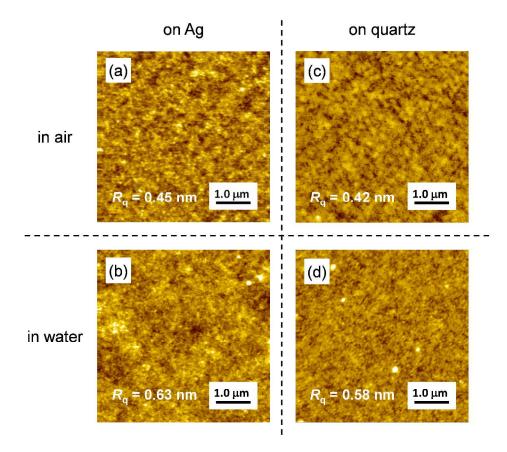
Multistep Thickening of Nafion Thin Films in Water

Yudai Ogata,[†] Daisuke Kawaguchi,[§] Norifumi L. Yamada^{II} and Keiji Tanaka^{*†,‡}

[†]Department of Applied Chemistry and [§]Education Center for Global Leaders in Molecular System for Devices, Kyushu University, Fukuoka 819-0395, Japan, ^{II}Neutron Science Laboratory, High Energy Accelerator Research Organization, Ibaraki 305-0801, Japan and [‡]International Institute for Carbonneutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan


To whom correspondence should be addressed: k-tanaka@cstf.kyushu-u.ac.jp

Tel: +81-92-802-2878, Fax: +81-92-802-2880

Surface morphology of Nafion[®] films in air and water

The surface morphology of Nafion[®] thin films with a thickness of approximately 50 nm on silver and quartz substrates was examined by atomic force microscopy (AFM, E-sweep with an SPI3800 controller, SII NanoTechnology Inc.) using an intermittent contact mode at room temperature. A Si cantilever tip with a radius of approximately 10 nm was used and a spring constant of the lever was 1.6 $N \cdot m^{-1}$.


Figure S1 shows AFM images of Nafion[®] films on silver and quartz substrates observed in air and water, respectively. The root-mean-square roughness (R_q) of all the samples was less than 1 nm.

Figure S1. AFM images of Nafion[®] films on silver in (a) air and (b) water and on quartz in (c) air and (d) water, respectively. Each root-mean-square roughness (R_q) is shown.

Swelling ratio for different-thick Nafion[®] films

Swelling behavior was also examined for Nafion[®] films with different thicknesses. Figure S2 shows the time dependence of the swelling ratio for Nafion[®] films with initial thicknesses (h_0) of 20 nm and 80 nm on silver (red) and SiO_x (blue) substrates. The films thickened in three steps. Dotted lines correspond to the borders between the regimes; 1.05 for between regimes I and II and 1.26 for between regimes II and III. At a given thickness, water diffusion into Nafion[®] films is slower than on the SiO_x substrate that on the silver one.

Figure S2. Time dependence of swelling ratio for Nafion[®] films on silver (red) and SiO_x (blue) substrates with an h_0 of (a) 20 nm and (b) 80 nm, respectively.