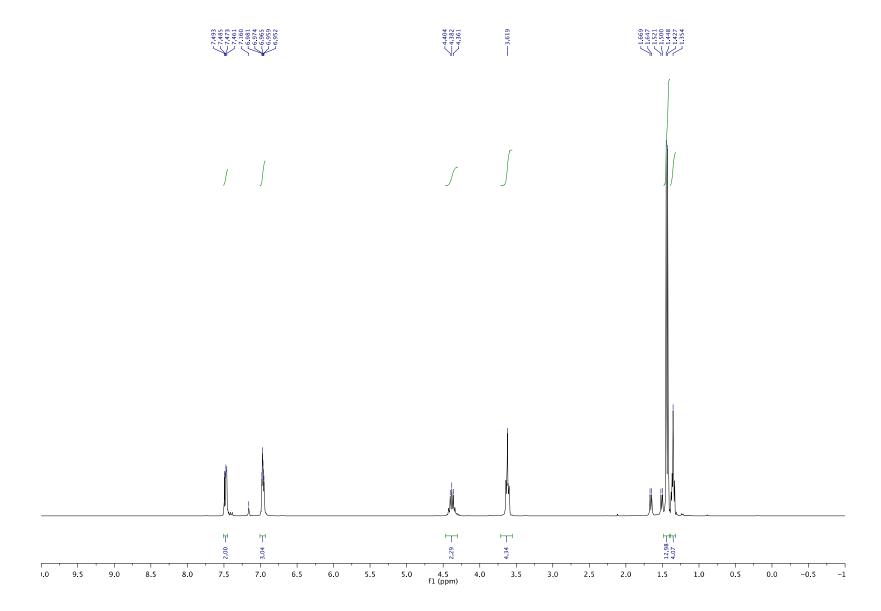

Figure S1 ¹H NMR Spectrum of Mg(mesC{NCy}₂)(N{SiMe₃}₂)(THF) (**1**) (C₆D₆, 300 MHz).

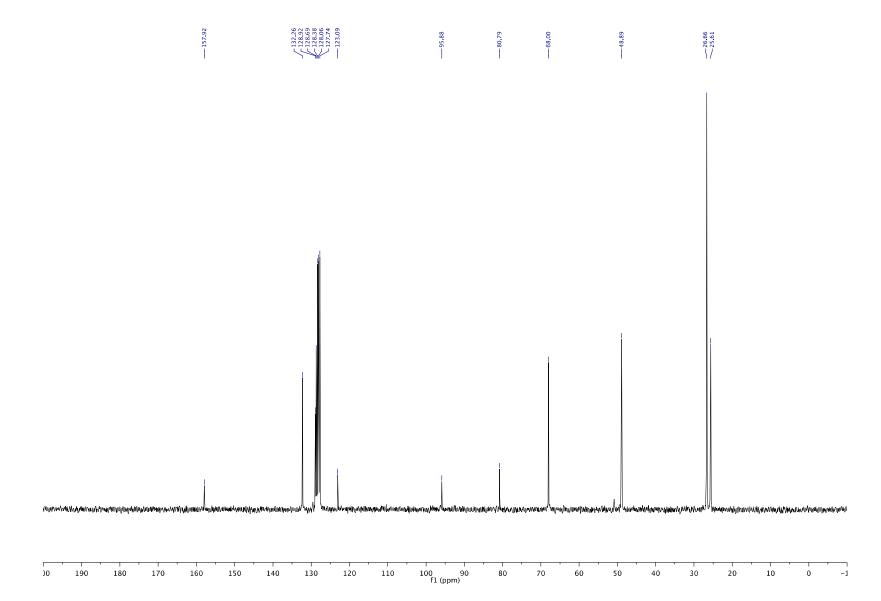
Figure S2 ¹H NMR Spectrum of Mg(mesC{NCy}₂)₂(THF) (**2**) (C₆D₆, 300 MHz).

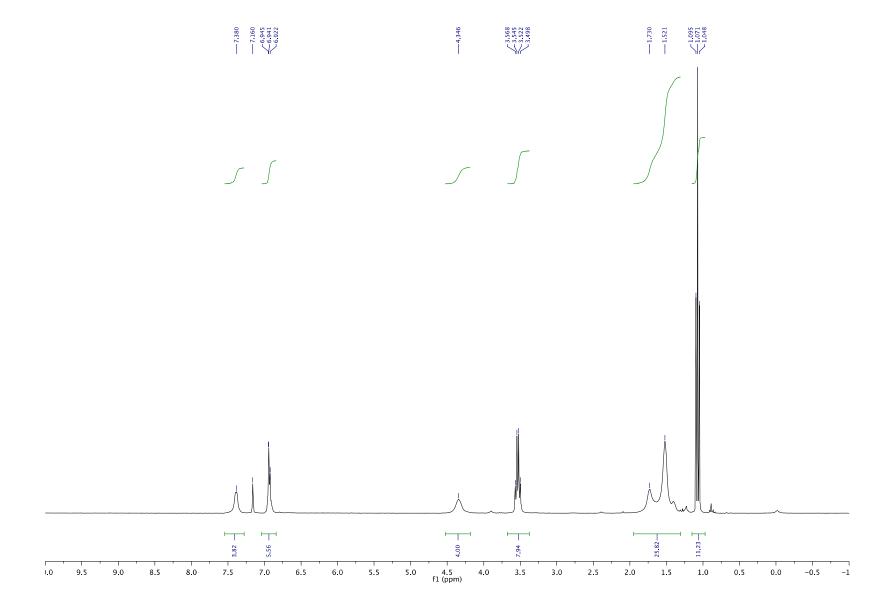

Figure S3 ¹³C{¹H} NMR Spectrum of Mg(mesC{NCy}₂)₂(THF) (**2**) (C₆D₆, 75 MHz).

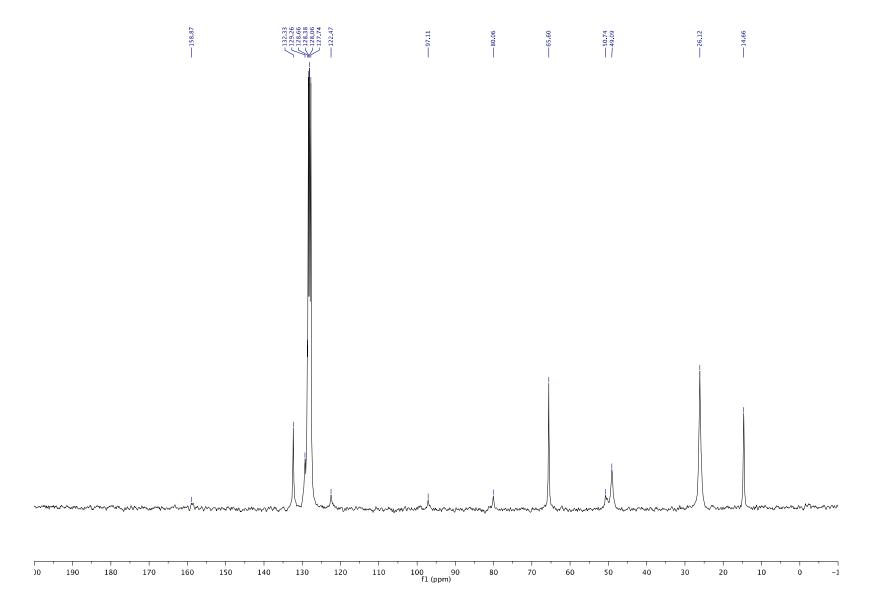

Figure S4 ¹H NMR Spectrum of Mg({Me₃Si}₂NC{N*i*-Pr}₂)₂(THF) (**3**) (C₆D₆, 300 MHz).

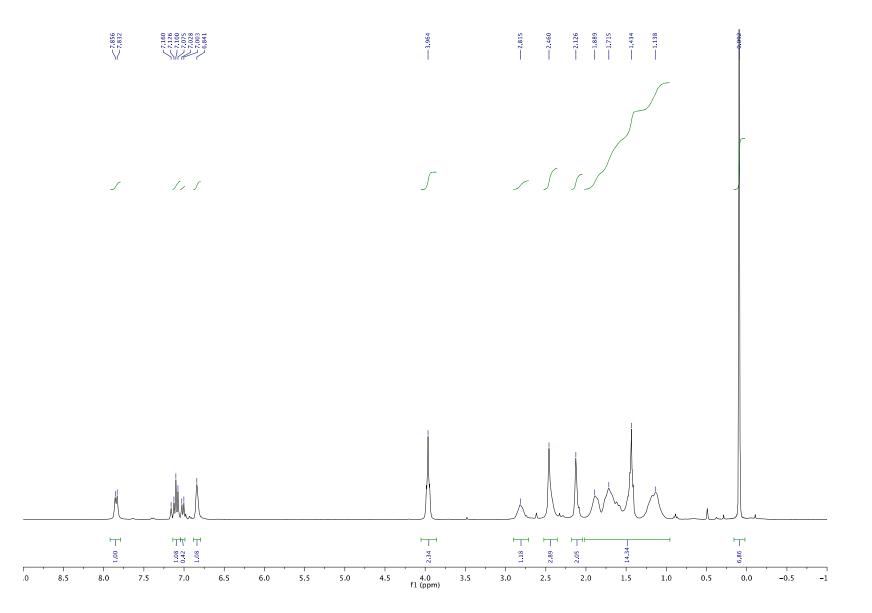

Figure S5 ¹³C{¹H} NMR Spectrum of Mg({Me₃Si}₂NC{N*i*-Pr}₂)₂(THF) (**3**) (C₆D₆, 75 MHz).

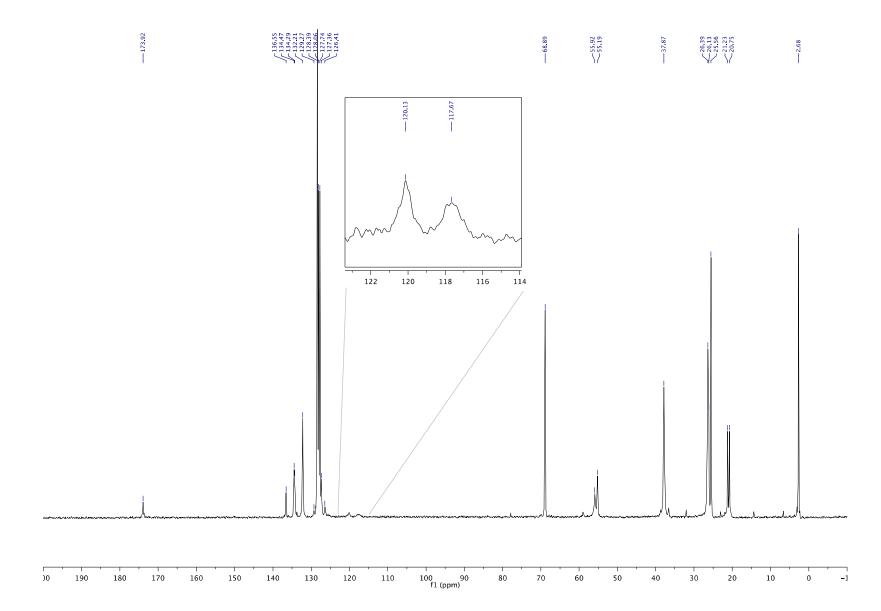

Figure S6 ¹H NMR Spectrum of Mg(C \equiv CPh)₂(THF)₄ (**4**) (C₆D₆, 300 MHz).

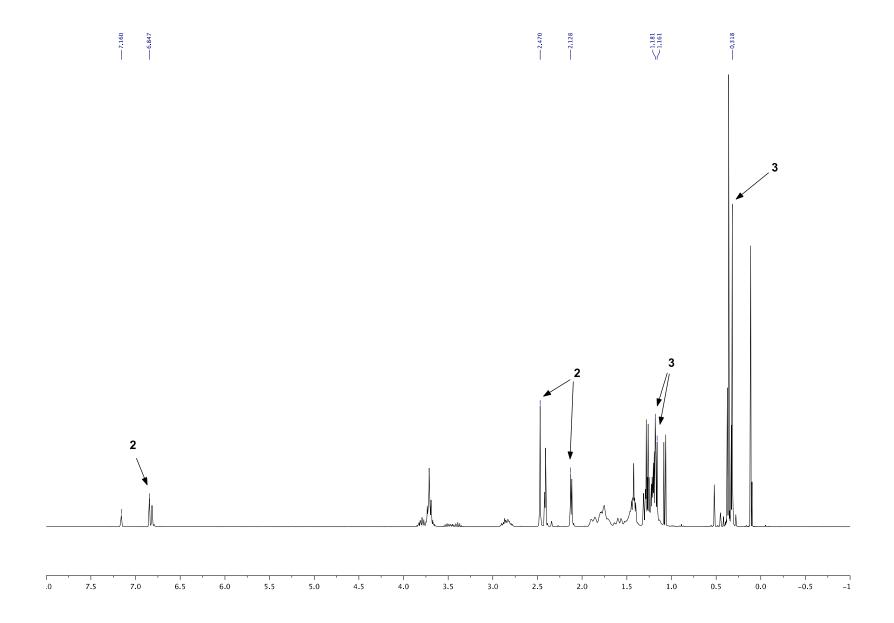

Figure S7 ${}^{13}C{}^{1}H$ NMR Spectrum of Mg(C=CPh)₂(THF)₄ (**4**) (C₆D₆, 75 MHz).

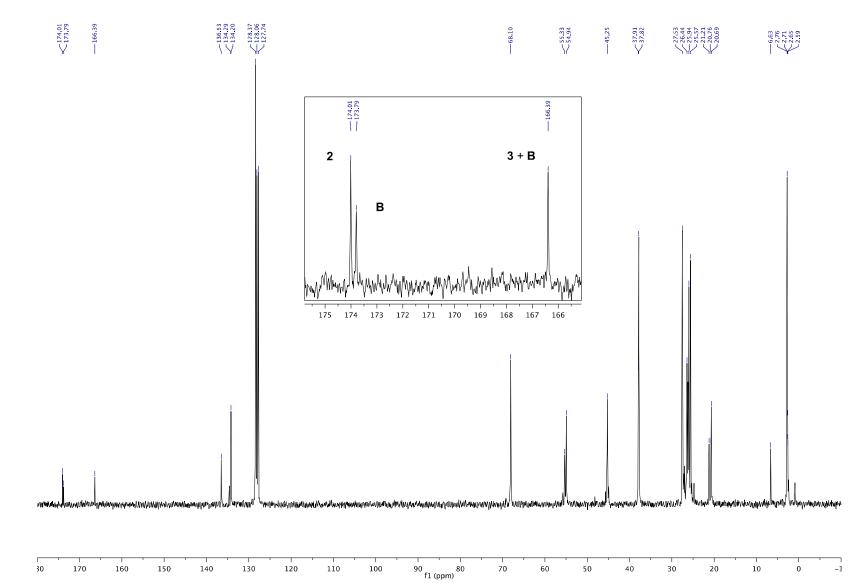

Figure S8 ¹H NMR Spectrum of Mg(PhC \equiv CC{N*i*-Pr}₂)₂(THF)₂ (**5**) (C₆D₆, 300 MHz).

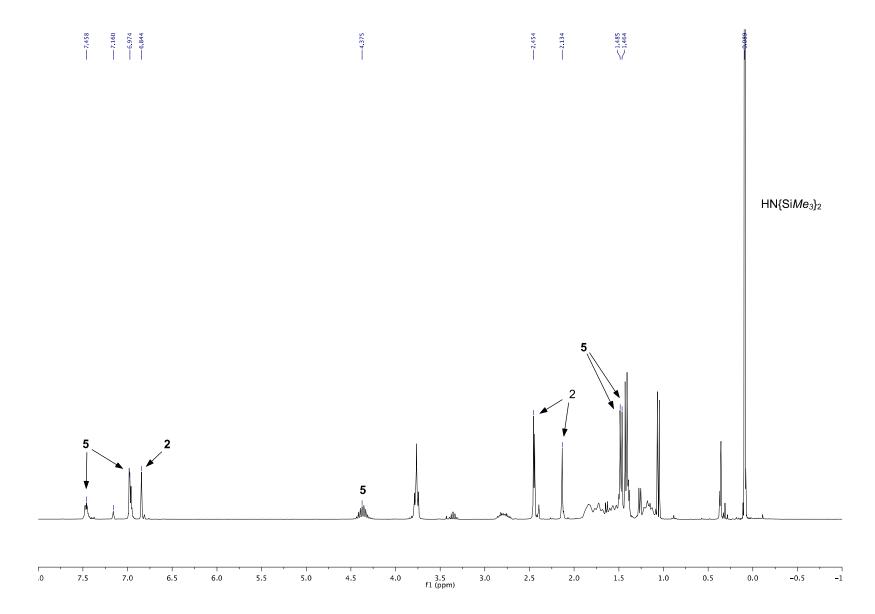

Figure S9 ¹³C{¹H} NMR Spectrum of Mg(PhC≡CC{N*i*-Pr}₂)₂(THF)₂ (**5**) (C₆D₆, 75 MHz).

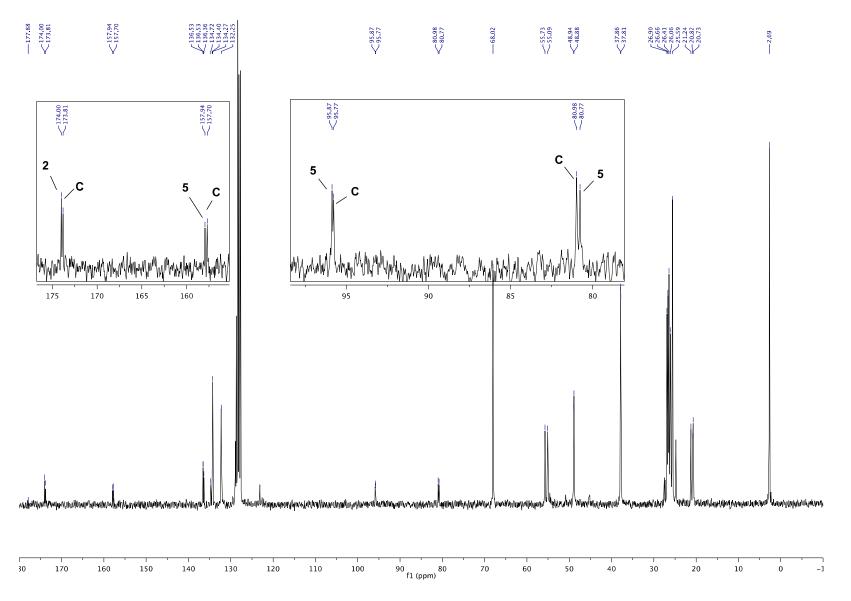

Figure S10 ¹H NMR Spectrum of Mg(PhC \equiv CC{N*i*-Pr}₂)Br(Et₂O) (6) (C₆D₆, 300 MHz).

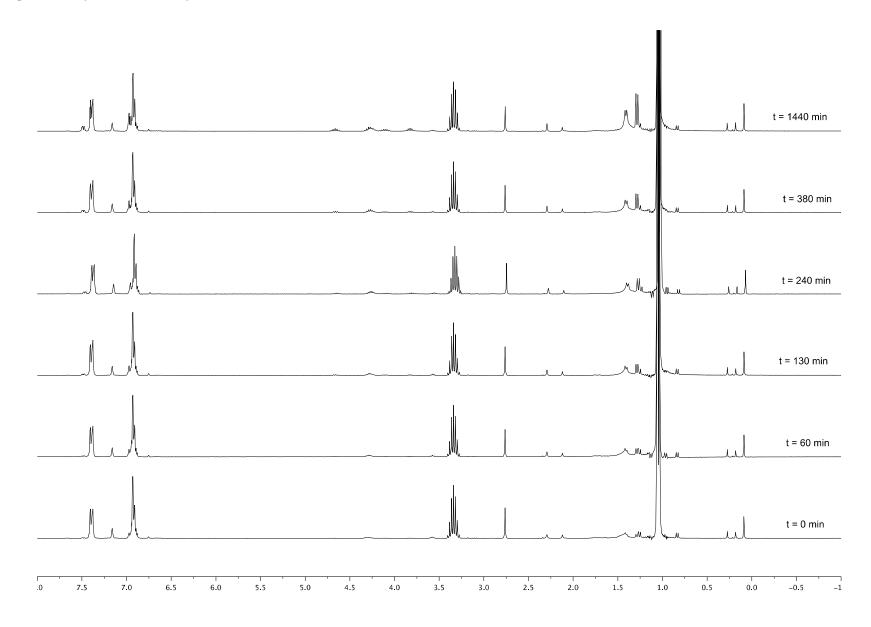

Figure S11 ${}^{13}C{}^{1}H$ NMR Spectrum of Mg(PhC=CC{N*i*-Pr}₂)Br(Et₂O) (6) (C₆D₆, 75 MHz).

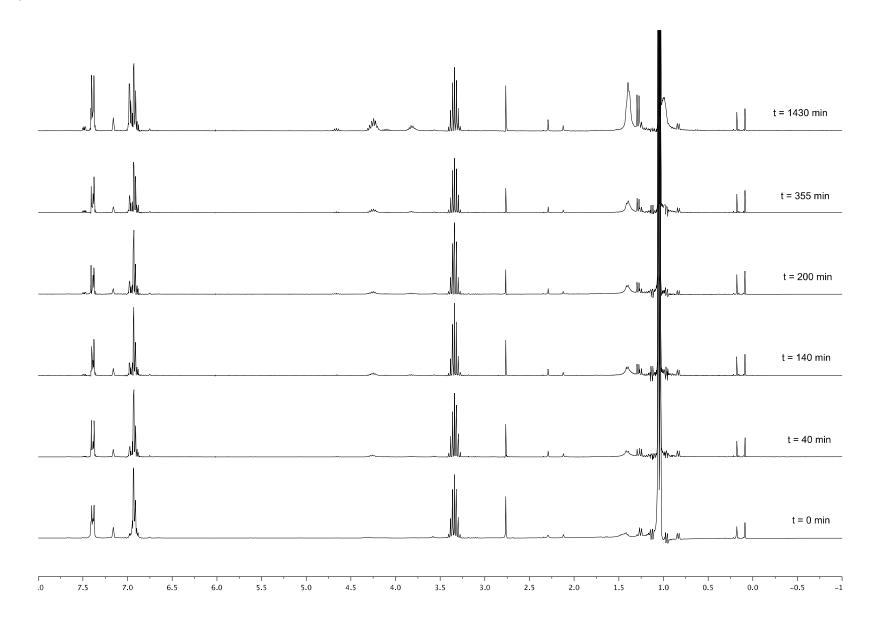

Figure S12 ¹H NMR Spectrum of the NMR scale reaction of **1** with one equivalent PhC \equiv CH (C₆D₆, 300 MHz), affording Mg(mesC{NCy}₂)(C \equiv CPh)(THF) (**A**).

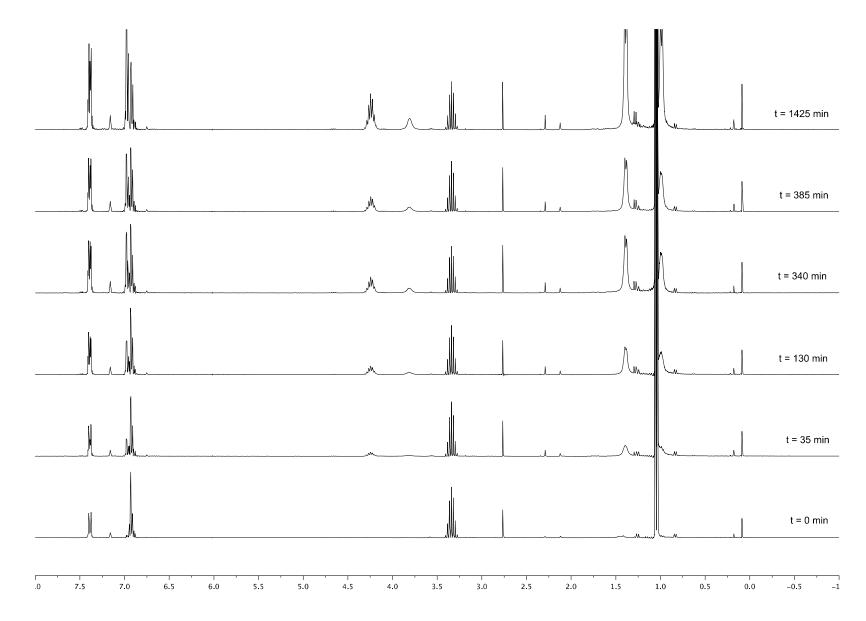

Figure S13 ¹³C{¹H} NMR Spectrum of the NMR scale reaction of **1** with one equivalent PhC=CH (C₆D₆, 75 MHz), affording Mg(mesC{NCy}₂)(C=CPh)(THF) (**A**).

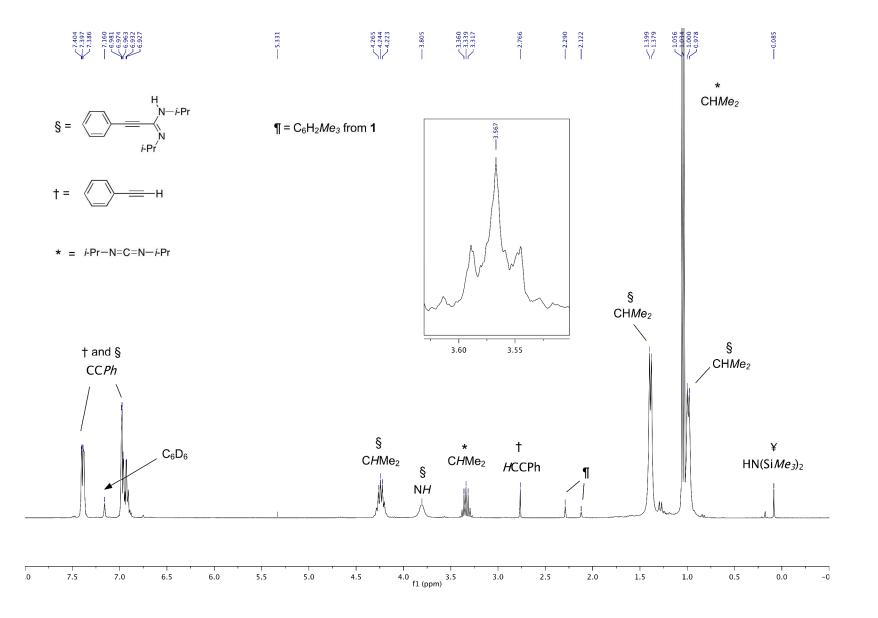

Figure S14 ¹H NMR Spectrum of the NMR scale reaction of **1** with one equivalent *i*Pr-N=C=N*i*-Pr (C₆D₆, 300 MHz). Peaks corresponding to Mg(mesC{NCy}₂)₂(THF) (**2**) and Mg({Me₃Si}₂NC{N*i*-Pr}₂)₂(THF) (**3**) identified.


Figure S15 ¹³C{¹H} NMR Spectrum of the NMR scale reaction of **1** with one equivalent *i*Pr-N=C=N*i*-Pr (C₆D₆, 75 MHz). Low-field peaks corresponding to Mg(mesC{NCy}₂)₂(THF) (**2**), Mg({Me₃Si}₂NC{N*i*-Pr}₂)₂(THF) (**3**) and Mg(mesC{NCy}₂)({Me₃Si}₂NC{N*i*-Pr}₂)(THF)_n (**B**) shown (expansion).


Figure S16 ¹H NMR Spectrum of the NMR scale reaction of *in situ* generated **A** with one equivalent *i*Pr-N=C=N*i*-Pr (C₆D₆, 300 MHz). Peaks corresponding to Mg(mesC{NCy}₂)₂(THF) (**2**) and Mg(PhC=CC{N*i*-Pr}₂)₂(THF)₂ (**5**) identified.


Figure S17 ¹³C{¹H} NMR Spectrum of the NMR scale reaction of of *in situ* generated **A** with one equivalent *i*Pr-N=C=N*i*-Pr (C₆D₆, 75 MHz). Low-field peaks corresponding to Mg(mesC{NCy}₂)₂(THF) (**2**), Mg(PhC=CC{N*i*-Pr}₂)₂(THF)₂ (**5**) and Mg(mesC{NCy}₂)(PhC=CC{N*i*-Pr}₂)(THF)_n (**C**) and acetylenic peaks for **5** and **C** shown (expansions).


Figure S18 Stacked ¹H NMR spectra of a representative catalytic coupling of PhC=CH and *i*-PrN=C=N*i*-Pr using **1** at Room Temperature (C_6D_6 , 300 MHz).


Figure S19 Stacked ¹H NMR spectra of a representative catalytic coupling of PhC=CH and *i*-PrN=C=N*i*-Pr using **1** at 50 °C (C₆D₆, 300 MHz).

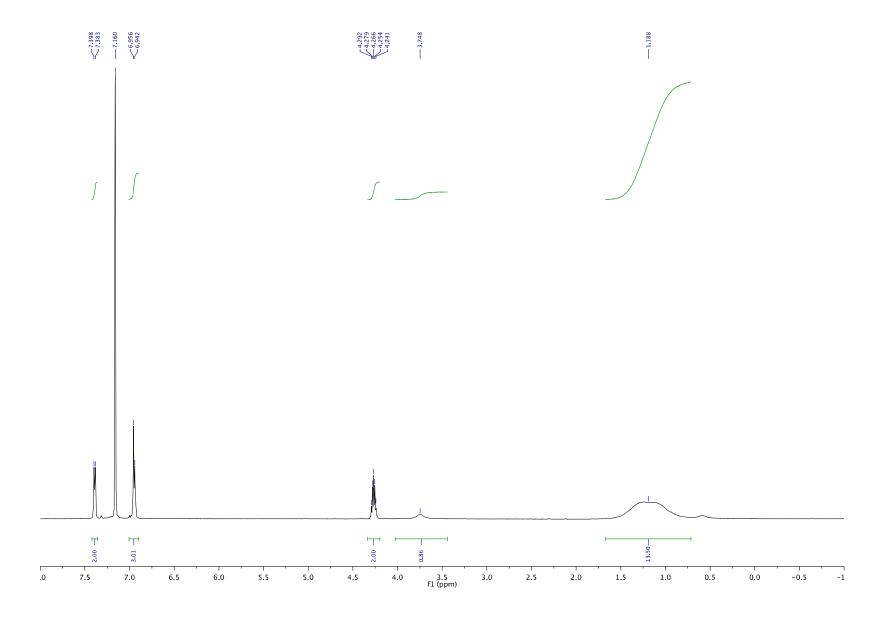

Figure S20 Stacked ¹H NMR spectra of a representative catalytic coupling of PhC=CH and *i*-PrN=C=N*i*-Pr using **1** at 80 °C (C₆D₆, 300 MHz).

Figure S21 Assigned ¹H NMR spectrum of the catalytic coupling of PhC \equiv CH and *i*-PrN=C=N*i*-Pr using **1** at 80 °C (after 1876 min) (C₆D₆, 300 MHz). Inset shows peak for non-coordinated THF (1 equiv from **1**).

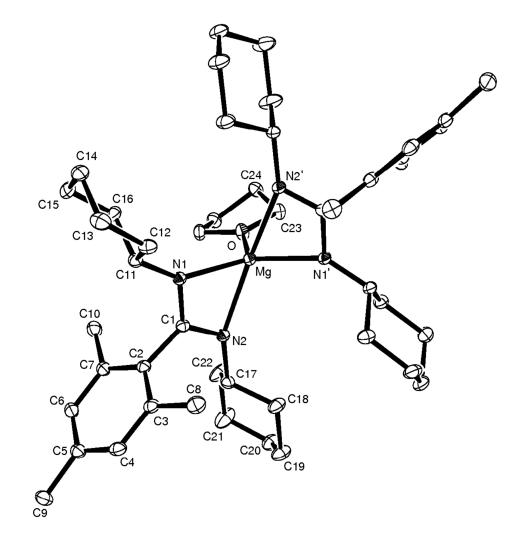


Figure S22 ¹H NMR spectrum of isolated PhC \equiv C{N*i*-Pr}{NH*i*-Pr} (C₆D₆, 300 MHz).

Identification code	RJS047C		
Empirical formula	C48 H74 Mg N4 O		
Formula weight	747.42		
Temperature	120(1) K		
Wavelength	1.54180 Å		
Crystal system	Tetragonal		
Space group	<i>P</i> 4 ₃ 2 ₁ 2 (No.96)		
Unit cell dimensions	a = 10.24350(13) Å	α= 90°.	
	b = 10.24350(13) Å	β=90°.	
	c = 43.7040(7) Å	$\gamma = 90^{\circ}$.	
Volume	4585.83(11) Å ³		
Z	4		
Density (calculated)	1.08 Mg/m ³		
Absorption coefficient	0.608 mm ⁻¹		
F(000)	1640		
Crystal size	0.25 x 0.09 x 0.05 mm ³		
Theta range for data collection	4.05 to 73.79°.		
Index ranges	-12<=h<=12, -12<=k<=12, -54<=l<=32		
Reflections collected	33678		
Independent reflections	4630 [R(int) = 0.058]		
Completeness to theta = 73.79°	99.9 %		
Absorption correction	Gaussian		
Max. and min. transmission	1.782 and 0.924		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4630 / 0 / 248		
Goodness-of-fit on F ²	1.044		
Final R indices [I>2sigma(I)]	R1 = 0.037, wR2 = 0.092		
R indices (all data)	R1 = 0.040, WR2 = 0.094		
Absolute structure parameter	-0.02(5)		
Largest diff. peak and hole	0.24 and -0.21 e.Å ⁻³		

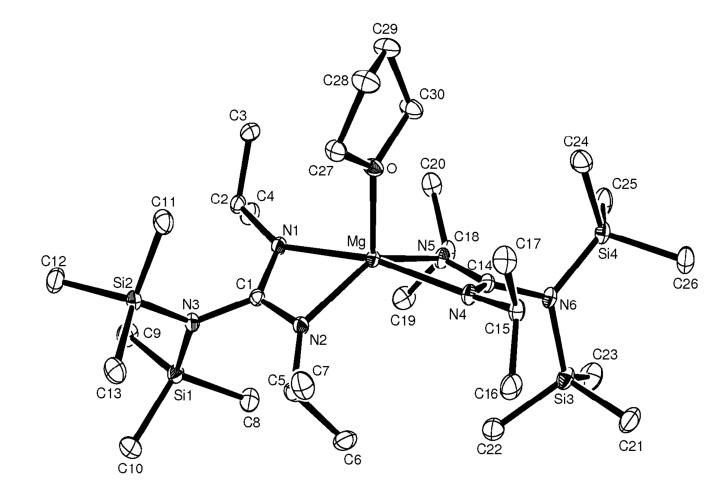

Data collection SuperNova, Dual, Cu at zero, Atlas , Program package WinGX , Abs. correction 'GAUSSIAN' Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows Figure S23 ORTEP (ellipsoids 30 %, H-atoms omitted) of Mg(mesC{NCy}₂)₂(THF) (2)

Table S2 Crystal structure and refinement data for Mg({Me₃Si}₂NC{N*i*-Pr}₂)₂(THF) (3)

Identification code	rjs121		
Empirical formula	C30 H72 Mg N6 O Si4		
Formula weight	669.61		
Temperature	120.01(10) K		
Wavelength	1.5418 Å		
Crystal system	Monoclinic		
Space group	$P 2_1/c$ (No.14)		
Unit cell dimensions	a = 9.9306(2) Å	<i>α</i> = 90°.	
	b = 24.2870(4) Å	$\beta = 114.059(2)^{\circ}$.	
	c = 18.9646(4) Å	$\gamma = 90^{\circ}$.	
Volume	4176.61(14) Å ³		
Z	4		
Density (calculated)	1.07 Mg/m ³		
Absorption coefficient	0.186 mm ⁻¹		
F(000)	1480		
Crystal size	$0.32 \ x \ 0.27 \ x \ 0.11 \ mm^3$		
Theta range for data collection	3.13 to 73.81°.		
Index ranges	-12<=h<=12, -29<=k<=29, -21<=l<=21		
Reflections collected	50946		
Independent reflections	8369 [R(int) = 0.114]		
Reflections with I>2sigma(I)	7105		
Completeness to theta = 66.97°	98.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00 and 0.899		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8369 / 0 / 379		
Goodness-of-fit on F ²	1.055		
Final R indices [I>2sigma(I)]	R1 = 0.080, wR2 = 0.125		
R indices (all data)	R1 = 0.088, $wR2 = 0.130$		
Largest diff. peak and hole	0.34 and -0.35 e.Å ⁻³		

Data collection SuperNova, Dual, Cu at zero, Atlas, Program package WinGX, Abs. correction 'MULTISCAN' Refinement using SHELXL-97, Drawing using ORTEP-3 for Windows Figure S24 ORTEP (ellipsoids 30 %, H-atoms omitted) of Mg({Me₃Si}₂NC{N*i*-Pr}₂)₂(THF) (3)

Table S3 Crystal structure	and refinement data fo	$r Mg(CCPh)_2(THF)_4(4)$

Identification code	rjs084		
Empirical formula	C32 H42 Mg O4		
Formula weight	514.97		
Temperature	120.01(10) K		
Wavelength	1.54180 Å		
Crystal system	Monoclinic		
Space group	<i>C</i> 2/c (No.15)		
Unit cell dimensions	a = 11.0212(6) Å	<i>α</i> = 90°.	
	b = 22.0516(10) Å	β=105.758(7)°.	
	c = 12.0459(8) Å	$\gamma = 90^{\circ}$.	
Volume	2817.6(3) Å ³		
Z	4		
Density (calculated)	1.21 Mg/m ³		
Absorption coefficient	0.814 mm ⁻¹		
F(000)	1112		
Crystal size	0.55 x 0.41 x 0.24 mm ³		
Theta range for data collection	4.01 to 73.82°.		
Index ranges	-13<=h<=13, -26<=k<=27, -14	4<=l<=14	
Reflections collected	16457		
Independent reflections	2836 [R(int) = 0.059]		
Completeness to theta = 73.82°	99.3 %		
Absorption correction	Semi-empirical from equivalent	nts	
Max. and min. transmission	1.00 and 0.63		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	2836 / 3 / 191		
Goodness-of-fit on F ²	0.994		
Final R indices [I>2sigma(I)]	R1 = 0.075, wR2 = 0.221		
R indices (all data)	R1 = 0.078, wR2 = 0.229		
Largest diff. peak and hole	1.385 and -0.341 e.Å-3		

The large residual electron density is the result of poor data, leading to a spurious peak. One of the THF molecules is disordered over two positions and was modeled with loose (SADI) constraints. The molecule lies on a 2-fold rotation axis.

Data collection SuperNova, Dual, Cu at zero, Atlas , Program package WinGX , Abs. correction 'MULTISCAN' Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows

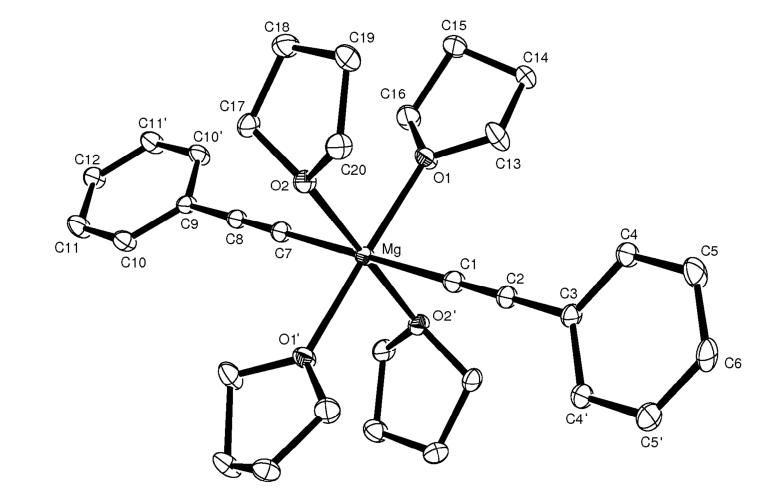
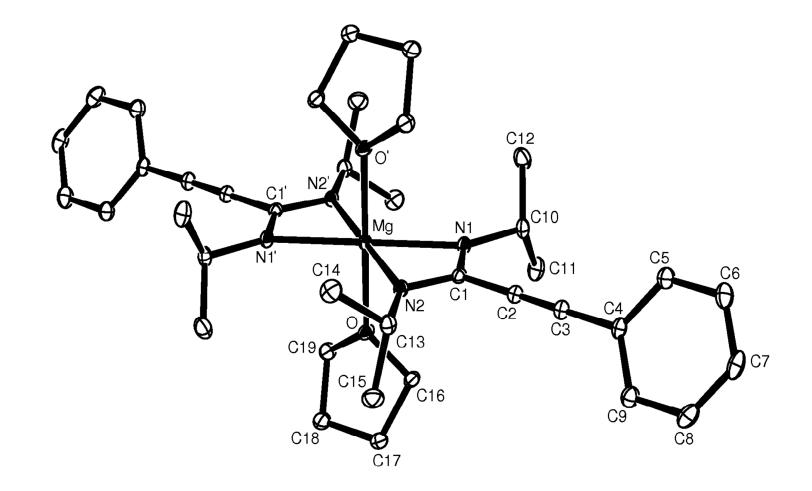


Figure S25 ORTEP (ellipsoids 30 %, H-atoms omitted) of Mg(CCPh)₂(THF)₄ (4)

Table S4 Crystal structure and refinement data for Mg(PhC= C{N*i*-Pr}₂)₂(THF)₂ (**5**(THF))

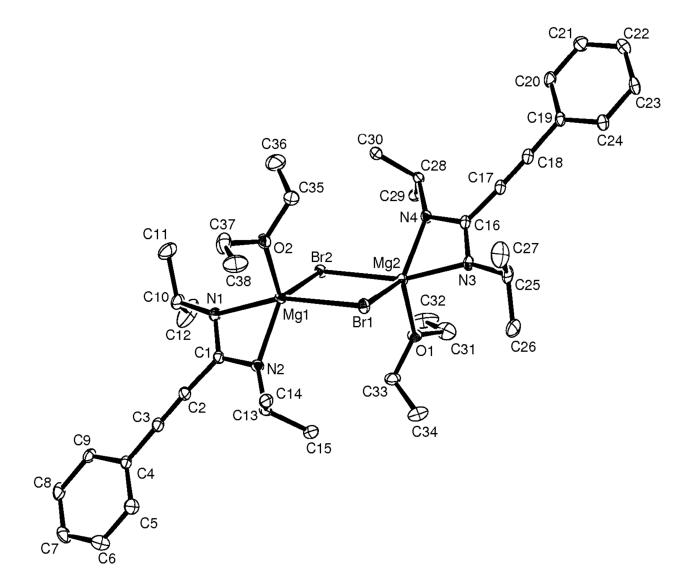

able 1. Crystal data and structure refinement for M	$g(PIICCC{NPI}_2)_2(THF)_2.$		
Identification code	rjs163		
Empirical formula	C38 H54 Mg N4 O2		
Formula weight	623.16		
Temperature	120.01(10) K		
Wavelength	1.5418 Å		
Crystal system	Triclinic		
Space group	<i>P</i> 1 (No.2)		
Unit cell dimensions	a = 9.3730(3) Å	α= 78.282(3)°.	
	b = 10.0360(4) Å	β= 70.533(4)°.	
	c = 10.5466(4) Å	$\gamma = 77.850(3)^{\circ}$.	
Volume	904.86(6) Å ³		
Z	1		
Density (calculated)	1.14 Mg/m ³		
Absorption coefficient	0.703 mm ⁻¹		
F(000)	338		
Crystal size	0.34 x 0.30 x 0.21 mm ³		
Theta range for data collection	4.55 to 73.91°.		
Index ranges	-11<=h<=11, -12<=k<=11, -1	3<=l<=11	
Reflections collected	10124		
Independent reflections	3565 [R(int) = 0.016]		
Completeness to theta = 66.97°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.000 and 0.632		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3565 / 0 / 205		
Goodness-of-fit on F ²	1.025		
Final R indices [I>2sigma(I)]	R1 = 0.035, wR2 = 0.090		
R indices (all data)	R1 = 0.036, wR2 = 0.091		
Largest diff. peak and hole	0.19 and -0.17 e.Å ⁻³		

able 1. Crystal data and structure refinement for $Mg(PhCCC{N^iPr}_2)_2(THF)_2$.

The molecule lies on an inversion centre

Data collection SuperNova, Dual, Cu at zero, Atlas , Program package WinGX , Abs. correction 'MULTISCAN' Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows

Figure S26 ORTEP (ellipsoids 30 %, H-atoms omitted) of Mg(PhC⁼ C{N*i*-Pr}₂)₂(THF)₂ (5(THF))


Table S5 Crystal structure and refinement data for [Mg(PhC⁼ CC{N*i*-Pr}₂)Br(Et₂O)]₂ ([6]₂)

Identification code	RJS037			
Empirical formula	C19 H29 Br Mg N2 O	C19 H29 Br Mg N2 O		
Formula weight	405.66			
Temperature	120(1) K			
Wavelength	1.54180 Å			
Crystal system	Orthorhombic			
Space group	<i>Pca</i> 2 ₁ (No.29)			
Unit cell dimensions	a = 18.05830(13) Å	<i>α</i> = 90°.		
	b = 12.40280(8) Å	β=90°.		
	c = 19.33740(13) Å	$\gamma = 90^{\circ}$.		
Volume	4331.06(5) Å ³			
Ζ	8			
Density (calculated)	1.24 Mg/m ³			
Absorption coefficient	2.916 mm ⁻¹			
F(000)	1696			
Crystal size	0.65 x 0.57 x 0.41 mm ³			
Theta range for data collection	3.56 to 73.91°.			
Index ranges	-22<=h<=20, -15<=k<=10, -24<=l<=24			
Reflections collected	29431			
Independent reflections	8510 [R(int) = 0.029]			
Completeness to theta = 73.91°	98.7 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	1.00000 and 0.70232			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	8510 / 1 / 434			
Goodness-of-fit on F ²	1.058			
Final R indices [I>2sigma(I)]	R1 = 0.034, $wR2 = 0.089$			
R indices (all data)	R1 = 0.034, wR2 = 0.089			
Absolute structure parameter	0.00(7)			
Largest diff. peak and hole	0.52 and -0.69 e.Å ⁻³			

Racemic Twin (TWIN -1 0 0 0 -1 0 0 0 -1, BASF 0.41743)

Data collection SuperNova, Dual, Cu at zero, Atlas, Program package WinGX, Abs. correction 'MULTISCAN' Refinement using SHELXL-97, Drawing using ORTEP-3 for Windows

Figure S27 ORTEP (ellipsoids 30 %, H-atoms omitted) of $[Mg(PhC \equiv CC{Ni-Pr}_2)Br(Et_2O)]_2$ ([6]₂)

