Supporting Information Tandem Isomerization and C-H Activation: Regioselective Hydroheteroarylation of Allylarenes

Wei-Chih Lee,[†] Chun-Han Wang,[†] Yung-Huei Lin,[¶] Wei-Chun Shih[†] and Tiow-Gan Ong^{*} ^{¶†}

[†]Institute of Chemistry, Academia Sinica, Nangang, Taipei, Taiwan, Republic of China, [¶]The Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.

General. All air-sensitive manipulations were performed under an atmosphere of nitrogen using Schlenk technique or in a glovebox. ¹H and ¹³C NMR spectra were run a Bruker 300 MHz, or 400 MHz spectrometer using the residual proton of the deuterated solvent for reference (CDCl₃, ¹H NMR: 7.24 ppm. ¹³C NMR: 77.2 ppm). Chemical shifts are reported in ppm (δ); coupling constants, *J*, are reported in Hz. Standard abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, m = multiplet. Column chromatography was performed using silica gel (spherical, 40-63 m). Visualization was performed with UV light (254 nm). GC analyses were performed on an Agilent Technologies 7890 GC instrument. High resolution mass spectra were obtained with a JEOL, JMS-700 (EI or FAB+) spectrometer. High resolution MALDI-mass spectra were conducted on an Applied Biosystems 4800 Proteomics Analyzer (Applied Biosystem, Foster City).

Chemicals. All reagents were purchased from Acros, Aldrich, and Alfa Aesar without further purification in advance before use. Solvents for chromatography were reagent grade. Toluene was dried over sodium with benzophenone-ketyl intermediate as an indicator. Deuterated benzene and chloroform were dried by vacuum transfer from activated molecular sieve. AlMe₃ (2.0 M in toluene) was purchased from Aldrich and diluted with dried toluene to 0.5 M. IMes and IPr were synthesized according to the literature.¹ Amino-NHC was prepared in accord to our previous work.² All allylbenzene derivatives were purchased from Acros, Aldrich, and Alfa Aesar and used without further purification. Starting materials of benzoxazole,³ oxazole,⁴ and benzimidazole⁵ derivatives were prepared according to the literature procedures.

General procedure A for Nickel-catalyzed hydroheteroarylation of allylarenes (Branch): To the toluene solution of Ni(COD)₂ (14 mg, 0.05 mmol), IMes (14 mg, 0.05 mmol), and 1-methylbenzimidazole (0.5 mmol) was added allylbenzene (1.0 mmol) into the vial. After the vial was screw-capped, the reaction solution was taken outside the glovebox and heated at 130 °C for 16 h. The resulting mixture was filtered through *Celite* and washed with dichloromethane. The filtrate solution was concentrated in *vacuo* to afford crude product. The crude was further purified by flash chromatography using hexane/ethyl acetate (3:1) as eluent.

General procedure B for Nickel/AlMe₃ mediated hydroheteroarylation of allylarenes (Linear): To the toluene solution of Ni(COD)₂ (14 mg, 0.05 mmol), IPr (19 mg, 0.05 mmol), and 1-methylbenzimidazole (0.5 mmol) was added allylbenzene (1.0 mmol) and AlMe₃ in toluene (0.05 mmol, 0.1 mL) into the vial. After the vial was screw-capped, the reaction solution was taken outside the glovebox and heated at 130 °C for 16 h. The resulting mixture was filtered through *Celite* and washed with dichloromethane. The filtrate solution was concentrated in *vacuo* to afford crude product. The crude was further purified by flash chromatography using hexane/ethyl acetate (1:3) as eluent.

		Ni(COD) ₂ , toluene, ter	>		\sim
entry	Ligand	cat. mol%	Temp(°C)	Time(h)	GC Yield (%)
1	PCy ₃	10	130	18	40
2	PPh ₃	10	130	18	0
3	Cy ₂ PPCy ₂	10	130	18	95
4	bipyridine	10	130	18	0
5	1,10-phenanthrolin	ie 10	130	18	0
6	IMes	10	130	18	99
7	IMes	3	130	18	99
8	IMes	3	130	1	99
9	IMes	3	60	1	4
10	IMes	1	130	1	99
11	IMes	0.1	130	1	0
12	IMes	0.5	130	1	99
13	IMes	0.2	130	1	21

Table S1. Isomerization of Allylbenzene

 a Conditons: Allylbenzene (0.5 mmol), Ni(COD)_2 (0.05 mmol), ligand (IMes: 0.05 mmol; PCy_3: 0.1 mmol; dcpe, bipyridine, 1,10-Phen: 0.05 mmol), toluene (1 mL).

Table S2. Optimization.

Entry	Ligand (eq)	Additive (eq)	Yield (%) ^[b]	3a:4a
1	bipyridine (0.1)	-	NR	-
2	1,10-Phen (0.1)	-	NR	-
3	PCy ₃ (0.2)	-	27	15:85
4	IMes (0.1)	-	97	6:94
5	IPr (0.1)	-	80	36:64
6	Amino NHC (0.1)	-	88	9:91
7	PCy ₃ (0.2)	AIMe ₃ (0.1)	69	81:19
8	IMes (0.1)	AIMe ₃ (0.1)	80	80:20
9	IPr (0.1)	AIMe ₃ (0.1)	94	93:7
10	Amino NHC (0.1)	AIMe ₃ (0.1)	53	79:21

[a] Reaction Conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), Ni(COD)₂ (0.05 mmol), and ligand in toluene (1 mL) at 130 °C for 16 hours. [b] Isolated yield.

1,10-Phen = 1,10-phenanthroline, PCy_3 = tricyclohexyl-phosphine,

IMes =1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene,

IPr =1,3-bis(2,6-diisopropyl-phenyl)imidazol-2-ylidene,

Amino NHC = N-(2-(3-mesityl-2,3-dihydro-1H-imidazol-1-yl)ethyl)-2-methylpropan-2-amine.

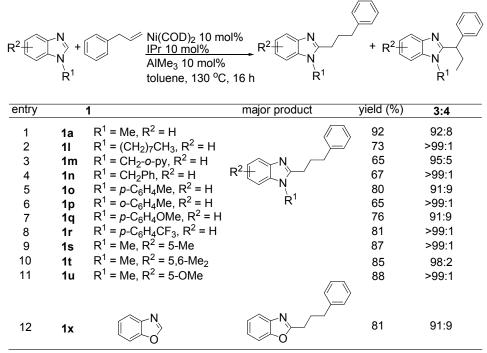
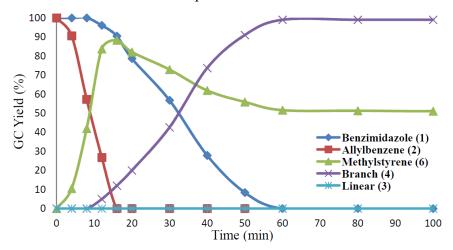
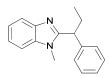




Table S3. Scope with various heteroarenes (Linear Selectivity).^a

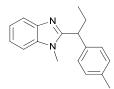
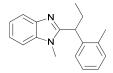
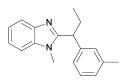
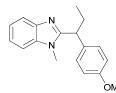
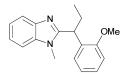

^a Conditions: benzimidazole (0.5 mmol), allylbenzene derivative (1.0 mmol), Ni(COD)₂ (0.05 mmol), IPr (0.05 mmol), and AIMe₃ (0.05 mmol) in toluene (1 mL) at 130 $^{\circ}$ C for 16 hours unless otherwise noted.

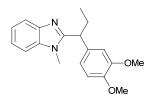
Figure S1. GC yield of each components plot vs reaction time for tandem olefin isomerization/CH activation process of **1a** with **2a**.

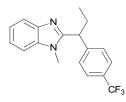


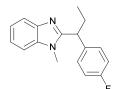

1-methyl-2-(1-phenylpropyl)-1*H*-benzo[*d*]imidazole (4a): The reaction was performed according to the above general procedure A. Yield: 91%. ¹H NMR (400 MHz, CDCl₃): δ 7.84-7.81 (m, 1H, Ar), 7.28-7.16 (m, 8H), 3.99 (t, 1H, ³*J*_{HH} = 7.5 Hz), 3.50 (s, 3H, N-CH₃), 2.56-2.46 (m, 1H), 2.22-2.11 (m, 1H), 0.99 (t, 3H, ³*J*_{HH} = 7.5 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 156.5 (s, Ar), 142.7 (s, Ar), 141.4 (s, Ar), 136.1 (s, Ar), 128.9 (s, Ar), 128.3 (s, Ar), 127.1 (s, Ar), 122.3 (s, Ar), 121.9 (s, Ar), 119.8 (s, Ar), 109.1 (s, Ar), 46.6 (s, CH), 29.9 (s, N-CH₃), 29.0 (s, CH₂), 12.8 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₇H₁₈N₂ ([M+H]⁺) 251.1548, found 251.1554.


1-methyl-2-(1-(p-tolyl)propyl)-1*H*-benzo[*d*]imidazole (4b): The reaction was performed according to the above general procedure A. Yield: 87%. ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.80 (m, 1H), 7.24-7.21 (m, 3H), 7.12 and 7.06 (AB quartet, ³*J*_{HH} = 6.0 Hz, 4H), 3.95 (t, ³*J*_{HH} = 7.5 Hz, 1H), 3.50 (s, 3H), 2.53-2.41 (m, 1H), 2.27 (s, 3H), 2.21-2.07 (m, 1H), 0.98 (t, ³*J*_{HH} = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 156.7 (s, Ar), 142.7 (s, Ar), 138.3 (s, Ar), 136.7 (s, Ar), 136.1 (s, Ar), 129.6 (s, Ar), 128.1 (s, Ar), 122.3 (s, Ar), 121.9 (s, Ar), 119.8 (s, Ar), 109.0 (s, Ar), 46.2 (s, CH), 29.9 (s, N-CH₃), 28.9 (s, CH₂), 21.2 (s, CH₃), 12.8 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1711.

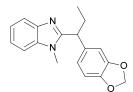

1-methyl-2-(1-(o-tolyl)propyl)-1*H***-benzo[***d***]imidazole (4c): The reaction was performed according to the above general procedure A. Yield: 83%. ¹H NMR (300 MHz, CDCl₃): \delta 7.84-7.82 (m, 1H), 7.26-6.97 (m, 8H), 4.24 (t, ³***J***_{HH} = 6.0 Hz, 1H), 3.40 (s, 3H), 2.59-2.46 (m, 1H), 2.49 (s, 3H), 2.11-1.97 (m, 1H), 1.05 (t, ³***J***_{HH} = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): \delta 156.7 (s, Ar), 142.7 (s, Ar), 139.9 (s, Ar), 136.2 (s, Ar), 135.1 (s, Ar), 130.7 (s, Ar), 128.0 (s, Ar), 126.9 (s, Ar), 122.3 (s, Ar), 121.9 (s, Ar), 119.8 (s, Ar), 109.0 (s, Ar), 42.2 (s, CH), 29.5 (s, N-CH₃), 28.6 (s, CH₂), 19.8 (s, CH₃), 13.0 (s, CH₃). HR-MS (MALDI):** *m/z* **calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1718.**


1-methyl-2-(1-(m-tolyl)propyl)-1*H*-benzo[*d*]imidazole (4d): The reaction was performed according to the above general procedure A. Yield: 90%. ¹H NMR (300 MHz, CDCl₃): δ 7.84-7.81 (m, 1H), 7.24-6.99 (m, 8H), 3.94 (t, ³*J*_{HH} = 7.5 Hz, 1H), 3.51 (s, 3H), 2.54-2.45 (m, 1H), 2.26 (s, 3H), 2.19-2.10 (m, 1H), 0.98 (t, ³*J*_{HH} = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 156.5 (s, Ar), 141.2 (s, Ar), 138.7 (s, Ar), 136.1 (s, Ar), 128.8 (s, Ar), 128.7 (s, Ar), 127.9 (s, Ar), 125.4 (s, Ar), 122.3 (s, Ar), 121.9 (s, Ar), 119.8 (s, Ar), 109.1 (s, Ar), 46.5 (s, CH), 29.9 (s, N-CH₃), 28.9 (s, CH₂), 21.6 (s, CH₃), 12.9 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1718.

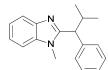

2-(1-(3-methoxyphenyl)propyl)-1-methyl-1*H***-benzo[***d***]imidazole (4e): The reaction was performed according to the above general procedure A. Yield: 55%. ¹H NMR (300 MHz, CDCl₃): \delta 7.87-7.84 (m, 1H), 7.29-7.18 (m, 3H), 7.19 (d, 2H, ³***J***_{HH} = 6.0 Hz), 6.84 (d, 2H, ³***J***_{HH} = 6.0 Hz), 3.97 (t, 1H, ³***J***_{HH} = 7.5 Hz), 3.78 (s, 3H), 3.54 (s, 3H), 2.58-2.44 (m, 1H), 2.22-2.13 (m, 1H), 1.01 (t, 1H, ³***J***_{HH} = 7.5 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃): \delta 158.7 (s, Ar), 156.8 (s, Ar), 142.7 (s, Ar), 136.6 (s, Ar), 136.1 (s, Ar), 133.4 (s, Ar), 129.2 (s, Ar), 122.3 (s, Ar), 121.9 (s, Ar), 119.8 (s, Ar), 114.3 (s, Ar), 109.0 (s, Ar), 55.4 (s, O-CH₃), 45.7 (s, CH), 29.8 (s, N-CH₃), 29.0 (s, CH₂), 12.8 (s, CH₃). HR-MS (MALDI):** *m/z* **calcd. for C₁₈H₂₁N₂O ([M+H]⁺) 281.1654, found 281.1665.**


2-(1-(2-methoxyphenyl)propyl)-1-methyl-1*H***-benzo[***d***]imidazole (4f): The reaction was performed according to the above general procedure A. Yield: 66%. ¹H NMR (300 MHz, CDCl₃): \delta 7.83-7.79 (m, 1H), 7.24-7.09 (m, 5H), 6.90-6.79 (m, 2H), 4.63 (t, ³***J***_{HH} = 7.5 Hz, 1H), 3.90 (s, 3H), 3.50 (s, 3H), 2.52-2.38 (m, 1H), 2.16-2.02 (m, 1H), 0.97 (t, ³***J***_{HH} = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): \delta 157.4 (s, Ar), 156.4 (s, Ar), 142.8 (s, Ar), 136.1 (s, Ar), 129.9 (s, Ar), 128.9 (s, Ar), 128.0 (s, Ar), 122.1 (s, Ar), 121.7 (s, Ar), 121.4 (s, Ar), 119.6 (s, Ar), 110.5 (s, Ar), 109.0 (s, Ar), 55.8 (s, O-CH₃), 37.2 (s, CH), 29.5 (s, N-CH₃), 28.3 (s, CH₂), 12.6 (s, CH₃). HR-MS (MALDI):** *m/z* **calcd. for C₁₈H₂₁N₂O ([M+H]⁺) 281.1654, found 281.1663.**

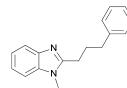
2-(1-(3,4-dimethoxyphenyl)propyl)-1-methyl-1*H***-benzo[***d***]imidazole (4g): The reaction was performed according to the above general procedure A. Yield: 46%. ¹H NMR (300 MHz, CDCl₃): \delta 7.81-7.78 (m, 1H), 7.21-7.20 (m, 3H), 6.77-6.71 (m, 3H), 3.90 (t, ³***J***_{HH} = 7.5 Hz, 1H), 3.79 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 2.25-2.38 (m, 1H), 2.21-2.06 (m, 1H), 0.96 (t, ³***J***_{HH} = 7.5 Hz, 3H, CH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃): \delta 156.5 (s, Ar), 149.4 (s, Ar), 148.1 (s, Ar), 142.5 (s, Ar), 136.0 (s, Ar), 133.8 (s, Ar), 122.2 (s, Ar), 121.8 (s, Ar), 120.4 (s, Ar), 119.5 (s, Ar), 111.2 (s, Ar), 111.0 (s, Ar), 109.0 (s, Ar), 56.0 (s, O-CH₃), 56.0 (s, O-CH₃), 46.0 (s, CH), 29.8(s, N-CH₃), 28.8 (s, CH₂), 12.7 (s, CH₃). HR-MS (MALDI):** *m/z* **calcd. for C₁₉H₂₃N₂O₂ ([M+H]⁺) 311.1759, found 311.1771.**

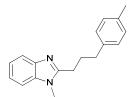


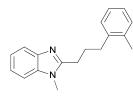
1-methyl-2-(1-(4-(trifluoromethyl)phenyl)propyl)-1*H*-benzo[*d*]imidazole (4h): The reaction was performed according to the above general procedure A. Yield: 79%. ¹H NMR (300 MHz, CDCl₃): δ 7.84-7.80 (m, 1H), 7.53 and 7.39 (AB quartet, ³*J*_{HH} = 9.0 Hz, 4H), 7.27-7.24 (m, 3H), 4.07 (t, ³*J*_{HH} = 7.5 Hz, 1H), 3.52 (s, 3H), 2.59-2.45 (m, 1H), 2.24-2.10 (m, 1H), 0.99 (t, ³*J*_{HH} = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 155.4 (s, Ar), 145.4 (s, Ar), 142.6 (s, Ar), 136.0 (s, Ar), 129.5 (q, ²*J*_{CF} = 30.0 Hz, *C*-CF₃), 128.6 (s, Ar), 125.9 (s, Ar), 124.3 (q, ¹*J*_{CF} = 270.0 Hz, *C*F₃), 122.6 (s, Ar), 122.1 (s, Ar), 119.8 (s, Ar), 109.2 (s, Ar), 46.2 (s, CH), 29.8(s, N-CH₃), 29.0 (s, CH₂), 12.7 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₁₈N₂F₃ ([M+H]⁺) 319.1422, found 319.1435.

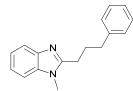


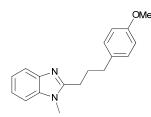
2-(1-(4-fluorophenyl)propyl)-1-methyl-1*H***-benzo**[*d*]**imidazole** (4i): The reaction was performed according to the above general procedure A. Yield: 61%. ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.80 (m, 1H), 7.24-7.18 (m, 5H), 6.94 (t, ³*J*_{HH} = 9.0 Hz, 2H), 3.97 (t, ³*J*_{HH} = 7.5 Hz, 1H), 3.50 (s, 3H), 2.55-2.40 (m, 1H), 2.20-2.06 (m, 1H), 0.97 (t, ³*J*_{HH} = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 162.0 (d, ¹*J*_{CF} = 247.5 Hz, *C*-F), 156.2 (s, Ar), 142.6 (s, Ar), 136.5 (d, ²*J*_{CF} = 75.0 Hz, *C*-C-F), 129.7 (s, Ar), 129.6 (s, Ar), 122.4 (s, Ar), 122.0 (s, Ar), 119.7 (s, Ar), 115.9 (s, Ar), 115.6 (s, Ar), 109.1 (s, Ar), 45.7 (s, CH), 29.8(s, N-CH₃), 29.0 (s, CH₂), 12.7 (s, CH₃).

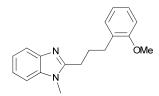

HR-MS (MALDI): m/z calcd. for $C_{17}H_{18}N_2F$ ([M+H]⁺) 269.1454, found 269.1466. HR-MS (MALDI): m/z calcd. for $C_{17}H_{18}N_2F$ ([M+H]⁺) 269.1454, found 269.1462.

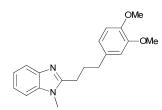

2-(1-(benzo[d][1,3]dioxol-5-yl)propyl)-1-methyl-1*H***-benzo[***d***]imidazole (4j):** The reaction was performed according to the above general procedure A. Yield: 62%. ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.79 (m, 1H), 7.23-7.22 (m, 3H), 6.73 (s, 1H), 6.70 (s, 2H), 5.87 (d, ³*J*_{HH} = 6.0 Hz, 2H), 3.90 (t, ³*J*_{HH} = 7.5 Hz, 1H), 3.52 (s, 3H), 2.52-2.38 (m, 1H), 2.19-2.05 (m, 1H), 0.97 (t, ³*J*_{HH} = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 156.4 (s, Ar), 148.2 (s, Ar), 146.7 (s, Ar), 142.6 (s, Ar), 136.1 (s, Ar), 135.2 (s, Ar), 122.3 (s, Ar), 121.9 (s, Ar), 121.4 (s, Ar), 119.7 (s, Ar), 109.1 (s, Ar), 108.5 (s, Ar), 108.4 (s, Ar), 101.2 (s, Ar), 46.1 (s, CH), 29.8(s, N-CH₃), 29.0 (s, CH₂), 12.7 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₁₉N₂O₂ ([M+H]⁺) 295.1446, found 295.1453.


1-methyl-2-(2-methyl-1-phenylpropyl)-1*H*-benzo[*d*]imidazole (4k): The reaction was performed according to the above general procedure A. Yield: 31%. ¹H NMR (300 MHz, CDCl₃): δ 7.84-7.81 (m, 1H), 7.37-7.17 (m, 8H), 3.67 (d, ³*J*_{HH} = 9.0 Hz, 1H), 3.59 (s, 3H), 2.94-2.81 (m, 1H), 1.08 (d, ³*J*_{HH} = 6.0 Hz, 3H), 0.84 (d, ³*J*_{HH} = 9.0 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 156.5 (s, Ar), 142.9 (s, Ar), 140.3 (s, Ar), 135.7 (s, Ar), 128.9 (s, Ar), 128.7 (s, Ar), 127.1 (s, Ar), 122.1 (s, Ar), 121.9 (s, Ar), 119.7 (s, Ar), 109.1 (s, Ar), 52.5 (s, CH), 32.9 (s, CH), 29.8 (s, N-CH₃), 22.6 (s, CH₃), 21.2 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1715.

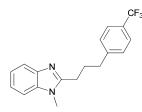

1-methyl-2-(3-phenylpropyl)-1*H*-benzo[*d*]imidazole (3a): The reaction was performed according to the above general procedure B. Yield: 85%. ¹H NMR (300 MHz, CDCl₃): δ 7.71-7.67 (m, 1H), 7.27-7.12 (m, 8H), 3.55 (s, 3H), 2.80 (t, ³*J*_{HH} = 6.0 Hz, 2H), 2.74 (t, ³*J*_{HH} = 6.0 Hz, 2H), 2.17 (qn, ³*J*_{HH} = 8.0 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 155.0 (s, Ar), 142.7 (s, Ar), 141.5 (s, Ar), 135.8 (s, Ar), 128.6 (s, Ar), 128.5 (s, Ar), 126.1 (s, Ar), 122.1 (s, Ar), 121.8 (s, Ar), 119.2 (s, Ar), 109.0 (s, Ar), 35.4 (s, N-CH₃), 29.7 (s, CH₂), 29.0 (s, CH₂), 26.8 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₁₇H₁₉N₂ ([M+H]⁺) 251.1548, found 251.1554.


1-methyl-2-(3-(p-tolyl)propyl)-1*H*-benzo[*d*]imidazole (3b): The reaction was performed according to the above general procedure B. Yield: 85%. ¹H NMR (300 MHz, CDCl₃): δ 7.74-7.71 (m, 1H), 7.25-7.20 (m, 3H), 7.09 (s, 4H), 3.62 (s, 3H), 2.85 (t, ³*J*_{HH} = 7.5 Hz, 2H). 2.75 (t, ³*J*_{HH} = 7.5 Hz, 2H), 2.31 (s, 3H), 2.19 (qn, ³*J*_{HH} = 7.5 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 155.0 (s, Ar), 142.6 (s, Ar), 138.3 (s, Ar), 135.7 (s, Ar), 135.4 (s, Ar), 129.1 (s, Ar), 128.4 (s, Ar), 121.9 (s, Ar), 119.1 (s, Ar), 108.9 (s, Ar), 34.9 (s, N-CH₃), 29.5 (s, CH₂), 28.9 (s, CH₂), 26.6 (s, CH₂), 21.0 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1716.

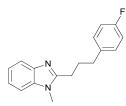

1-methyl-2-(3-(*o***-tolyl)propyl)-1***H***-benzo[***d***]imidazole (3c): The reaction was performed according to the above general procedure B. Yield: 90%. ¹H NMR (300 MHz, CDCl₃): \delta 7.74-7.69 (m, 1H), 7.29-7.19 (m, 3H), 7.16-7.08 (m, 4H), 3.55 (s, 3H), 2.91 (t, ³***J***_{HH} = 7.5 Hz, 2H). 2.78 (t, ³***J***_{HH} = 7.5 Hz, 2H), 2.29 (s, 3H), 2.17 (qn, ³***J***_{HH} = 7.5 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): \delta 154.9 (s, Ar), 142.6 (s, Ar), 139.6 (s, Ar), 136.0 (s, Ar), 135.8 (s, Ar), 130.3 (s, Ar), 128.9 (s, Ar), 126.1 (s, Ar), 126.0 (s, Ar), 122.0 (s, Ar), 121.7 (s, Ar), 119.1 (s, Ar), 108.9 (s, Ar), 32.7 (s, N-CH₃), 29.54 (s, CH₂), 27.6 (s, CH₂), 27.0 (s, CH₂), 19.3 (s, CH₃). HR-MS (MALDI):** *m/z* **calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1716.**


1-methyl-2-(3-(m-tolyl)propyl)-1*H***-benzo[***d***]imidazole (3d): The reaction was performed according to the above general procedure B. Yield: 88%. ¹H NMR (300 MHz, CDCl₃): δ 7.74-7.71 (m, 1H), 7.24-7.15 (m, 4H), 7.01 (s, 1H), 7.00 (d, {}^{3}J_{HH} = 6.0 Hz, 2H), 3.61 (s, 3H), 2.86 (t, {}^{3}J_{HH} = 7.5 Hz, 2H). 2.75 (t, {}^{3}J_{HH} = 7.5 Hz, 2H), 2.31 (s, 3H), 2.21 (qn, {}^{3}J_{HH} = 7.5 Hz, 2H). {}^{13}C{}^{1}H NMR (75 MHz, CDCl₃): δ 155.0 (s, Ar), 142.6 (s, Ar), 141.3 (s, Ar), 137.9 (s, Ar), 135.8 (s, Ar), 129.3 (s, Ar), 128.3 (s, Ar), 126.7 (s, Ar), 125.5 (s, Ar), 121.9 (s, Ar), 121.7 (s, Ar), 119.1 (s, Ar), 108.9 (s, Ar), 35.3 (s, N-CH₃), 29.5 (s, CH₂), 28.9 (s, CH₂), 26.7 (s, CH₂), 21.4 (s, CH₃). HR-MS (MALDI):** *m/z* **calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1710.**

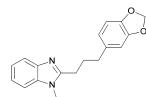
2-(3-(3-methoxyphenyl)propyl)-1-methyl-1*H***-benzo[***d***]imidazole (3e): The reaction was performed according to the above general procedure B. Yield: 81%. ¹H NMR (300 MHz, CDCl₃): \delta 7.73-7.68 (m, 1H), 7.26-7.20 (m, 3H), 7.12 (d, ³***J***_{HH} = 9.0 Hz, 2H), 6.82 (d, ³***J***_{HH} = 9.0 Hz, 2H), 3.77 (s, 3H), 3.61 (s, 3H), 2.84 (t, ³***J***_{HH} = 7.5 Hz, 2H). 2.72 (t, ³***J***_{HH} = 7.5 Hz, 2H), 2.17 (qn, ³***J***_{HH} = 7.5 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): \delta 157.9 (s, Ar), 155.0 (s, Ar), 142.6 (s, Ar), 135.7 (s, Ar), 133.4 (s, Ar), 129.4 (s, Ar), 121.9 (s, Ar), 121.7 (s, Ar), 119.0 (s, Ar), 113.8 (s, Ar), 108.9 (s, Ar), 55.2 (s, O-CH₃), 34.4 (s, CH₂), 29.5 (s, N-CH₃), 29.1 (s, CH₂), 26.6 (s, CH₃). HR-MS (MALDI):** *m/z* **calcd. for C₁₈H₂₁N₂O ([M+H]⁺) 281.1654, found 281.1663.**



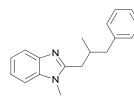
2-(3-(2-methoxyphenyl)propyl)-1-methyl-1*H***-benzo[***d***]imidazole (3f): The reaction was performed according to the above general procedure B. Yield: 87%. ¹H NMR (300 MHz, CDCl₃): \delta 7.73-7.69 (m, 1H), 7.26-7.20 (m, 3H), 7.17-7.13 (m, 2H), 6.89-6.82 (m, 2H), 3.78 (s, 3H), 3.63 (s, 3H), 2.88 (t, ³***J***_{HH} = 7.5 Hz, 2H). 2.78 (t, ³***J***_{HH} = 7.5 Hz, 2H), 2.17 (qn, ³***J***_{HH} = 7.5 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): \delta 157.5 (s, Ar), 155.3 (s, Ar), 142.6 (s, Ar), 135.8 (s, Ar), 130.0 (s, Ar), 129.8 (s, Ar), 127.3 (s, Ar), 121.9 (s, Ar), 121.7 (s, Ar), 120.4 (s, Ar), 119.1 (s, Ar), 110.2 (s, Ar), 108.8 (s, Ar), 55.2 (s, O-CH₃), 29.9 (s, N-CH₃), 29.5 (s, CH₂), 27.5 (s, CH₂), 27.1 (s, CH₃). HR-MS (MALDI):** *m/z* **calcd. for C₁₈H₂₁N₂O ([M+H]⁺) 281.1654, found 281.1667.**



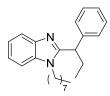
2-(3-(3,4-dimethoxyphenyl)propyl)-1-methyl-1*H***-benzo**[*d*]**imidazole (3g):** The reaction was performed according to the above general procedure B. Yield: 79%. ¹H NMR (300 MHz, CDCl₃): δ 7.72-7.67 (m, 1H), 7.24-7.19 (m, 3H), 6.78-6.70 (m, 3H), 3.82 (s, 6H), 3.60 (s, 3H), 2.84 (t, {}^{3}J_{HH} = 7.5 Hz, 2H). 2.71 (t, {}^{3}J_{HH} = 7.5 Hz, 2H), 2.18 (qn, {}^{3}J_{HH} = 7.5 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 154.9 (s, Ar), 148.8 (s, Ar), 147.2 (s, Ar), 142.5 (s, Ar), 135.7 (s, Ar), 134.0 (s, Ar), 121.9 (s, Ar), 121.7 (s, Ar), 120.3 (s, Ar), 119.0 (s, Ar), 111.8 (s, Ar), 111.2 (s, Ar), 108.8 (s,


Ar), 55.9 (s, O-CH₃), 55.8 (s, O-CH₃), 34.9 (s, CH₂), 29.5 (s, N-CH₃), 29.0 (s, CH₂), 26.6 (s, CH₃). HR-MS (MALDI): m/z calcd. for C₁₉H₂₃N₂O₂ ([M+H]⁺) 311.1759, found 311.1768.

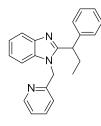
1-methyl-2-(3-(4-(trifluoromethyl)phenyl)propyl)-1*H*-benzo[*d*]imidazole (3h): The reaction was performed according to the above general procedure B. Yield: 33%. ¹H NMR (300 MHz, CDCl₃): δ 7.73-7.68 (m, 1H), 7.52 (d, ³*J*_{HH} = 7.5 Hz, 2H), 7.31 (d, ³*J*_{HH} = 7.5 Hz, 2H), 7.26-7.21 (m, 3H), 3.65 (s, 3H), 2.87 (t, ³*J*_{HH} = 7.5 Hz, 2H). 2.84 (t, ³*J*_{HH} = 7.5 Hz, 2H), 2.24 (qn, ³*J*_{HH} = 7.5 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 154.6 (s, Ar), 145.7 (s, Ar), 142.7 (s, Ar), 135.9 (s, Ar), 129.0 ((s, Ar), 128.6 (q, ²*J*_{CF} = 32.0 Hz, *C*-CF₃), 125.5 (s, Ar), 124.5 (q, ¹*J*_{CF} = 270.0 Hz, -CF₃), 122.3 (s, Ar), 122.1 (s, Ar), 119.4 (s, Ar), 109.1 (s, Ar), 35.3 (s, CH₂), 29.8 (s, N-CH₃), 28.7 (s, CH₂), 26.8 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₁₈N₂F₃ ([M+H]⁺) 319.1422, found 319.1435.



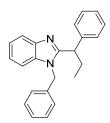
2-(3-(4-fluorophenyl)propyl)-1-methyl-1*H***-benzo**[*d*]**imidazole** (3**i**): The reaction was performed according to the above general procedure B. Yield: 77%. ¹H NMR (300 MHz, CDCl₃): δ 7.73-7.68 (m, 1H), 7.26-7.20 (m, 3H), 7.16-7.12 (m, 2H), 6.95 (t, ³*J*_{HH} = 7.5 Hz, 2H), 3.62 (s, 3H), 2.84 (t, ³*J*_{HH} = 7.5 Hz, 2H). 2.74 (t, ³*J*_{HH} = 7.5 Hz, 2H), 2.18 (qn, ³*J*_{HH} = 7.5 Hz, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 161.4 (d, ¹*J*_{CF} = 240.0 Hz, *C*-F), 154.8 (s, Ar), 142.6 (s, Ar), 136.5 (d, ²*J*_{CF} = 97.5 Hz, *C*-C-F), 129.9 (s, Ar), 129.8 (s, Ar), 122.1 (s, Ar), 121.8 (s, Ar), 119.2 (s, Ar), 115.3 (s, Ar), 115.0 (s, Ar), 109.0 (s, Ar), 34.5 (s, CH₂), 29.6 (s, N-CH₃), 29.0 (s, CH₂), 26.6 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₇H₁₈N₂F ([M+H]⁺) 269.1454, found 269.1462.



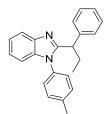
2-(3-(benzo[d][1,3]dioxol-5-yl)propyl)-1-methyl-1*H***-benzo**[*d*]**imidazole (3j):** The reaction was performed according to the above general procedure B. Yield: 83%. ¹H NMR (300 MHz, CDCl₃): δ 7.72-7.67 (m, 1H), 7.26-7.20 (m, 3H), 6.72-6.61 (m, 3H), 5.89 (s, 2H), 3.63 (s, 3H), 2.83 (t,


 ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}, 2\text{H}$). 2.69 (t, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}, 2\text{H}$), 2.15 (qn, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}, 2\text{H}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (75 MHz, CDCl₃): δ 154.8 (s, Ar), 147.6 (s, Ar), 145.7 (s, Ar), 142.5 (s, Ar), 135.7 (s, Ar), 135.2 (s, Ar), 121.9 (s, Ar), 121.7 (s, Ar), 121.2 (s, Ar), 119.0 (s, Ar), 108.9 (s, Ar), 108.1 (s, Ar), 100.7 (s, Ar), 35.0 (s, CH₂), 29.5 (s, N-CH₃), 29.0 (s, CH₂), 26.5 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₁₈H₁₉N₂O₂ ([M+H]⁺)295.1446, found 295.1459.

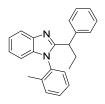
1-methyl-2-(2-methyl-3-phenylpropyl)-1*H*-benzo[*d*]imidazole (3k): The reaction was performed according to the above general procedure B. Yield: 67%. ¹H NMR (300 MHz, CDCl₃): δ 7.73-7.68 (m, 1H), 7.29-7.16 (m, 8H), 3.58 (s, 3H), 2.93-2.86 (m, 1H), 2.75-2.59 (m, 3H), 2.46-2.34 (m, 1H), 0.99 (d, ³*J*_{HH} = 9.0 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 154.4 (s, Ar), 142.6 (s, Ar), 140.4 (s, Ar), 135.7 (s, Ar), 129.3 (s, Ar), 128.3 (s, Ar), 126.1 (s, Ar), 122.0 (s, Ar), 121.8 (s, Ar), 119.1 (s, Ar), 109.0 (s, Ar), 43.5 (s, CH₃), 34.9 (s, CH), 34.0 (s, CH₂), 29.7 (s, N-CH₃), 19.8 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1717.

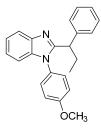


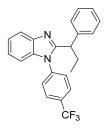
1-octyl-2-(1-phenylpropyl)-1*H*-benzo[*d*]imidazole (4l): The reaction was performed according to the above general procedure A. Yield: 79%. ¹H NMR (300 MHz, CDCl₃): δ 7.84-7.81 (m, 1H), 7.26-7.17 (m, 8H), 3.97 (t, 1H, ³*J*_{HH} = 9.0 Hz), 3.92 (d, 2H, ³*J*_{HH} = 6.0 Hz), 2.53-2.46 (m, 1H), 2.20-2.10 (m, 1H), 1.24-1.17 (m, 12H), 0.98 (t, 3H, ³*J*_{HH} = 7.5 Hz), 0.86 (t, 3H, ³*J*_{HH} = 7.5 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 155.8 (s, Ar), 142.7 (s, Ar), 141.7 (s, Ar), 135.2 (s, Ar), 128.7 (s, Ar), 128.0 (s, Ar), 126.9 (s, Ar), 122.0 (s, Ar), 121.6 (s, Ar), 119.6 (s, Ar), 109.3 (s, Ar), 46.4 (s, CH), 43.6 (s, CH₂), 31.7 (s, CH₂), 29.4 (s, CH₂), 29.2 (s, CH₂), 29.1 (s, CH₂), 29.0 (s, CH₂), 26.9 (s, CH₂), 22.6 (s, CH₂), 14.0 (s, CH₃), 12.7 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₄H₃₂N₂ ([M+H]⁺) 349.2644, found 349.2650.



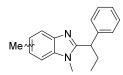
2-(1-phenylpropyl)-1-(pyridin-2-ylmethyl)-1H- benzo[d]imidazole (4m): The reaction was


performed according to the above general procedure A. Yield: 70%. ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, 1H, ³*J*_{HH} =4.0 Hz), 7.87 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.34-7.07 (m, 10H), 6.27 (d, 1H, ³*J*_{HH} = 8.0 Hz), 5.32 (AB quartet, 2H, ²*J*_{HH} = 13.3 Hz), 3.97 (t, 1H, ³*J*_{HH} = 6.0 Hz), 2.52-2.47 (m, 1H), 2.18-2.11 (m, 1H), 0.91 (t, 3H, ³*J*_{HH} = 8.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.4 (s, Ar), 155.9 (s, Ar), 149.4 (s, Ar), 142.7 (s, Ar), 141.0 (s, Ar), 136.8 (s, Ar), 135.4 (s, Ar), 128.6 (s, Ar), 128.0 (s, Ar), 126.8 (s, Ar), 122.5 (s, Ar), 122.4 (s, Ar), 122.1 (s, Ar), 120.2 (s, Ar), 119.7 (s, Ar), 109.3 (s, Ar), 48.6 (s, CH), 46.2 (s, N-CH₂), 29.0 (s, CH₂), 12.5 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₂H₂₁N₃ ([M+H]⁺) 328.1814, found 328.1823.

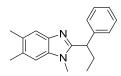

1-benzyl-2-(1-phenylpropyl)-1H-benzo[d]imidazole (4n): The reaction was performed according to the above general procedure A. Yield: 81%. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.26-7.12 (m, 11H), 6.89-6.86 (m, 2H), 5.15 (AB quartet, 2H, ²*J*_{HH} = 22.4 Hz), 3.88 (t, 1H, ³*J*_{HH} = 8.0 Hz), 2.50-2.47 (m, 1H), 2.14-2.08 (m, 1H), 0.89 (t, 3H, , ³*J*_{HH} = 8.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.3 (s, Ar), 142.7 (s, Ar), 141.3 (s, Ar), 135.6 (s, Ar), 128.8 (s, Ar), 128.7 (s, Ar), 128.0 (s, Ar), 127.7 (s, Ar), 126.9 (s, Ar), 126.1 (s, Ar), 122.4 (s, Ar), 121.9 (s, Ar), 119.7 (s, Ar), 109.5 (s, Ar), 46.7 (s, CH), 46.3 (s, N-CH₂), 29.0 (s, CH₂), 12.5 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₃H₂₂N₂ ([M+H]⁺) 327.1861, found 327.1866.


2-(1-phenylpropyl)-1-(p-tolyl)-1H-benzo[d]imidazole (40): The reaction was performed according to the above general procedure A. Yield: 94%. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, 1H, ${}^{3}J_{\text{HH}} = 8.0$ Hz), 7.28-7.11 (m, 11H), 6.99 (d, 1H, ${}^{3}J_{\text{HH}} = 8.0$ Hz), 3.84 (t, 1H, ${}^{3}J_{\text{HH}} = 8.0$ Hz), 2.53-2.42 (m, 1H), 2.45 (s, 3H), 2.17-2.06 (m, 1H), 0.90 (t, 3H, ${}^{3}J_{\text{HH}} = 8.0$ Hz). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 156.5 (s, Ar), 142.6 (s, Ar), 141.7 (s, Ar), 138.9 (s, Ar), 136.8 (s, Ar), 133.0 (s, Ar), 130.1 (s, Ar), 128.3 (s, Ar), 128.0 (s, Ar), 126.5 (s, Ar), 122.4 (s, Ar), 122.1 (s, Ar), 119.4 (s, Ar), 110.0 (s, Ar), 45.9 (s, CH), 29.2 (s, CH₂), 21.2 (s, CH₃), 12.5 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₃H₂₂N₂ ([M+H]⁺) 327.1861, found 327.1875.

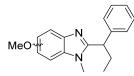
2-(1-phenylpropyl)-1-(o-tolyl)-1H-benzo[d]imidazole (4p): The reaction was performed according to the above general procedure A. Yield: 88%. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.41-7.02 (m, 10H), 6.82 (d, 1H, ³*J*_{HH} = 8.0 Hz), 6.54 (d, 1H, ³*J*_{HH} = 8.0 Hz), 3.53 (t, 1H, ³*J*_{HH} = 8.0 Hz), 2.51-2.42 (m, 1H), 2.15-2.04 (m, 1H), 1.96 (s, 3H), 0.91 (t, 3H, ³*J*_{HH} = 8.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.3 (s, Ar), 142.8 (s, Ar), 141.7 (s, Ar), 136.3 (s, Ar), 136.1 (s, Ar), 134.4 (s, Ar), 131.1 (s, Ar), 129.6 (s, Ar), 129.5 (s, Ar), 128.3 (s, Ar), 128.1(s, Ar), 126.8(s, Ar), 126.6(s, Ar), 122.6 (s, Ar), 122.1 (s, Ar), 119.6 (s, Ar), 109.9 (s, Ar), 46.6 (s, CH), 29.2 (s, CH₂), 17.3 (s, CH₃), 12.8 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₃H₂₂N₂ ([M+H]⁺) 327.1861, found 327.1870.



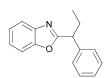
1-(4-methoxyphenyl)-2-(1-phenylpropyl)-1H-benzo[d]imidazole (4q): The reaction was performed according to the above general procedure A. Yield: 79%. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.27-7.08 (m, 11H), 6.97 (d, 1H, ³*J*_{HH} = 8.0 Hz), 3.87 (s, 3H), 3.80 (t, 1H, ³*J*_{HH} = 8.0 Hz), 2.50-2.39 (m, 1H), 2.14-2.04 (m, 1H), 0.89 (t, 3H, ³*J*_{HH} = 6.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.8 (s, Ar), 156.8 (s, Ar), 142.5 (s, Ar), 141.7 (s, Ar), 137.0 (s, Ar), 128.3 (s, Ar), 128.1 (s, Ar), 126.6 (s, Ar), 122.5 (s, Ar), 122.1 (s, Ar), 119.4 (s, Ar), 114.7 (s, Ar), 110.0 (s, Ar), 55.6 (s, OCH₃), 46.0 (s, CH), 29.1 (s, CH₂), 12.6 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₃H₂₂N₂O ([M+H]⁺) 343.1810, found 343.1822.



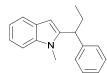
2-(1-phenylpropyl)-1-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (4r): The reaction was performed according to the above general procedure A. Yield: 88%. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.71 (br s, 2H), 7.31-7.13 (m, 7H), 7.04-6.97 (m, 3H), 3.78 (t, 1H, ³*J*_{HH} = 8.0 Hz), 2.53-2.42 (m, 1H), 2.16-2.06 (m, 1H), 0.90 (t, 3H, ³*J*_{HH} = 6.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.1 (s, Ar), 142.7 (s, Ar), 141.3 (s, Ar), 139.1 (s, Ar), 136.4 (s, Ar), 131.1 (q, ²*J*_{CF} = 33.3 Hz, *C*-CF₃), 128.5 (s, Ar), 128.0 (s, Ar), 127.3-119.6(q, ¹*J*_{CF} =


256 Hz, CF₃), 126.8 (s, Ar), 123.1 (s, Ar), 122.7 (s, Ar), 119.8 (s, Ar), 109.7 (s, Ar), 46.3 (s, CH), 29.2 (s, CH₂), 12.5 (s, CH₃). HR-MS (MALDI): m/z calcd. for C₂₃H₁₉F₃N₂ ([M+H]⁺) 381.1578, found 381.1588.

1,5/6-dimethyl-2-(1-phenylpropyl)-1H-benzo[d]imidazole (4s): The reaction was performed according to the above general procedure A. Yield: 92%. ¹H NMR (300 MHz, CDCl₃): δ 7.69 (d, 0.5H, ³*J*_{HH} = 6.0 Hz), 7.61 (s, 0.5H), 7.28-7.01 (m, 7H), 3.96 (t, 1H, ³*J*_{HH} = 7.5 Hz), 3.47 (s, 1.5H), 3.45 (s, 1.5H), 2.56-2.42 (m, 1H), 2.46 (s, 3H), 2.22-2.07 (m, 1H), 0.98 (t, 3H, ³*J*_{HH} = 7.5 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 156.1 (s, Ar), 155.7 (s, Ar), 142.7 (s, Ar), 141.3 (s, Ar), 140.5 (s, Ar), 136.1 (s, Ar), 134.0 (s, Ar), 132.0 (s, Ar), 131.3 (s, Ar), 128.7 (s, Ar), 128.0 (s, Ar), 126.8 (s, Ar), 123.5 (s, Ar), 123.2 (s, Ar), 119.4 (s, Ar), 119.0 (s, Ar), 108.9 (s, Ar), 108.4 (s, Ar), 46.3(s, CH), 29.5 (s, N-CH₃), 28.7 (s, CH₂), 21.8 (s, Ar-CH₃), 21.5 (s, Ar-CH₃), 12.6 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₀N₂ ([M+H]⁺) 265.1705, found 265.1712.

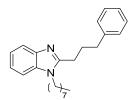


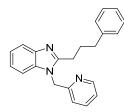
1,5,6-trimethyl-2-(1-phenylpropyl)-1H-benzo[d]imidazole (4t): The reaction was performed according to the above general procedure A. Yield: 91%. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (s, 1H), 7.26-7.17 (m, 5H), 6.99 (s, 1H), 3.95 (t, 1H, ³*J*_{HH} = 8.0 Hz), 3.44 (s, 3H), 2.52-2.40 (m, 1H), 2.36 (s, 3H), 2.35 (s, 3H), 2.19-2.08 (m, 1H), 0.97 (t, 3H, ³*J*_{HH} = 6.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.4 (s, Ar), 141.4 (s, Ar), 141.0 (s, Ar), 134.5 (s, Ar), 131.1 (s, Ar), 130.3 (q, CF₃), 128.6 (s, Ar), 128.0 (s, Ar), 126.8 (s, Ar), 119.7 (s, Ar), 109.2 (s, Ar), 46.3 (s, CH), 29.6 (s, N-CH₃), 28.7 (s, CH₂), 20.4 (s, Ar-CH₃), 20.2 (s, Ar-CH₃), 12.6 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₉H₂₂N₂ ([M+H]⁺) 279.1861, found 279.1870.

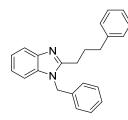


5/6-methoxy-1-methyl-2-(1-phenylpropyl)-1H-benzo[d]imidazole (4u): The reaction was performed according to the above general procedure A. Yield: 77%. ¹H NMR (300 MHz, CDCl₃): δ 7.73 (d, 0.5H, ³*J*_{HH} = 9.0 Hz), 7.38 (d, 0.5H, ³*J*_{HH} = 3.0 Hz), 7.30-7.22 (m, 5H), 7.14 (d, 0.5H, ³*J*_{HH} = 9.0 Hz), 6.91 (dd, 1H, ³*J*_{HH} = 9.0 Hz, ³*J*_{HH} = 2.4 Hz), 6.73 (d, 0.5H, ³*J*_{HH} = 3.0 Hz), 3.99 (t, 1H, ³*J*_{HH} = 7.5 Hz), 3.89 (s, 1.5H), 3.87 (s, 1.5H), 3.52 (s, 1.5H), 3.48 (s, 1.5H), 2.57-2.47 (m, 1H), 2.24-2.13 (m, 1H), 1.02 (t, 3H, ³*J*_{HH} = 7.5 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 156.4 (s, Ar), 156.3 (s, Ar), 155.9 (s, Ar), 155.5 (s, Ar), 143.1 (s, Ar), 141.3 (s, Ar), 141.2 (s, Ar), 136.9 (s,

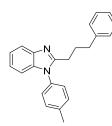
Ar), 136.5 (s, Ar), 130.5 (s, Ar), 128.7 (s, Ar), 128.0 (s, Ar), 126.8 (s, Ar), 120.0 (s, Ar), 112.0 (s, Ar), 110.5 (s, Ar), 109.2 (s, Ar), 102.0 (s, Ar), 93.0 (s, Ar), 55.9 (s, Ar-OCH₃), 55.8 (s, Ar-OCH₃), 46.4(s, CH), 29.6 (s, N-CH₃), 28.7 (s, CH₂), 12.6 (s, CH₃). HR-MS (MALDI): m/z calcd. for C₁₈H₂₀N₂O ([M+H]⁺) 281.1654, found 281.1667.


2-(1-phenylpropyl)benzo[*d*]**oxazole (4v):** The reaction was performed according to the above general procedure A. Yield: 62%. ¹H NMR (300 MHz, CDCl₃): δ 7.73-7.70 (m, 1H), 7.45-7.24 (m, 8H), 4.13 (t, 1H, ${}^{3}J_{HH} = 7.5$ Hz), 2.49-2.35 (m, 1H), 2.22-2.08 (m, 1H), 0.99 (t, 3H, ${}^{3}J_{HH} = 7.5$ Hz, CH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 168.3 (s, Ar), 150.9 (s, Ar), 141.4 (s, Ar), 140.0 (s, Ar), 128.9 (s, Ar), 128.1 (s, Ar), 127.4 (s, Ar), 124.7 (s, Ar), 124.2 (s, Ar), 120.0 (s, Ar), 110.6 (s, Ar), 48.0 (s, CH), 27.8 (s, CH₂), 12.5 (s, CH₃). HR-MS (EI): *m/z* calculated for C₁₆H₁₅ON ([M⁺]) 237.1160, found 237.1154.

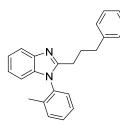

1-methyl-2-(1-phenylpropyl)-1*H***-indole (4w):** The reaction was performed according to the above general procedure A. Yield: 58%. ¹H NMR (300 MHz, CDCl₃): δ 7.65-7.62 (m, 1H, Ar), 7.30-7.08 (m, 8H, Ar), 6.54 (s, 1H), 3.93 (t, ³*J*_{HH} = 7.5 Hz, 1H, CH), 3.44 (s, 3H, N-CH₃), 2.33-2.19 (m, 1H), 2.09-1.94 (m, 1H), 1.03 (t, ³*J*_{HH} = 7.5 Hz, 3H, CH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 143.4 (s, Ar), 143.4 (s, Ar), 137.7 (s, Ar), 128.7 (s, Ar), 128.3 (s, Ar), 127.9 (s, Ar), 126.6 (s, Ar), 121.0 (s, Ar), 120.3 (s, Ar), 119.4 (s, Ar), 109.0 (s, Ar), 99.2 (s, Ar), 46.1 (s, CH), 29.9 (s, N-CH₃), 29.5 (s, CH₂), 13.0 (s, CH₃). HR-MS (EI): *m/z* calculated for C₁₈H₁₉N ([M⁺]) 249.1517, found 249.1514.


1-methyl-2-(1-phenylpropyl)-1H-imidazole (4x): The reaction was performed according to the above general procedure A. Yield: 45%. ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.24 (m, 2H), 7.19-7.15 (m, 3H), 6.99 (s, 1H), 6.73 (s, 1H), 3.76 (t, 1H, ${}^{3}J_{\text{HH}} = 8.0$ Hz), 3.34 (s, 3H), 2.37-2.30 (m, 1H), 2.06-1.97 (m, 1H), 0.92 (t, 3H, ${}^{3}J_{\text{HH}} = 6.0$ Hz). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 149.6 (s, Ar), 142.0 (s, Ar), 128.6 (s, Ar), 127.9 (s, Ar), 127.0 (s, Ar), 126.5 (s, Ar), 120.6 (s, Ar), 45.6 (s, CH), 32.5 (s, N-CH₃), 28.8 (s, CH₂), 12.6 (s, CH₃). HR-MS (FAB): *m/z* calculated for C₁₃H₁₇N₂ ([M+H]⁺) 201.1392, found 201.1394.

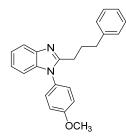
1-octyl-2-(3-phenylpropyl)-1H-benzo[d]imidazole (3l): The reaction was performed according to the above general procedure B. Yield: 73%. ¹H NMR (400 MHz, CDCl₃): δ 7.72-7.70 (m, 1H), 7.29-7.16 (m, 8H), 3.97 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.83 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.79 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.24 (qn, 2H, ³*J*_{HH} = 8.0 Hz), 1.72-1.68 (m, 2H), 1.27-1.24 (m, 10H,), 0.87 (t, 3H, ³*J*_{HH} = 8.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.3 (s, Ar), 142.6 (s, Ar), 141.2 (s, Ar), 134.8 (s, Ar), 128.3 (s, Ar), 128.2 (s, Ar), 125.8 (s, Ar), 121.6 (s, Ar), 121.4 (s, Ar), 118.9 (s, Ar), 109.0 (s, Ar), 43.3 (s, CH₂), 35.1 (s, CH₂), 31.5 (s, CH₂), 29.6 (s, CH₂), 28.9 (s, CH₂), 28.9 (s, CH₂), 26.7 (s, CH₂), 26.3 (s, CH₂), 22.4 (s, CH₂), 13.9 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₄H₃₂N₂ ([M+H]⁺) 349.2644, found 349.2657.

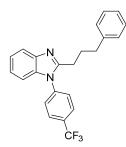


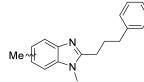
2-(3-phenylpropyl)-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazole (3m): The reaction was performed according to the above general procedure B. Yield: 62%. ¹H NMR (400 MHz, CDCl₃): δ 8.57 (d, 1H, ³*J*_{HH} =4.0 Hz), 7.75 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.53-7.49 (td, 1H, ³*J*_{HH} =8.0 Hz, ³*J*_{HH} =1.6 Hz), 7.24-7.11 (m, 9H), 6.65 (d, 1H, ³*J*_{HH} = 8.0 Hz), 5.37 (s, 2H), 2.87 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.72 (t, 2H, ³*J*_{HH} = 6.0 Hz), 2.18 (qn, 2H, ³*J*_{HH} = 8.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9 (s, Ar), 155.1 (s, Ar), 149.7 (s, Ar), 142.8 (s, Ar), 141.3 (s, Ar), 137.2 (s, Ar), 135.2 (s, Ar), 128.4 (s, Ar), 128.3 (s, Ar), 125.9 (s, Ar), 122.8 (s, Ar), 122.4 (s, Ar), 122.1 (s, Ar), 120.3 (s, Ar), 119.4 (s, Ar), 109.3 (s, Ar), 48.8 (s, CH₂), 35.3 (s, CH₂), 28.9 (s, CH₂), 26.8 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₂₂H₂₁N₃ ([M+H]⁺) 328.1814, found 328.1821.

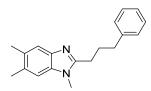


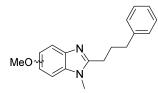
1-benzyl-2-(3-phenylpropyl)-1H-benzo[d]imidazole (3n): The reaction was performed according to the above general procedure B. Yield: 67%. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.25-7.10 (m, 11H), 6.97-6.95 (m, 2H), 5.23 (s, 2H), 2.81 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.71 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.15 (qn, 2H, ³*J*_{HH} = 7.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃):

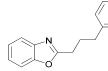

δ 154.9 (s, Ar), 142.6 (s, Ar), 141.3 (s, Ar), 135.9 (s, Ar), 135.4 (s, Ar), 128.8 (s, Ar), 128.4 (s, Ar), 128.3 (s, Ar), 127.7 (s, Ar), 126.1 (s, Ar), 125.8 (s, Ar), 122.2 (s, Ar), 121.9 (s, Ar), 119.2 (s, Ar), 109.3 (s, Ar), 46.7 (s, CH₂), 35.2 (s, CH₂), 28.8 (s, CH₂), 26.7 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₂₃H₂₂N₂ ([M+H]⁺) 327.1861, found 327.1870.

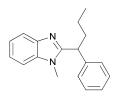

2-(3-phenylpropyl)-1-(p-tolyl)-1H-benzo[d]imidazole (30): The reaction was performed according to the above general procedure B. Yield: 73%. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.33-7.08 (m, 12H), 2.80 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.66 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.47 (s, 3H), 2.11 (qn, 2H, ³*J*_{HH} = 9.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.9 (s, Ar), 142.6 (s, Ar), 141.3 (s, Ar), 138.8 (s, Ar), 136.6 (s, Ar), 133.2 (s, Ar), 130.4 (s, Ar), 128.3 (s, Ar), 128.2 (s, Ar), 127.0 (s, Ar), 125.7 (s, Ar), 122.4 (s, Ar), 122.1 (s, Ar), 119.0 (s, Ar), 109.9 (s, Ar), 35.2 (s, CH₂), 29.1 (s, CH₂), 27.0 (s, CH₂), 21.1 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₃H₂₂N₂ ([M+H]⁺) 327.1861, found 327.1876.

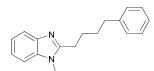

2-(3-phenylpropyl)-1-(o-tolyl)-1H-benzo[d]imidazole (3p): The reaction was performed according to the above general procedure B. Yield: 65%. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.46-7.07 (m, 11H), 6.89 (d, 1H, ³*J*_{HH} = 8.0 Hz), 2.74-2.61 (m, 4H), 2.16-2.04 (m, 2H), 1.93 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.9 (s, Ar), 142.7 (s, Ar), 141.3 (s, Ar), 136.3 (s, Ar), 136.1 (s, Ar), 134.6 (s, Ar), 131.4 (s, Ar), 129.5 (s, Ar), 128.5 (s, Ar), 128.3 (s, Ar), 128.2 (s, Ar), 127.2 (s, Ar), 125.8 (s, Ar), 122.4 (s, Ar), 122.1 (s, Ar), 119.1 (s, Ar), 109.9 (s, Ar), 35.2 (s, CH₂), 28.9 (s, CH₂), 27.0 (s, CH₂), 17.2 (s, CH₃). HR-MS (MALDI): *m/z* calcd. for C₂₃H₂₂N₂ ([M+H]⁺) 327.1861, found 327.1874.


1-(4-methoxyphenyl)-2-(3-phenylpropyl)-1H-benzo[d]imidazole (3q): The reaction was performed according to the above general procedure B. Yield: 69%. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.27-7.00 (m, 12H), 3.88 (s, 3H), 2.78 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.66 (t, 2H, ³*J*_{HH} = 6.0 Hz), 2.11 (qn, 2H, ³*J*_{HH} = 8.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.6 (s, Ar), 155.1 (s, Ar), 142.5 (s, Ar), 141.3 (s, Ar), 136.8 (s, Ar), 128.4 (s, Ar), 128.3 (s, Ar), 128.2 (s, Ar), 125.7 (s, Ar), 122.3 (s, Ar), 122.1 (s, Ar), 119.0 (s, Ar), 114.9 (s, Ar), 109.8 (s, Ar), 55.5 (s, CH₃), 35.1 (s, CH₂), 29.1 (s, CH₂), 27.0 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₂₃H₂₂N₂O ([M+H]⁺) 343.1810, found 343.1822.


2-(3-phenylpropyl)-1-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (3r): The reaction was performed according to the above general procedure B. Yield: 81%. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, 2H, ³*J*_{HH} = 8.0 Hz), 7.79 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.41 (d, 2H, ³*J*_{HH} = 8.0 Hz), 7.31-7.05 (m, 8H), 2.79 (t, 2H, ³*J*_{HH} = 8.0 Hz), 2.67 (t, 2H, ³*J*_{HH} = 6.0 Hz), 2.12 (qn, 2H, ³*J*_{HH} = 7.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.4 (s, Ar), 142.7 (s, Ar), 141.1 (s, Ar), 139.2 (s, Ar), 136.0 (s, Ar), 130.9 (q, ²*J*_{CF} = 33.3 Hz, *C*-CF₃), 128.3 (s, Ar), 128.3 (s, Ar), 127.5 (s, Ar), 127.1 (s, Ar), 125.9 (s, Ar), 123.3 (q, ¹*J*_{CF} = 270 Hz, *C*F₃), 123.0 (s, Ar), 122.8 (s, Ar), 119.4 (s, Ar), 109.6 (s, Ar), 35.1 (s, CH₂), 29.1 (s, CH₂), 26.9 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₂₃H₁₉F₃N₂ ([M+H]⁺) 381.1578, found 381.1588.

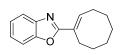

1,5/6-dimethyl-2-(3-phenylpropyl)-1H-benzo[d]imidazole (3s): The reaction was performed according to the above general procedure B. Yield: 87%. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, 0.5H, ³*J*_{HH} = 8.0 Hz), 7.52 (s, 0.5H), 7.29-7.16 (m, 5H), 7.10-7.02 (m, 2H), 3.51 (s, 3H), 2.81-2.74 (m, 4H), 2.48 (s, 1.5H), 2.47 (s, 1.5H), 2.19 (qnd, 2H, ³*J*_{HH} = 8.0 Hz, ²*J*_{HH} = 2.4 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.6 (s, Ar), 154.2 (s, Ar), 142.7 (s, Ar), 141.2 (s, Ar), 140.5 (s, Ar), 135.8 (s, Ar), 133.7 (s, Ar), 131.6 (s, Ar), 131.0 (s, Ar), 128.3 (s, Ar), 128.2 (s, Ar), 125.8 (s, Ar), 123.1 (s, Ar), 123.0 (s, Ar), 118.8 (s, Ar), 118.4 (s, Ar), 108.7 (s, Ar), 108.2 (s, Ar), 35.1 (s, CH₂), 29.3 (s, N-CH₃), 29.2 (s, N-CH₃), 28.7 (s, CH₂), 28.7 (s, CH₂), 26.5 (s, CH₂), 21.6 (s, Ar-CH₃), 21.3 (s, Ar-CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₀N₂ ([M+H]⁺) 265.1705, found 265.1713.


1,5,6-trimethyl-2-(3-phenylpropyl)-1H-benzo[d]imidazole (3t): The reaction was performed according to the above general procedure B. Yield: 83%. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (s, 1H), 7.29-7.16 (m, 5H), 7.01 (s, 1H), 3.55 (s, 3H), 2.82 (t, 2H, ${}^{3}J_{HH} = 6.0$ Hz), 2.76 (t, 2H, ${}^{3}J_{HH} = 8.0$ Hz), 2.38 (s, 3H), 2.36 (s, 3H), 2.19 (qn, 2H, ${}^{3}J_{HH} = 7.0$ Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.9 (s, Ar), 141.4 (s, Ar), 141.1 (s, Ar), 134.2 (s, Ar), 130.7 (s, Ar), 130.2 (s, Ar), 128.4 (s, Ar), 128.3 (s, Ar), 125.8 (s, Ar), 119.2 (s, Ar), 109.1 (s, Ar), 35.2 (s, CH₂), 29.4 (s, N-CH₃), 28.9 (s, CH₂), 26.6 (s, CH₂), 20.4 (s, Ar-CH₃), 20.1 (s, Ar-CH₃). HR-MS (MALDI): *m/z* calcd. for C₁₉H₂₂N₂ ([M+H]⁺) 279.1861, found 279.1872.

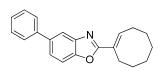

5/6-methoxy-1-methyl-2-(3-phenylpropyl)-1H-benzo[d]imidazole (3u): The reaction was performed according to the above general procedure B. Yield: 88%. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, 1H, ³*J*_{HH} = 8.0 Hz), 7.28-7.15 (m, 5H), 6.86 (d, 0.5H, ³*J*_{HH} = 4.0 Hz), 6.84 (d, 0.5H, ³*J*_{HH} = 4.0 Hz), 6.71 (d, 1H, ³*J*_{HH} = 2.4 Hz), 3.84 (s, 3H), 3.55 (s, 3H), 2.83-2.74 (m, 4H), 2.18 (qn, 2H, ³*J*_{HH} = 7.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.1 (s, Ar), 154.0 (s, Ar), 141.4 (s, Ar), 137.0 (s, Ar), 136.3 (s, Ar), 128.4 (s, Ar), 128.3 (s, Ar), 125.9 (s, Ar), 119.4 (s, Ar), 110.4 (s, Ar), 93.1 (s, Ar), 55.9 (s, O-CH₃), 35.2 (s, CH₂), 29.5 (s, N-CH₃), 28.8 (s, CH₂), 26.7 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₀N₂O ([M+H]⁺) 281.1654, found 281.1660.

2-(3-phenylpropyl)benzo[*d*]**oxazole (3x):** The reaction was performed according to the above general procedure B. Yield: 74%. ¹H NMR (300 MHz, CDCl₃): δ 7.68-7.65 (m, 1H, Ar), 7.48-7.43 (m, 1H, Ar), 7.30-7.16 (m, 7H, Ar), 2.94 (t, 2H, ³J_{HH} = 7.5 Hz, CH₂), 2.75 (t, 2H, ³J_{HH} = 7.5 Hz, CH₂), 2.22 (qn, ³J_{HH} = 7.5 Hz, 2H, CH₂). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 167.1 (s, Ar), 151.0 (s, Ar), 141.6 (s, Ar), 141.3 (s, Ar), 128.7 (s, Ar), 128.7 (s, Ar), 126.3 (s, Ar), 124.7 (s, Ar), 124.3 (s, Ar), 119.8 (s, Ar), 110.5 (s, Ar), 35.3 (s, CH₂), 28.5 (s, CH₂), 28.2 (s, CH₂). HR-MS (FAB): *m/z* calculated for C₁₆H₁₆ON ([M+H]⁺) 238.1232, found 238.1236.

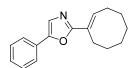
1-methyl-2-(1-phenylbutyl)-1*H*-benzo[*d*]imidazole (11-B): The reaction was performed according to the above general procedure A. ¹H NMR (300 MHz, CDCl₃): δ 7.87-7.82 (m, 1H), 7.26-7.15 (m, 8H), 4.10 (t, ³*J*_{HH} = 7.5 Hz, 1H), 3.49 (s, 3H), 2.52-2.40 (m, 1H), 2.22-2.10 (m, 1H), 1.47-1.24 (m, 2H), 0.96 (t, ³*J*_{HH} = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 156.5 (s, Ar), 142.5 (s, Ar), 141.4 (s, Ar), 136.0 (s, Ar), 128.9 (s, Ar), 128.2 (s, Ar), 127.0 (s, Ar), 122.3 (s, Ar), 121.8 (s, Ar), 119.7 (s, Ar), 109.0 (s, Ar), 44.4 (s, CH), 37.7 (s, N-CH₃), 29.8 (s, CH₂), 21.1 (s, CH₂), 14.1 (s, CH₃). HR-MS (EI): *m/z* calculated for C₁₈H₂₀N₂ ([M⁺]) 264.1626, found 264.1623.

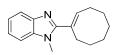


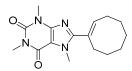
1-methyl-2-(4-phenylbutyl)-1*H***-benzo**[*d*]**imidazole (11-L):** The reaction was performed according to the above general procedure B. ¹H NMR (300 MHz, CDCl₃): δ 7.74-7.69 (m, 1H), 7.29-7.14 (m, 8H), 3.65 (s, 3H), 2.88 (t, ³*J*_{HH} = 7.5 Hz, 2H), 2.69 (t, ³*J*_{HH} = 7.5 Hz, 2H), 1.97-1.87 (m, 2H), 1.83-1.73 (m, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 155.1 (s, Ar), 142.5 (s, Ar), 142.1 (s, Ar), 135.7 (s, Ar), 128.4 (s, Ar), 128.3 (s, Ar), 125.8 (s, Ar), 121.9 (s, Ar), 121.7 (s, Ar), 119.0 (s, Ar), 108.9 (s, Ar), 35.6 (s, CH₂), 31.1 (s, N-CH₃), 29.6 (s, CH₂), 27.3 (s, CH₂), 27.1 (s, CH₂). HR-MS (MALDI): *m/z* calcd. for C₁₈H₂₁N₂ ([M+H]⁺) 265.1705, found 265.1711.


General procedure for Nickel-mediated alkenylation of benzoxazoles (12-13), and oxazoles (14): The product 12a is a representative reaction. To a vial (5 mL) containing Ni(COD)₂ (14 mg, 0.050 mmol) and IMes (15 mg, 0.050 mmol) was added 1,5-cyclooctadiene (1.0 mL) as solvent in a glove box atmosphere. After the substances were completely dissolved in 1,5-cyclooctadiene, the solution was transferred into a screw-capped vial (5 mL) containing benzoxazole (60 mg, 0.50 mmol). The vial was closed and heated at 130 °C for 2 hours. The resulting mixture was filtered through *Celite* and washed with dichloromethane. The filtrate solution was concentrated *in vacuo* to afford the crude product, which was further purified by column chromatography using hexane/ethyl acetate (19:1 v/v) as eluent to furnish (E)-2-(cyclooctenyl)-benzoxazole (109 mg, 0.480 mmol) in 96% yield.

General procedure for Nickel-mediated alkenylation of 1-methylbenzimidazole (15) and caffeine (16): The product 15a is a representative reaction. To a screw-capped vial (5 mL) containing Ni(COD)₂ (14 mg, 0.050 mmol), IMes (15 mg, 0.050 mmol), 1-methylbenzimidazole (66 mg, 0.50 mmol), and potassium *tert*-butoxide (5.6 mg, 0.050 mmol) was added toluene (1.0 mL) followed by the addition of 1,5-cyclooctadiene (43 mg, 0.040 mmol) in a glove box

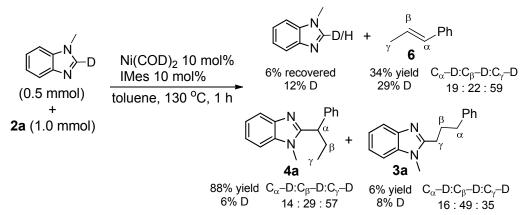

atmosphere. The reaction vial was closed and heated at 80 $^{\circ}$ C for 2 hours outside of the glove box. The resulting mixture was filtered through *Celite* and washed with dichloromethane. The filtrate solution was concentrated *in vacuo* to afford the crude product, which was further purified by column chromatography using hexane/ethyl acetate (4:1 v/v) as eluent to furnish (E)-2-(cyclooctenyl)-1-methyl-benzimidazole **15a** (117 mg, 0.49 mmol) in 97% yield.


(E)-2-(cyclooct-1-en-1-yl)benzo[d]oxazole (12a): The reaction was performed according to the above general procedure. Yield: 96%. ¹H NMR (400 MHz, CDCl₃): δ 7.70-7.66 (m, 1H), 7.47-7.42 (m, 1H), 7.28-7.24 (m, 2H), 7.08 (t, *J* = 8.6 Hz, 1H), 2.81 (t, *J* = 6.4 Hz, 2H), 2.42-2.37 (m, 2H), 1.76-1.72 (m, 2H), 1.65-1.64 (m, 2H), 1.55-1.51 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 164.3, 150.5, 142.1, 138.1, 129.4, 124.6, 124.1, 119.7, 110.1, 29.5, 29.0, 27.2, 26.5, 26.0, 25.6. HR-MS (EI): calculated for: [C₁₅H₁₇NO]⁺: 227.1310. Found: 227.1308.


(E)-2-(cyclooct-1-en-1-yl)-5-phenylbenzo[d]oxazole (13a): The reaction was performed according to the above general procedure. Yield: 66%. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (s, 1H), 7.60-7.58 (m, 2H), 7.50 (m, 2H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 8.6 Hz, 1H), 2.82 (t, *J* = 6.2 Hz, 2H), 2.44-2.39 (m, 2H), 1.75 (m, 2H), 1.66-1.65 (m, 2H) 1.53-1.52 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 164.9, 150.0, 142.7, 141.2, 138.3, 137.9, 129.4, 128.8, 127.3, 127.1, 124.2, 118.2, 110.1, 29.5, 29.0, 27.2, 26.5, 26.0, 25.6. HR-MS (FAB): calculated for: [C₂₁H₂₁ON]⁺: 303.1623. Found: 303.1629.

(E)-2-(cyclooct-1-en-1-yl)-5-phenyloxazole (14a): The reaction was performed according to the above general procedure. Yield: 92%. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 7.2, 2H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.29-7.24 (m, 2H), 6.84 (t, *J* = 8.6 Hz, 1H), 2.72 (t, *J* = 6.2 Hz, 2H), 2.37-2.31 (m, 2H), 1.70 (m, 2H), 1.62-1.61 (m, 2H), 1.51-1.50 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 162.5, 150.3, 134.0, 129.1, 128.7, 128.0, 128.2,123.9, 122.8, 29.5, 28.9, 26.9, 26.5, 26.0, 25.4. HR-MS (EI): calculated for: [C₁₇H₁₉NO]⁺: 253.1467. Found: 253.1460.

(*E*)-2-(cyclooct-1-en-1-yl)-1-methyl-1*H*-benzo[*d*]imidazole (15a): The reaction was performed according to the above general procedure. Yield: 97%. ¹H NMR (300 MHz, CDCl₃): δ 7.75-7.71 (m, 1H), 7.25-7.19 (m, 3H), 6.06 (t, *J* = 8.1 Hz, 1H), 3.72 (s, 3H), 2.75-2.71 (m, 2H), 2.36 (dd, *J* = 8.1 Hz, 11.4, 2H), 1.66-1.59 (m, 8H). ¹³C NMR (75 MHz, CDCl₃): δ 155.6, 142.4, 136.1, 135.8, 131.6, 122.1, 121.8, 119.3, 109.2, 31.6, 29.3, 29.0, 28.9, 26.9, 26.4, 26.1. HR-MS (EI): calculated for: [C₁₆H₂₀N₂]⁺: 240.1626. Found: 240.1620.

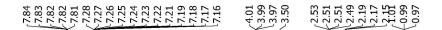


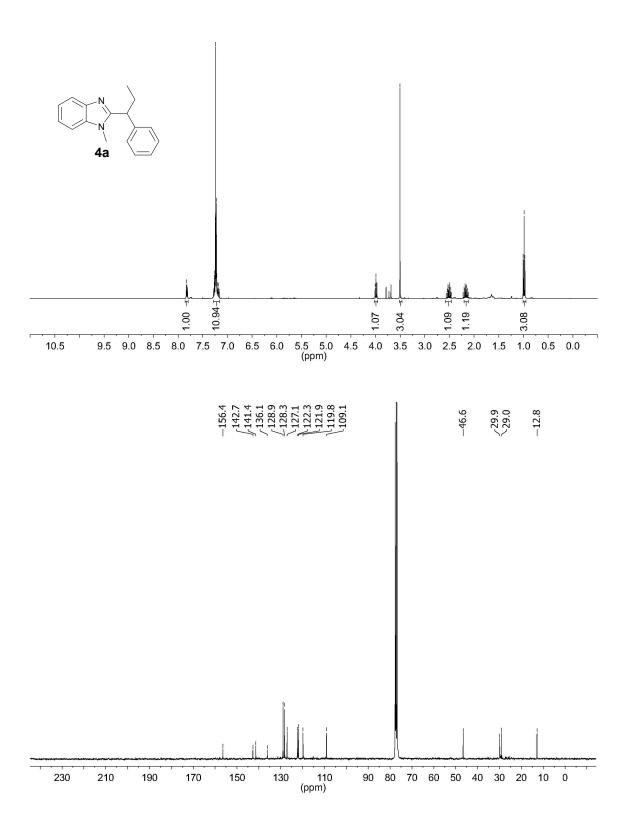
(*E*)-8-(cyclooct-1-en-1-yl)-1,3,7-trimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione (16a): The reaction was performed according to the above general procedure. Yield: 93%. ¹H NMR (400 MHz, CDCl₃): δ 6.07 (t, *J* = 8.0 Hz, 1H), 3.96 (s, 3H), 3.54 (s, 3H), 3.38 (s, 3H), 2.65-2.62 (m, 2H), 2.38-2.33 (m, 2H), 1.66-1.56 (m, 8H). ¹³C NMR (75 MHz, CDCl₃): δ 155.4, 154.2, 151.7, 147.9, 136.8, 130.5, 107.7, 33.9, 29.6, 29.4, 29.1, 28.8, 27.8, 27.1, 26.6, 26.2. HR-MS (EI): calculated for: $[C_{16}H_{22}N_4O_2]^+$: 302.1743. Found: 302.1735.

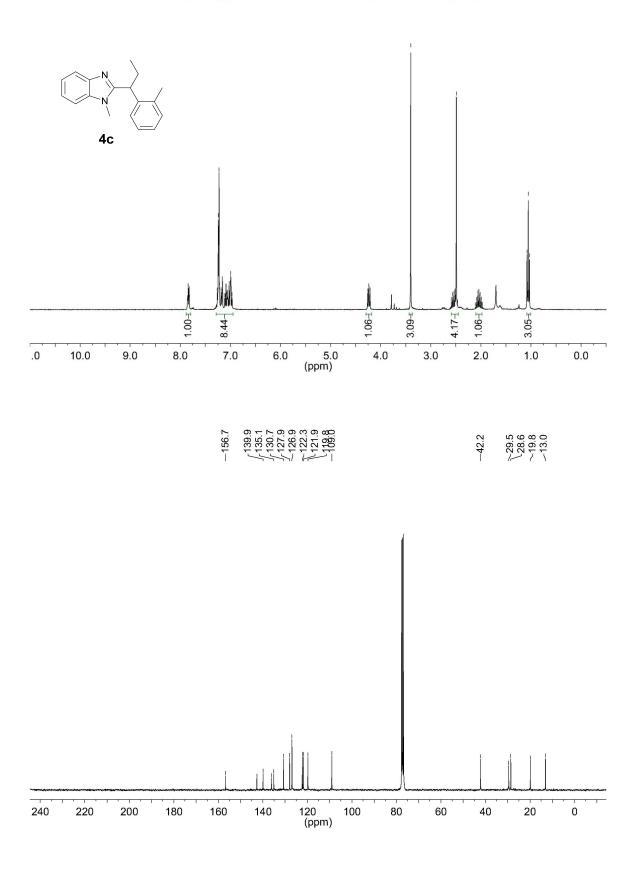
Mechanism study (a) Synthesis of 1-methylbenzimidazole-d

A 50 mL Schlenk flask equipped with a stir-bar was charged with 1-methylbenzimidazole (1.32 g, 10 mmol) in diethyl ether (40 mL) under nitrogen. The solution was cooled to -78 °C and *n*-butyllithium (4.8 mL of 2.5 M in hexane solution, 12 mmol) was added dropwise followed by removing the slush bath. After 20 minutes the temperature was lowered to -78 °C again, followed by slow addition of D₂O (2 mL). The solution was then slowly warmed to room temperature. Solvent was removed under reduced pressure. The residue was purified by flash chromatography using ethyl acetate as eluent to give amber oil (1.02 g, 77%). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, ³*J*_{HH} = 8.0 Hz, 1H, Ar), 7.36-7.24 (m, 3H, Ar), 3.78 (s, 3H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): 143.8 (s, Ar), 143.4 (1:1:1 triplet, ¹*J*_{CD} = 40 Hz, C-D), 134.6 (s, Ar), 123.0 (s, Ar), 122.2 (s, Ar), 120.4 (s, Ar), 109.5 (s, Ar), 31.1 (s, CH₃).

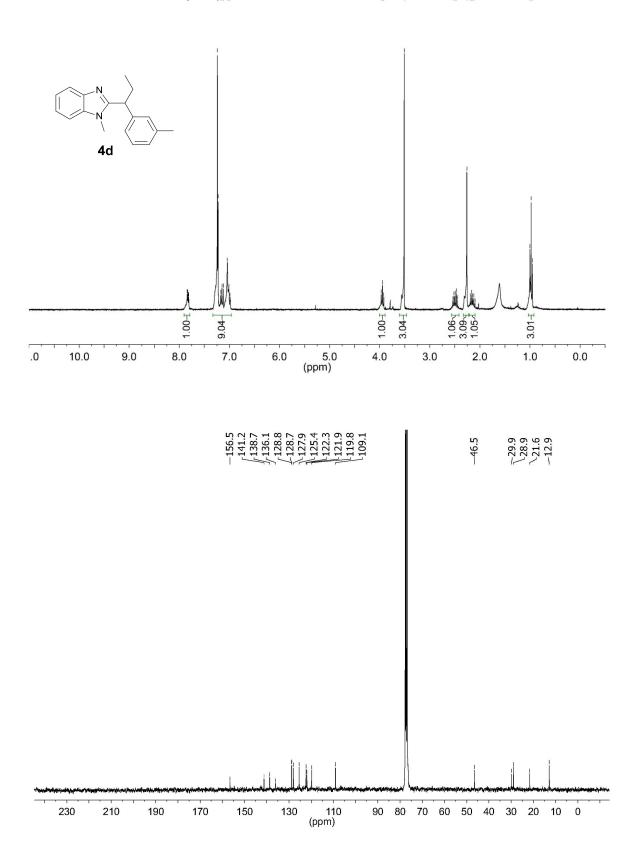
(b) Isotopic labeling Experiments

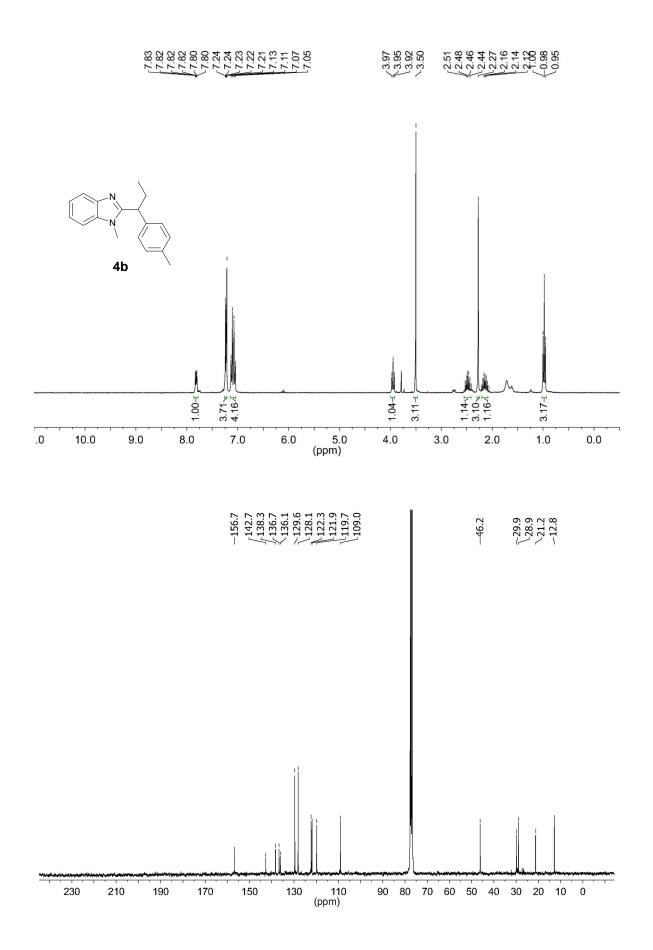


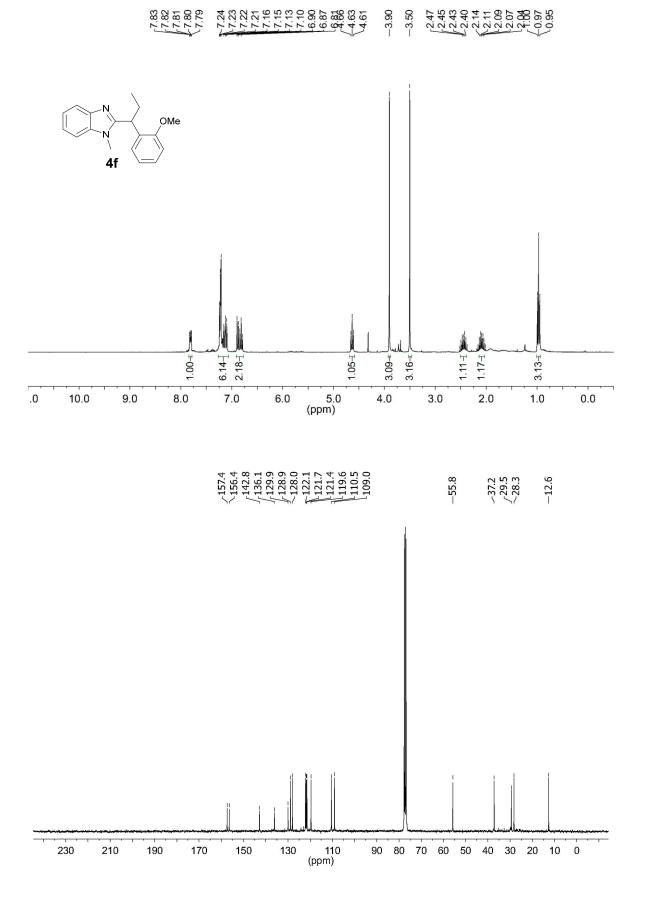

To the toluene solution of Ni(COD)₂ (14 mg, 0.05 mmol), IMes (14 mg, 0.05 mmol), and 1-methylbenzimidazole-d (0.5 mmol) was added allylbenzene (1.0 mmol) into the vial. After the vial was screw-capped, the reaction solution was taken outside the glovebox and heated at 130 °C for 1 h. The resulting mixture was filtered through *Celite* and washed with dichloromethane. The filtrate solution was concentrated in *vacuo* to afford crude product. The crude was further purified by flash chromatography using hexane/ethyl acetate (3:1) as eluent.

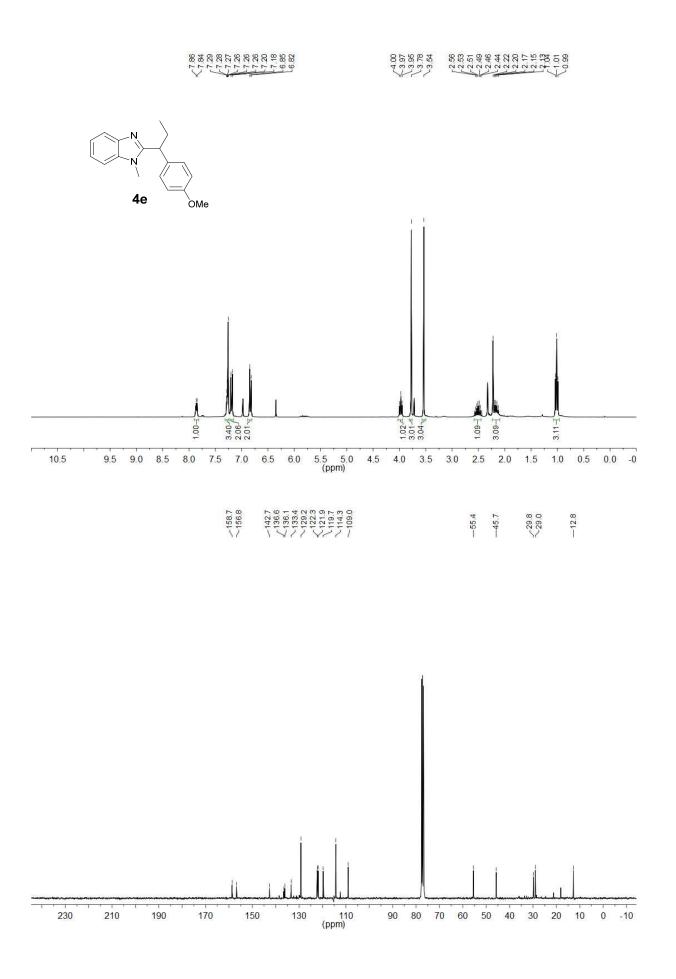

Deuterium-labeling experiments were performed. Reaction of C2-deuterated **1a** with **2a** shows deuteration at α , β and γ positions of **4a**, the isomerized **6**, as well as the loss of deuteration and H/D scrambling in [D1]-**1a**, revealing that the C-H bond cleavage and migratory insertion steps are reversible. These results may suggest that the final reductive elimination step could be the rate-determining step, which has been discussed for the nickel-catalyzed hydroheteroarylation⁶ and hydroalkynylation⁷ of vinylarenes.

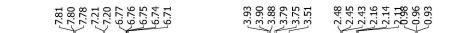
Reference

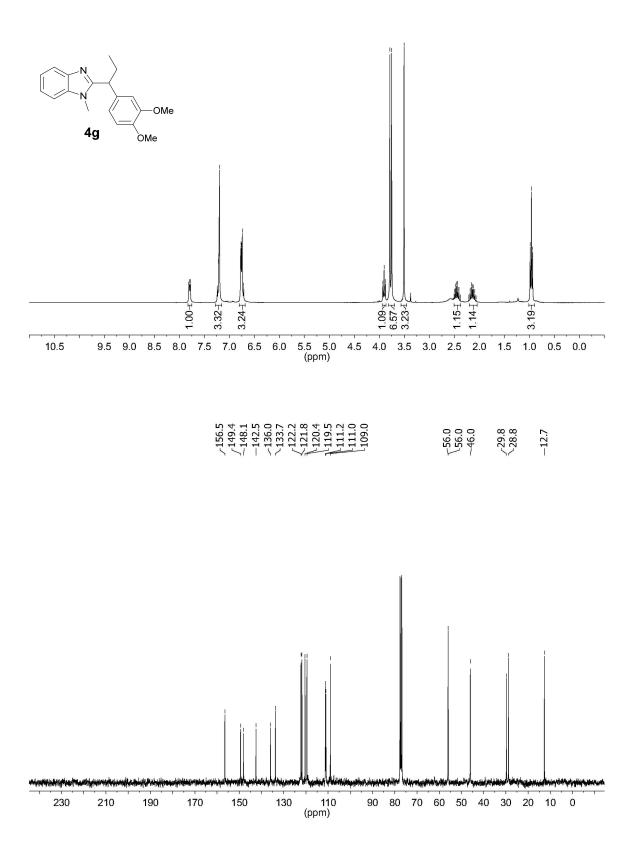

- (a) Arduengo, A. J.; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. *Tetrahedron* 1999, *55*, 14523-14534.
 (b) Arduengo, A. J.; Dias, H. V. R.; Harlow, R. L.; Kline M. *J. Am. Chem. Soc* 1992, *114*, 5530-5534.
- Shih, W.-C.; Wang, C.-H.; Chang, Y.-T.; Glenn, P. A. Yap.; Ong, T.-G. Organometallics 2009, 28, 1060-1067.
- 3. Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem. Int. Ed. 2009, 48, 9127.
- 4. Van Leusen, A. M.; Hoogenboom, B. E.; Sinderius, H. Tetrahedron Lett. 1972, 13, 2369.
- 5. Liu, Q.-X.; Yin, L.-N.; Feng, J.-C. J. Organomet. Chem. 2007, 692, 3655.
- 6. Nakao, Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama, T. Angew. Chem. Int. Ed. 2010, 49, 4451.
- 7. Shirakura, M.; Suginome, M. Org. Lett. 2009, 11, 523.

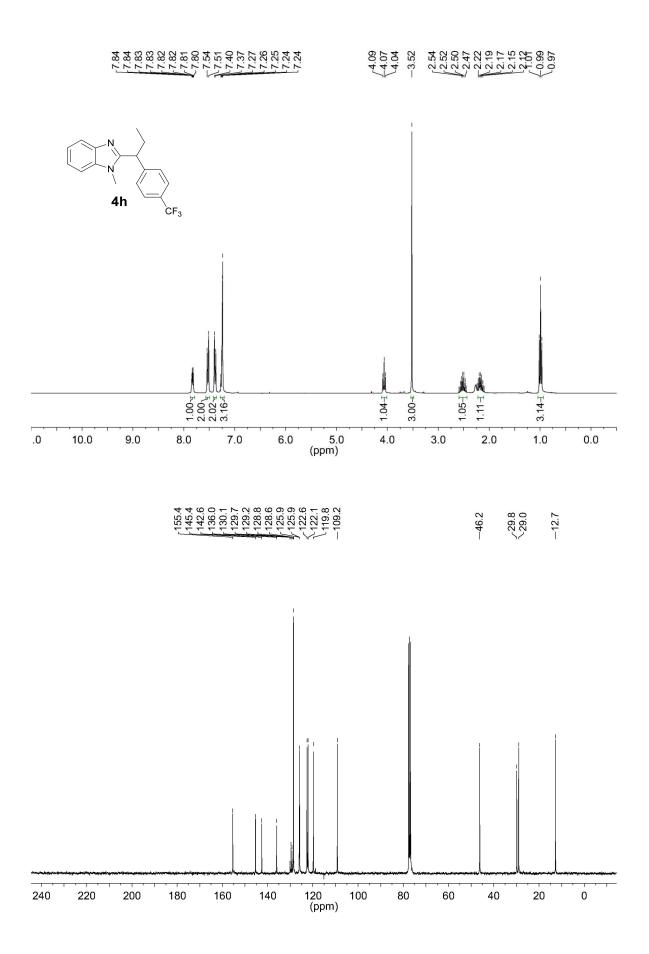


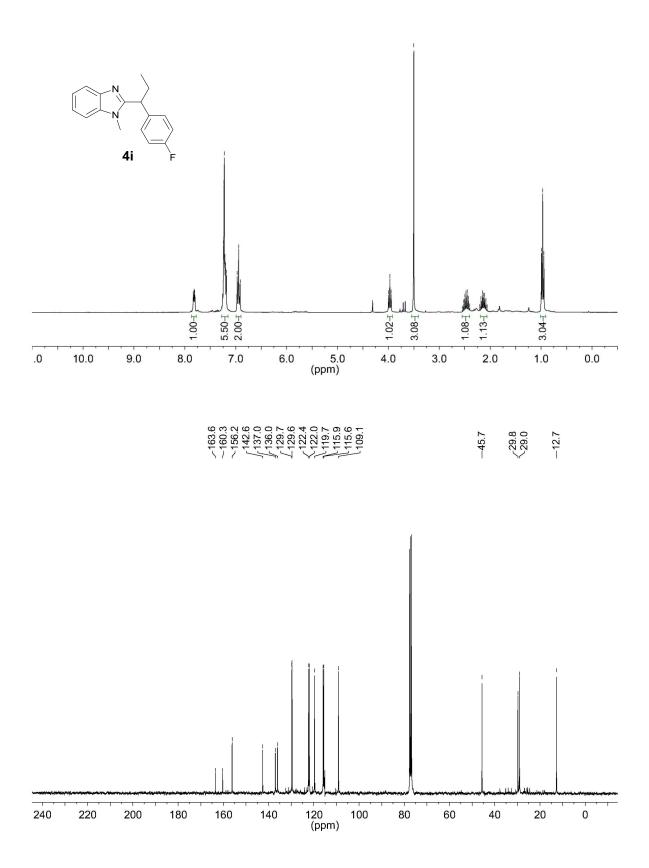






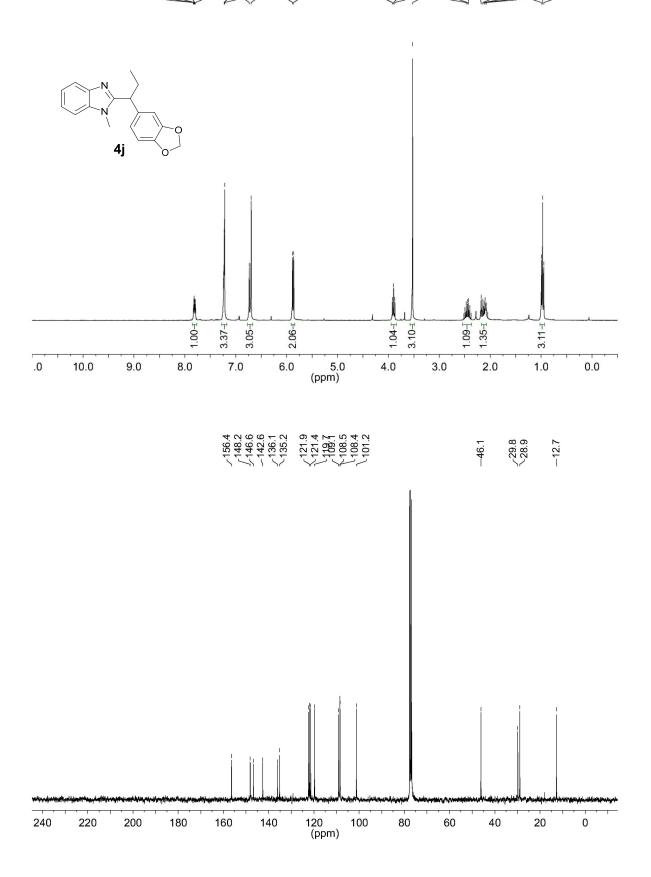


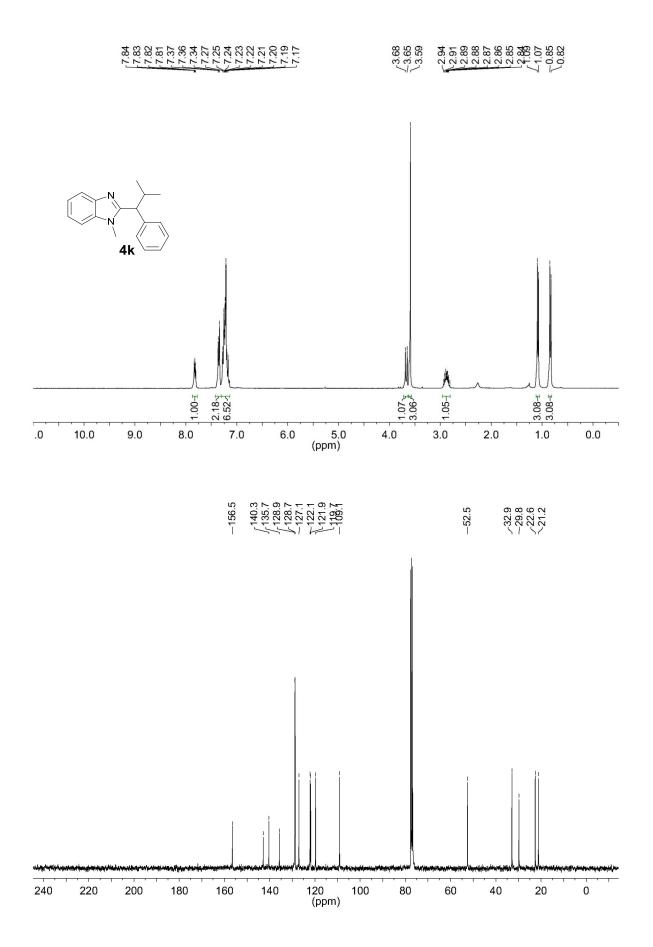


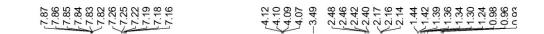


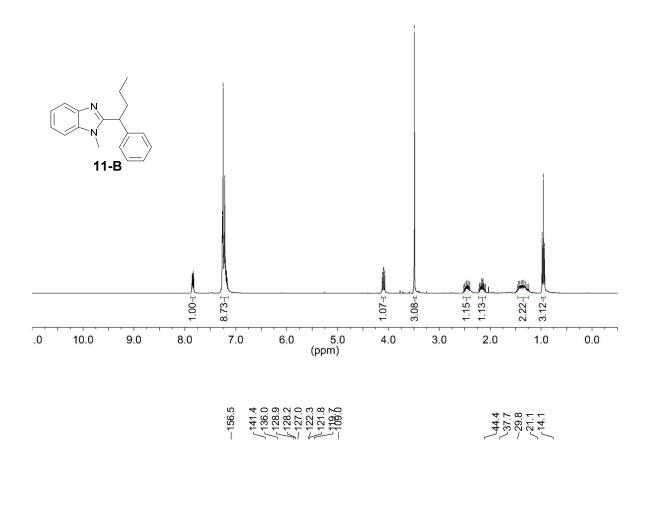
 7.7.1
 7.8.2

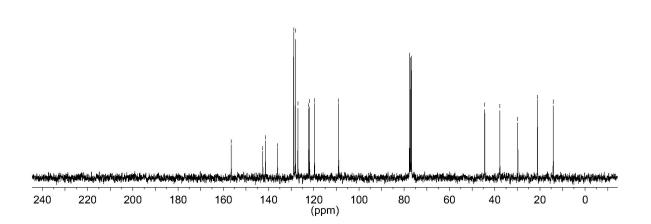
 7.7.2
 8.8.2

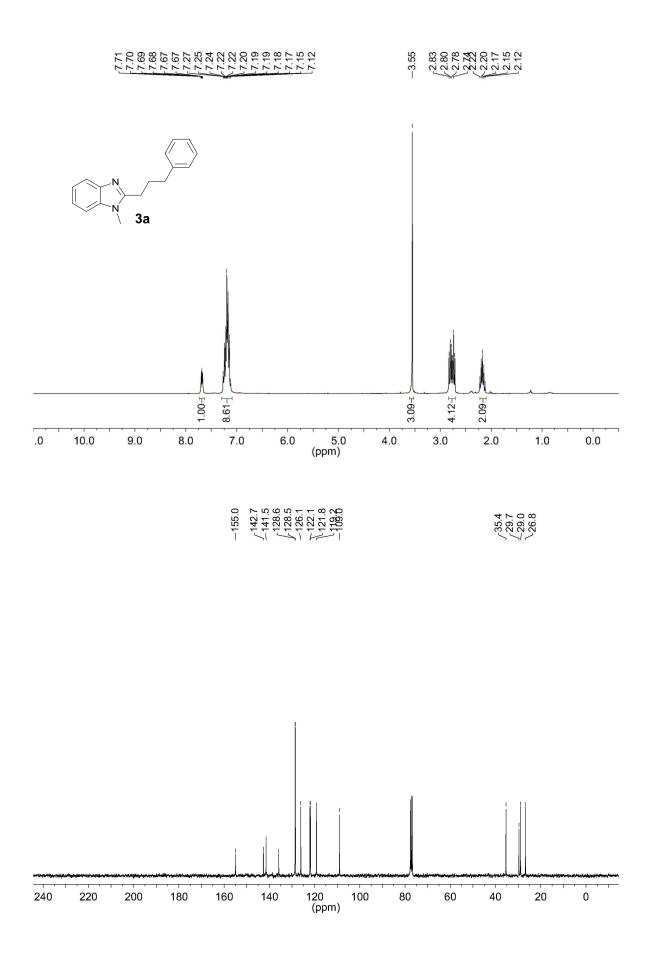

 7.7.2
 8.8.2

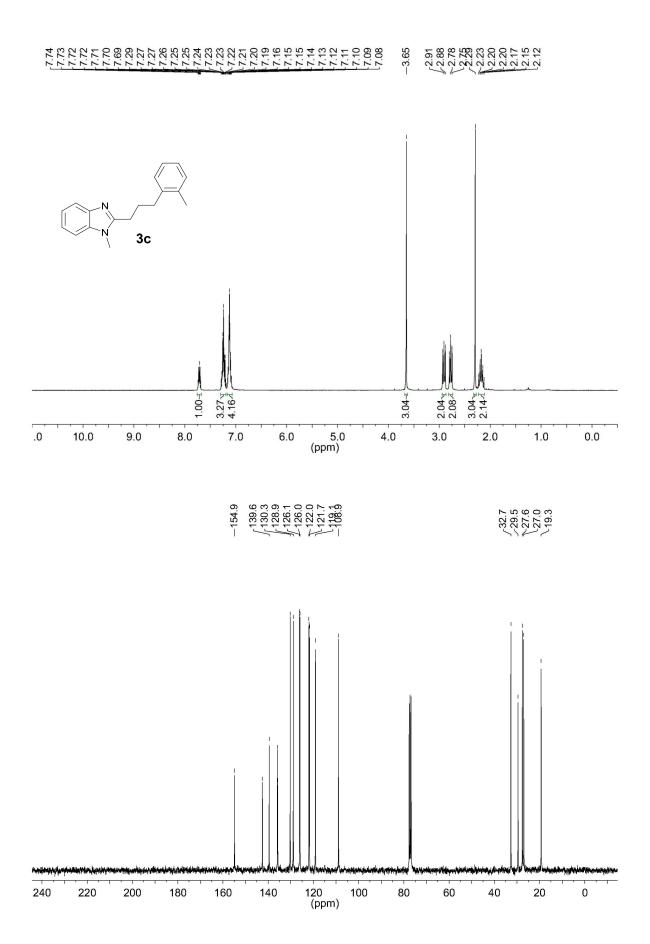

 7.7.2
 8.8.2

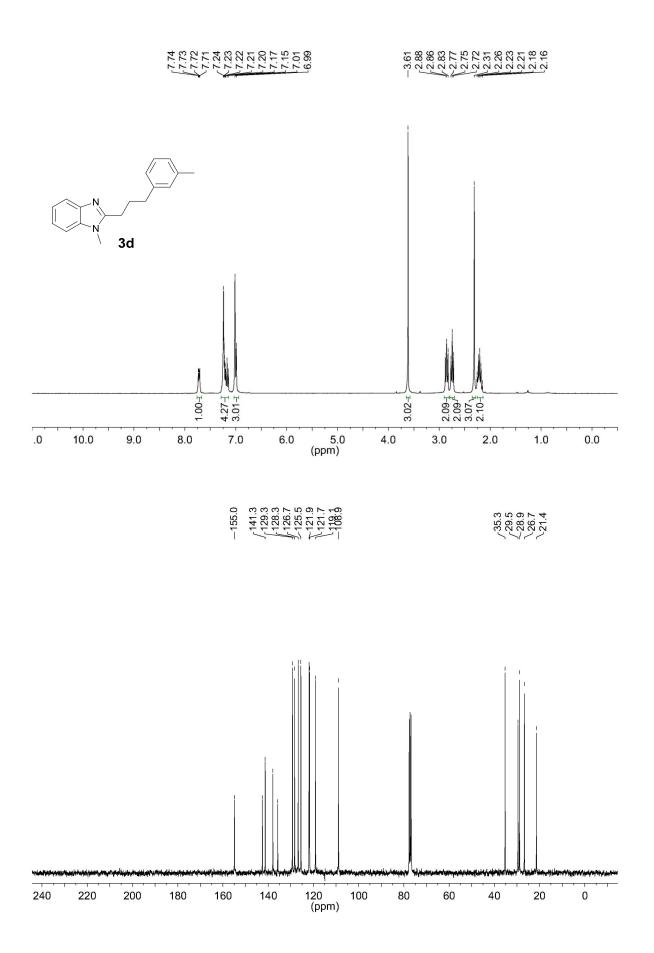

 7.7.2
 8.8.2

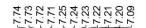

 8.8.3
 9.9.2

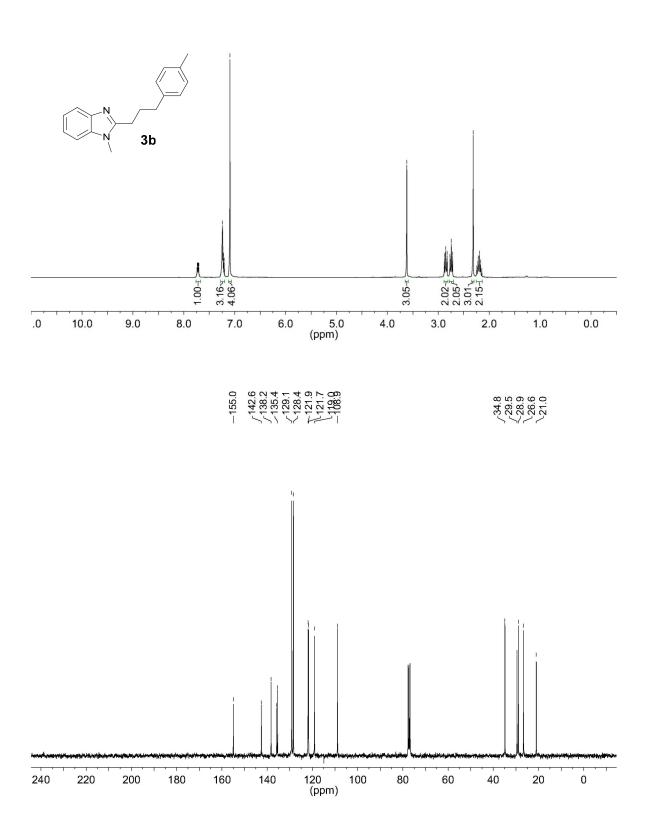

 9.990
 9.9.2

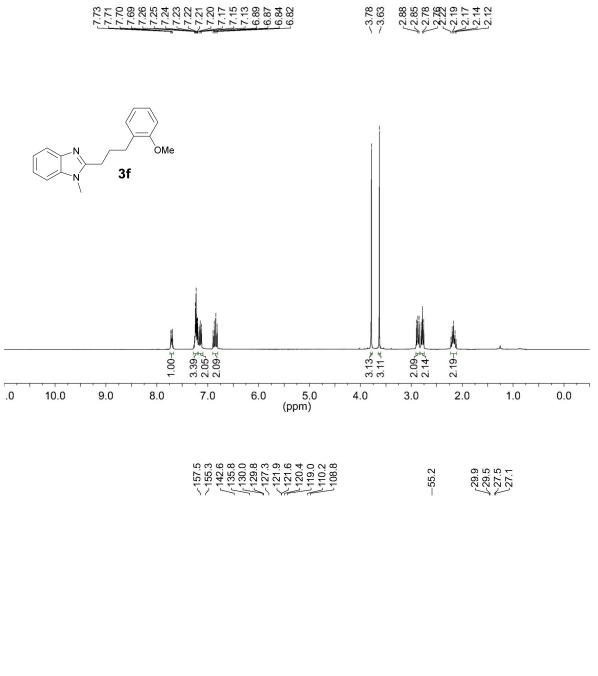


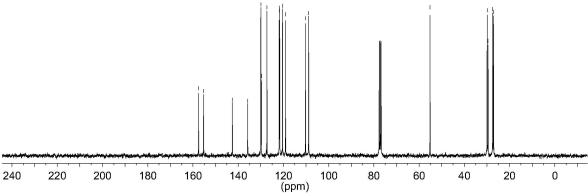


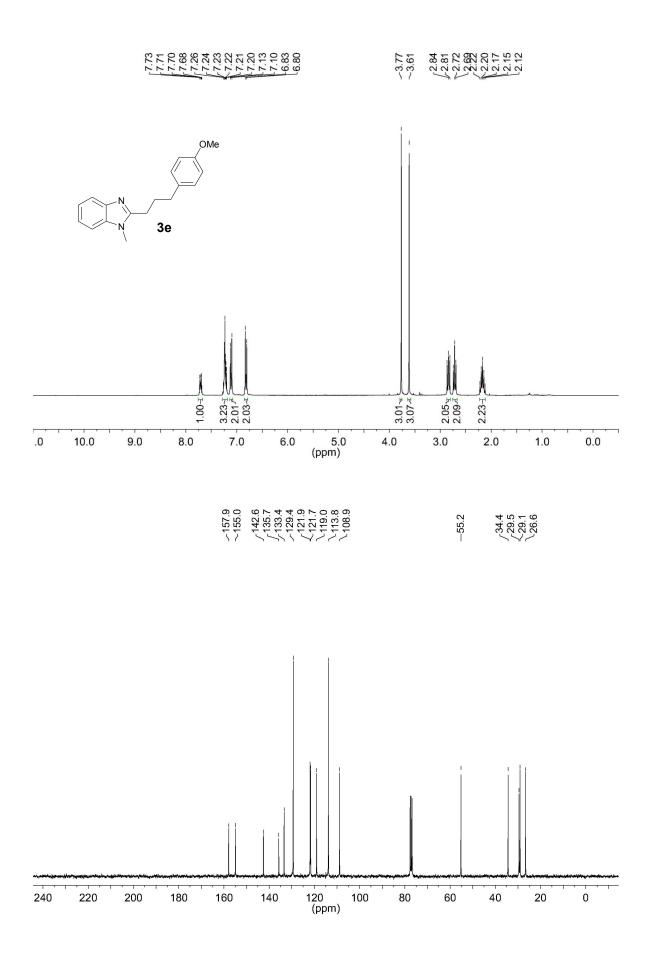


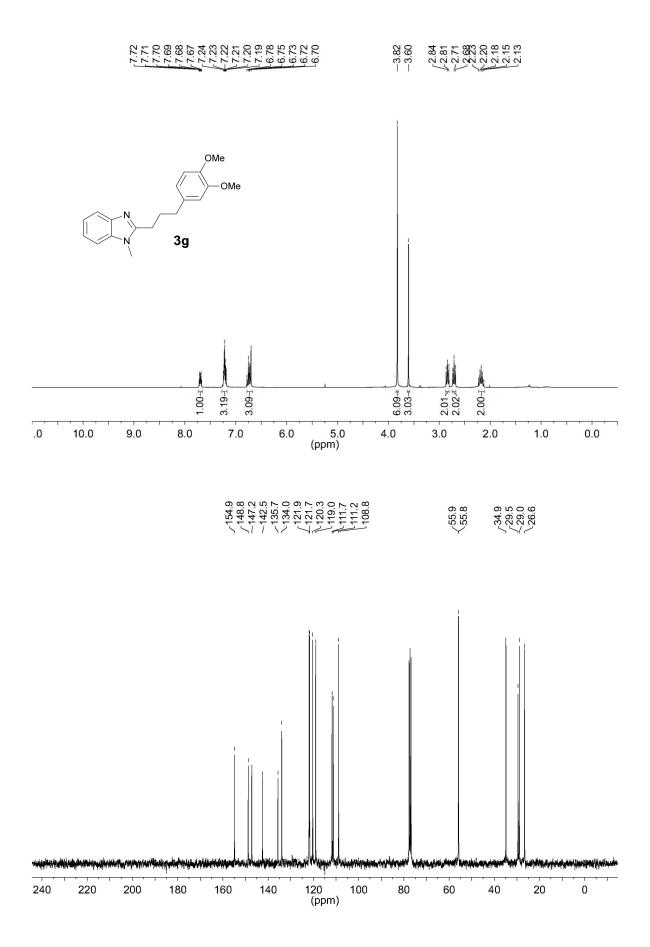


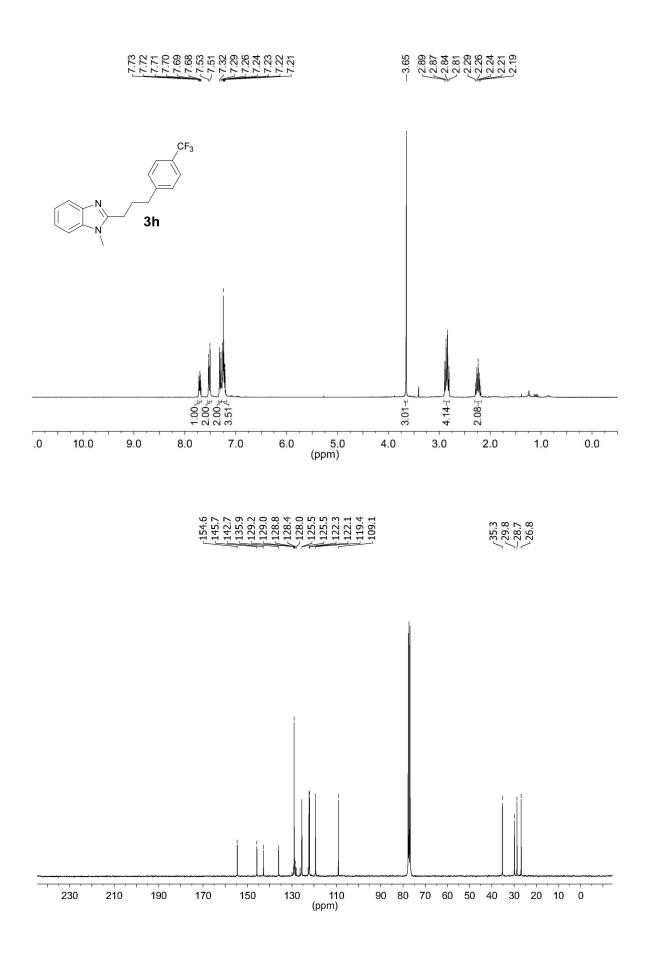


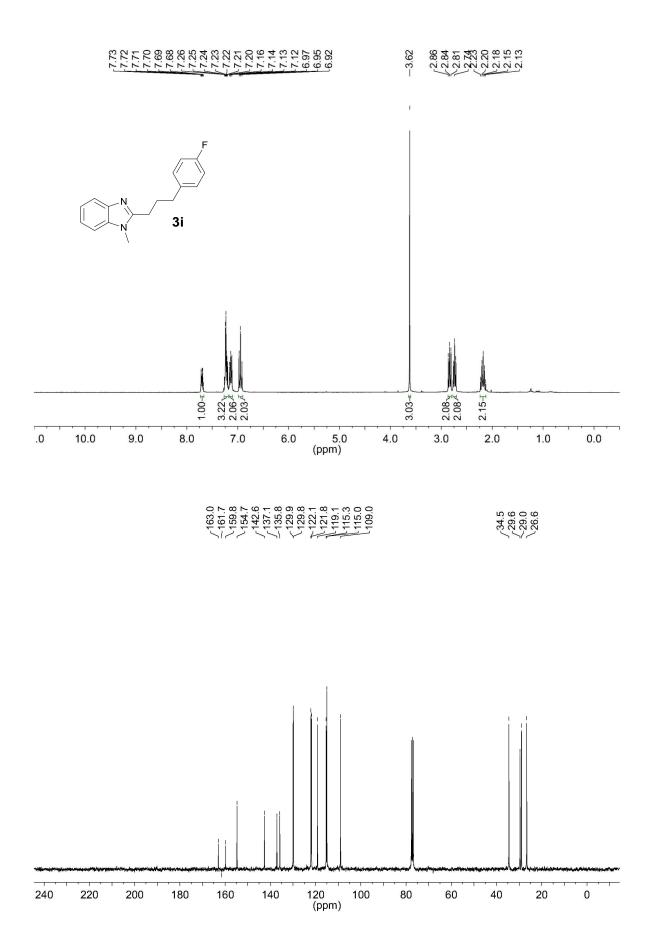


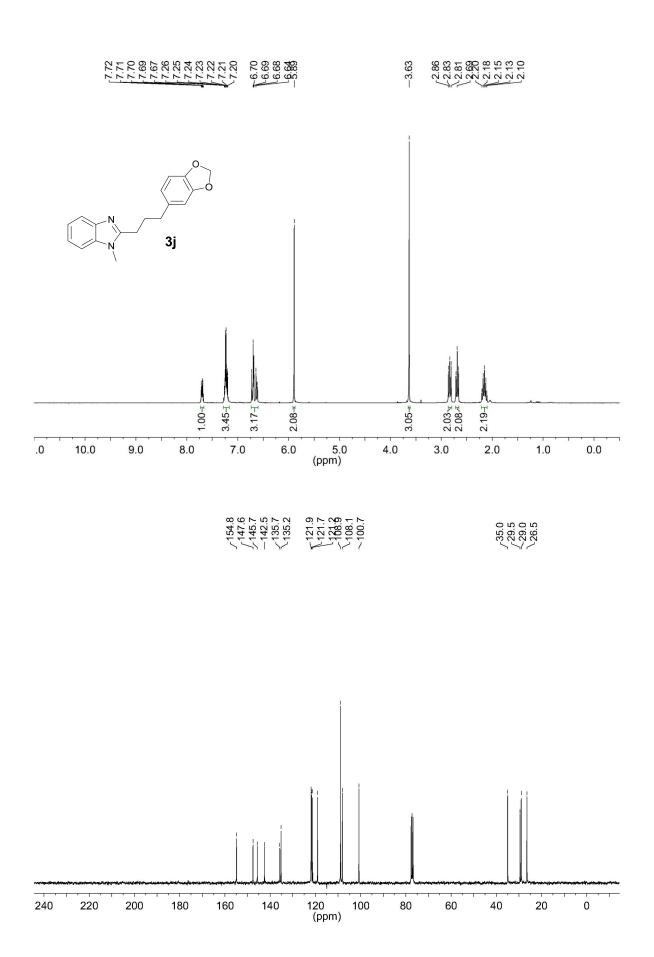


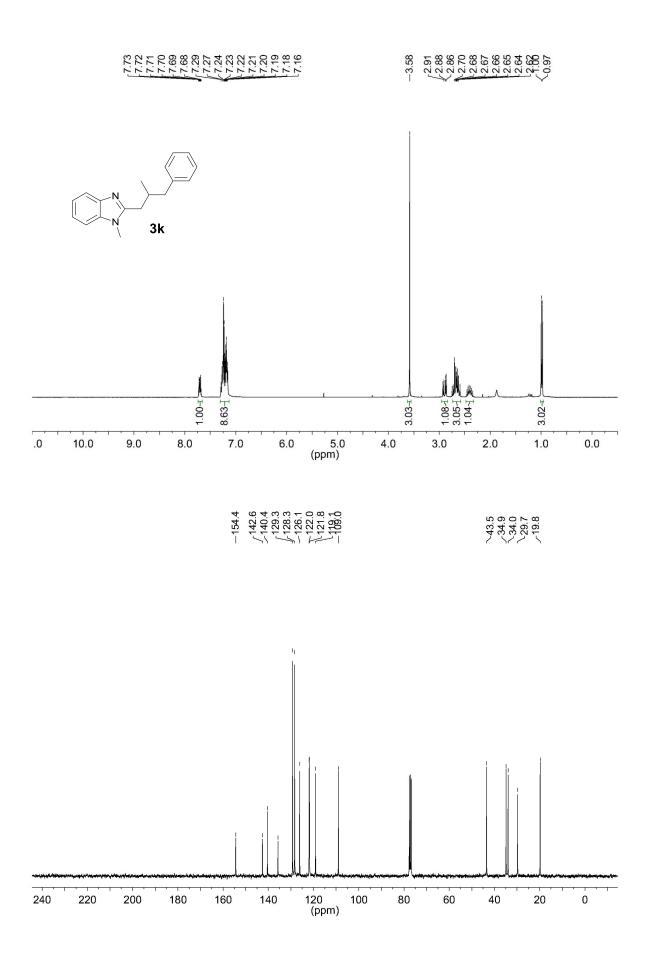


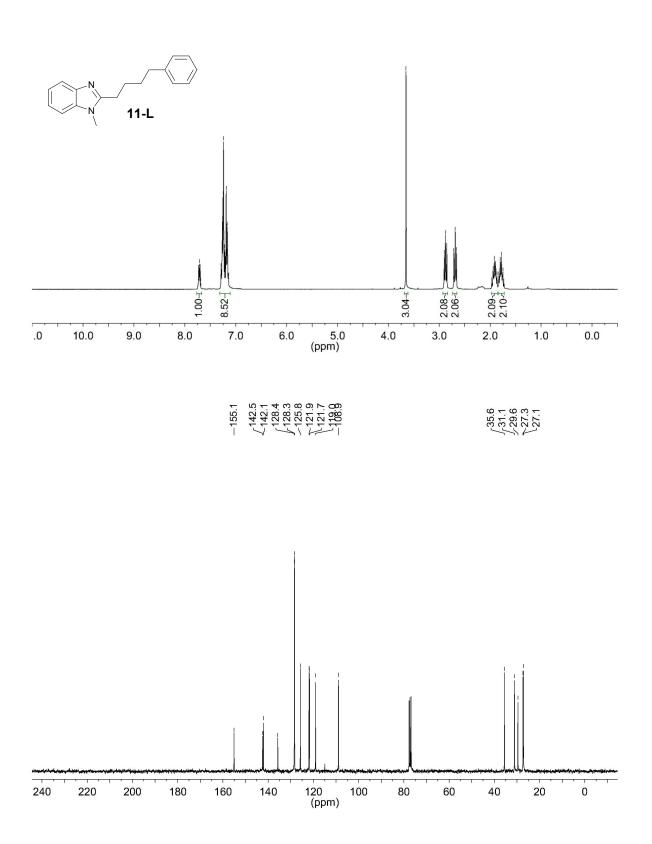

-3.62-3.62-3.62-3.62-2.83-2.83-2.83-2.75-2.7

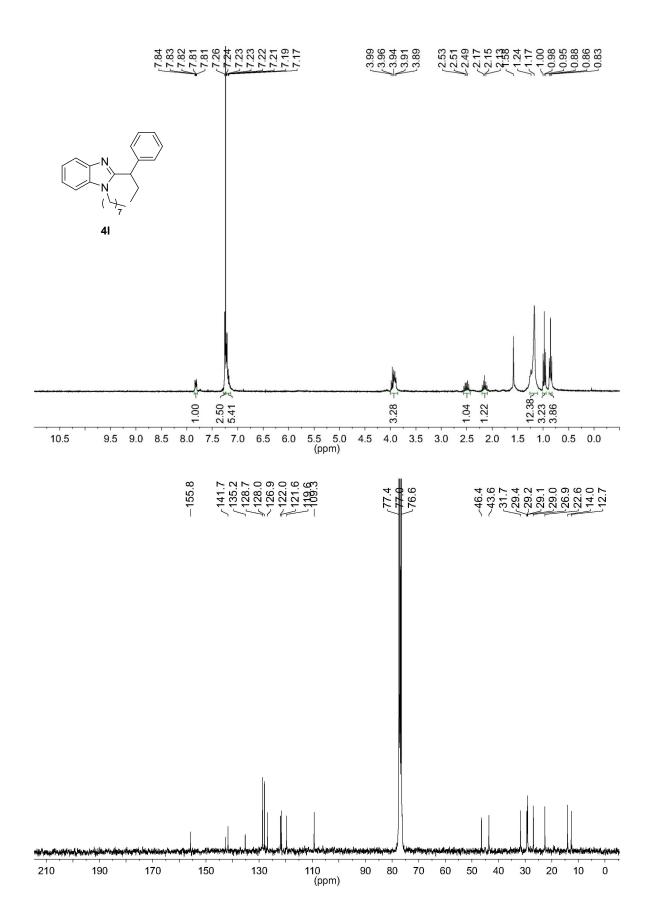


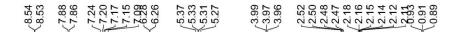


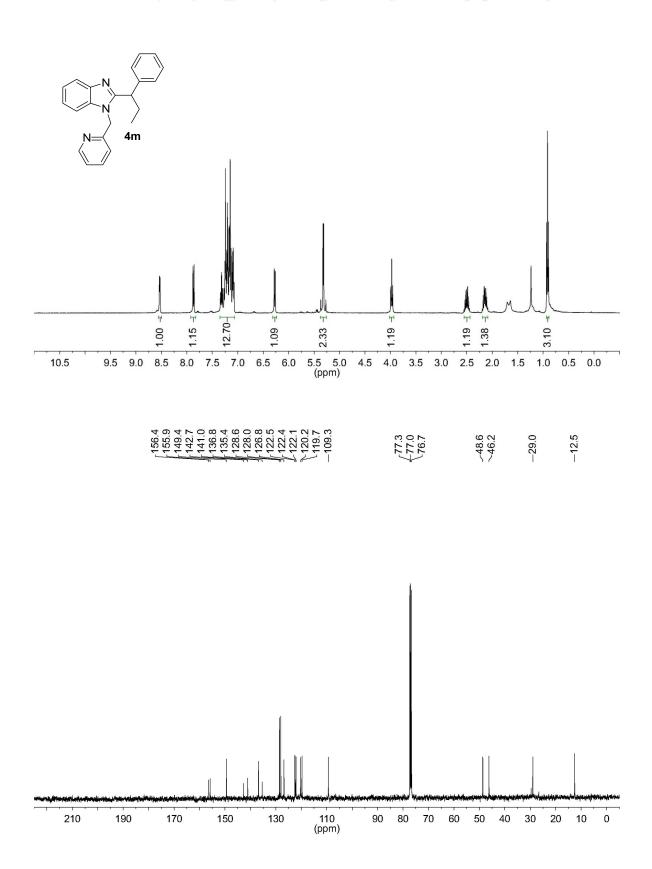


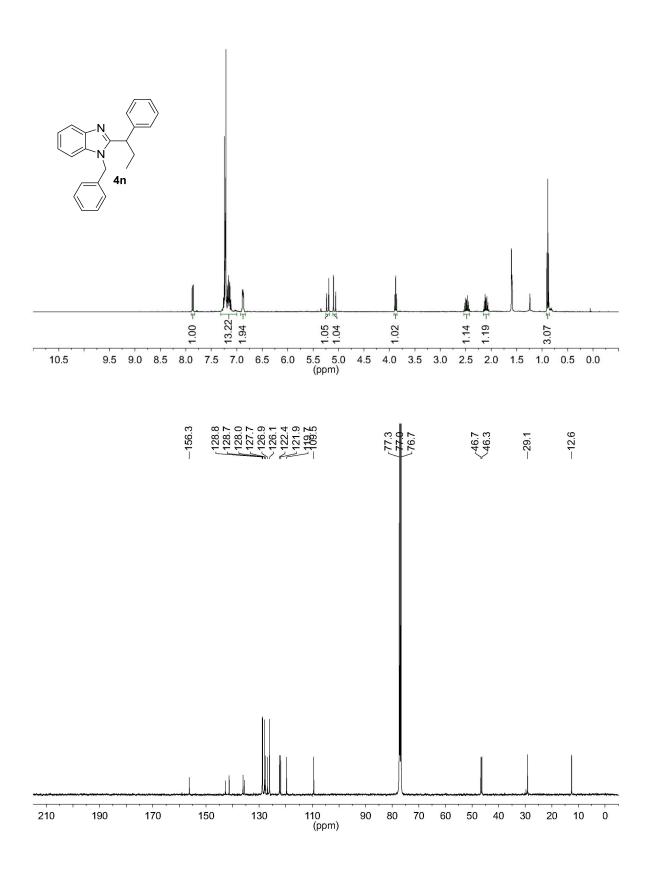


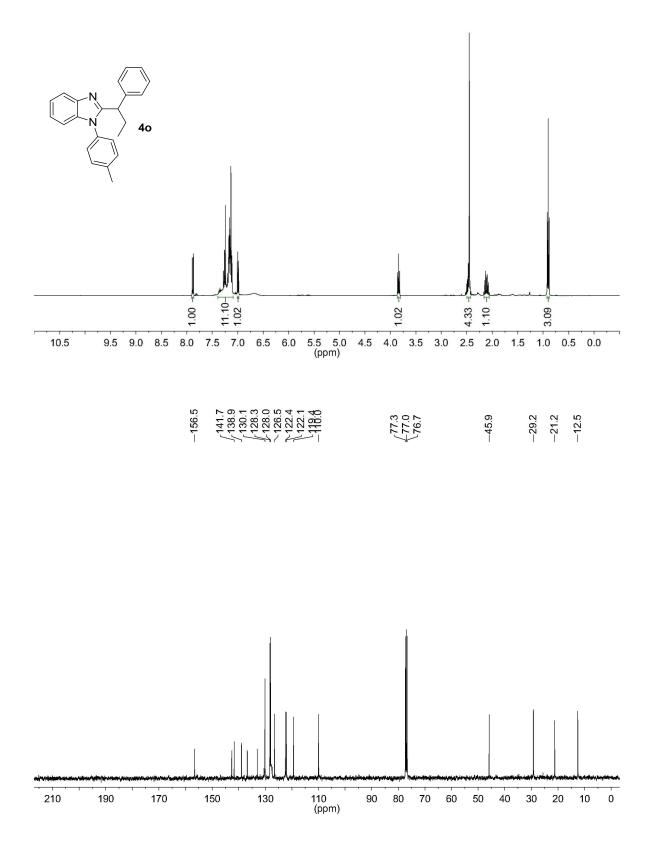


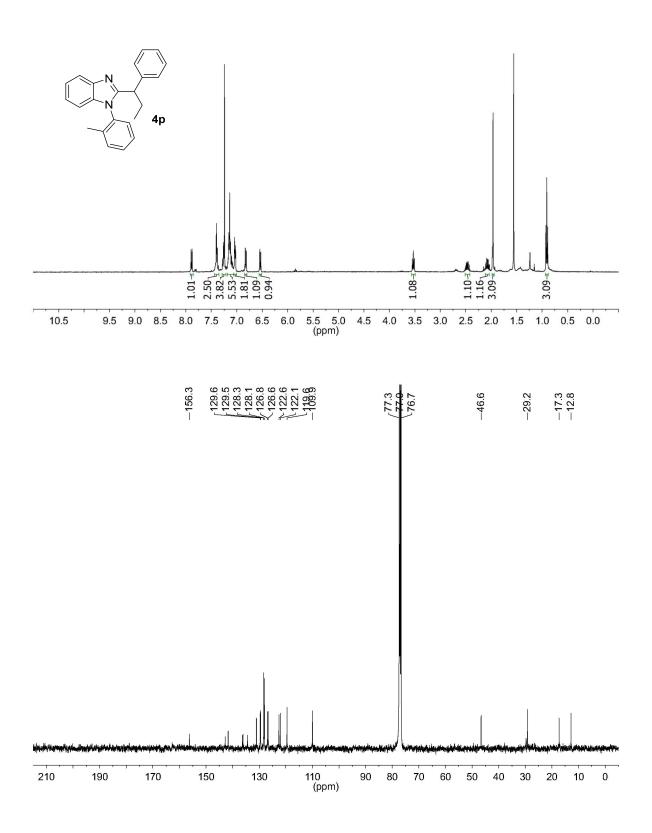


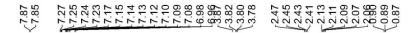


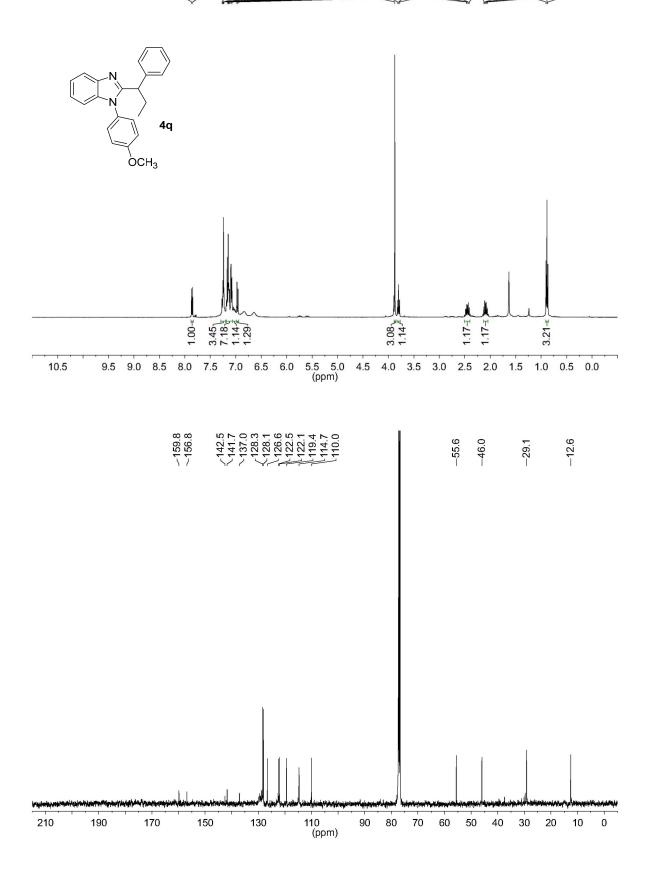


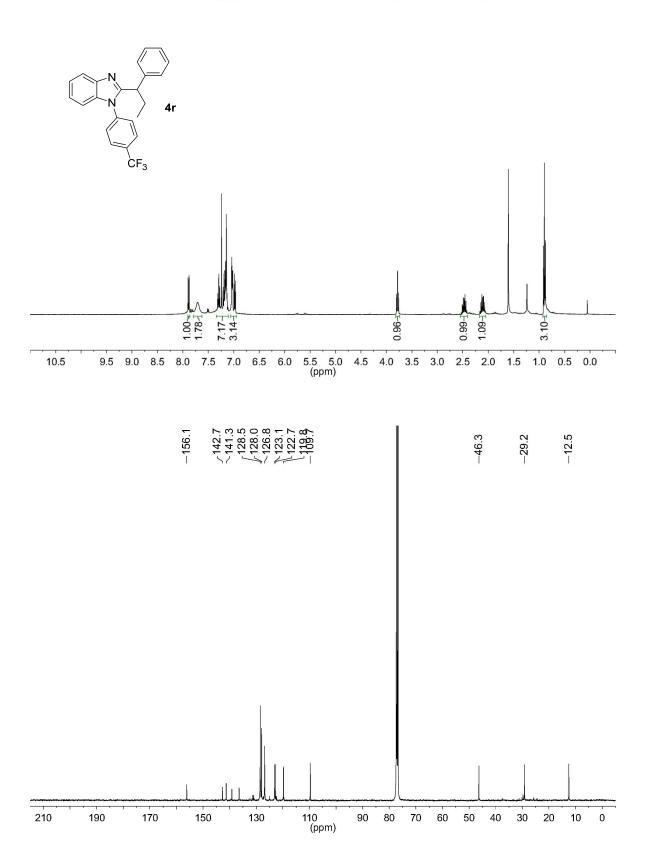


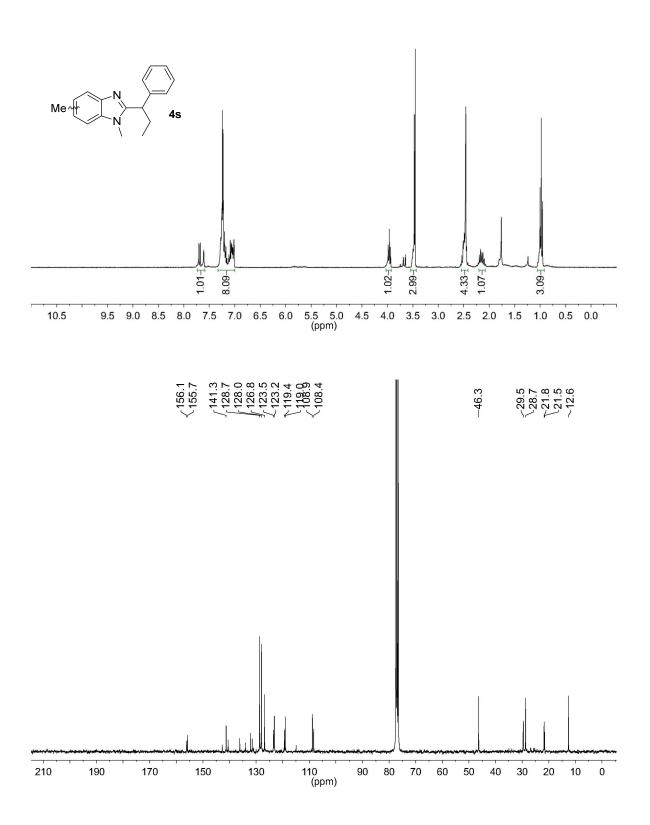


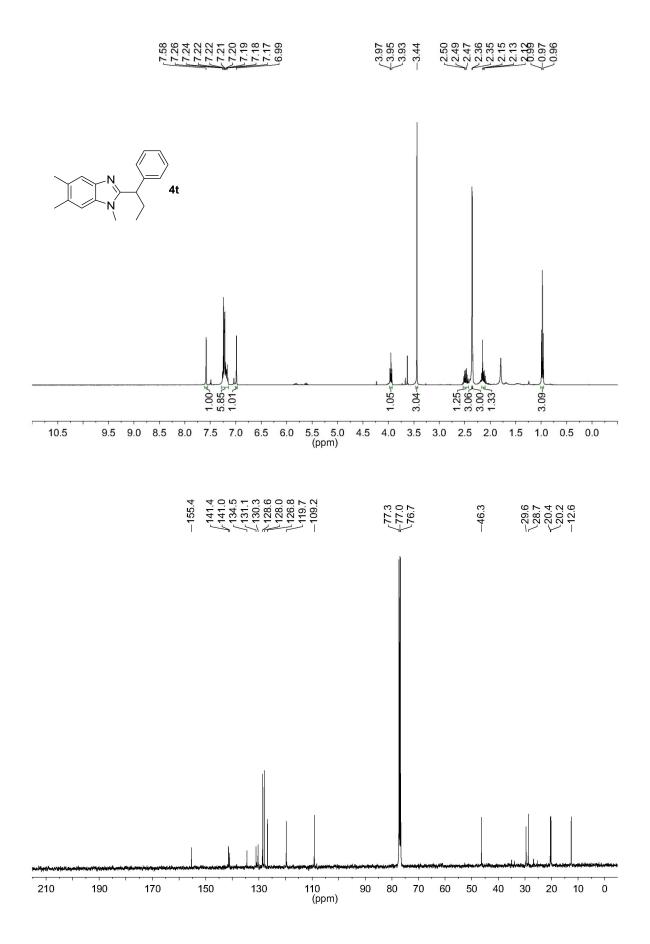


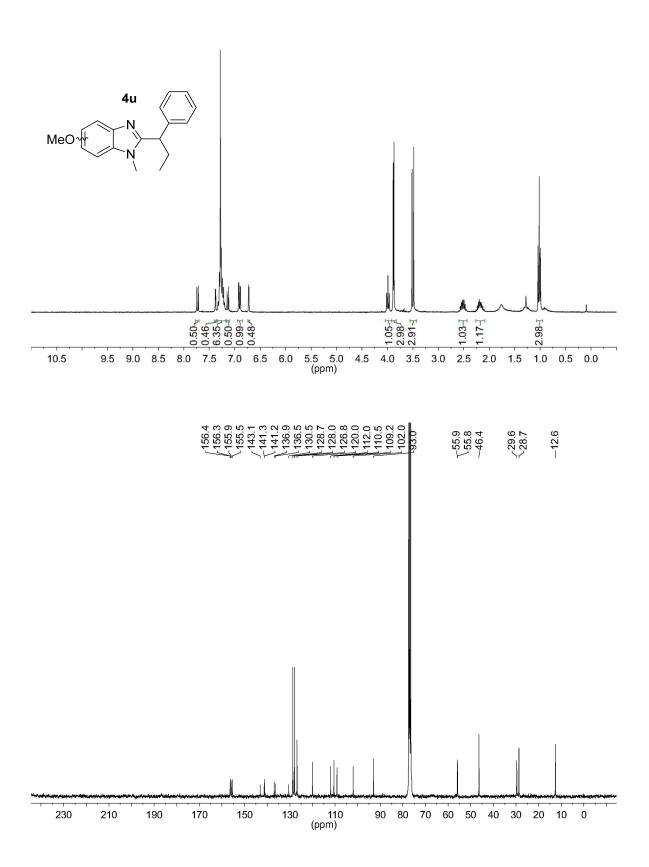


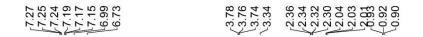

$\begin{array}{c} & (7.28) \\ & (7.23) \\ & (7$

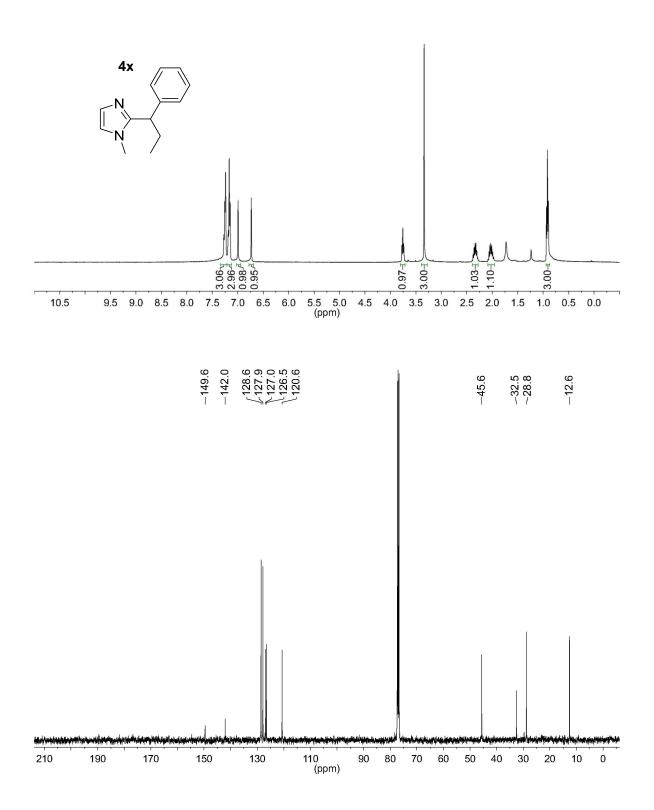


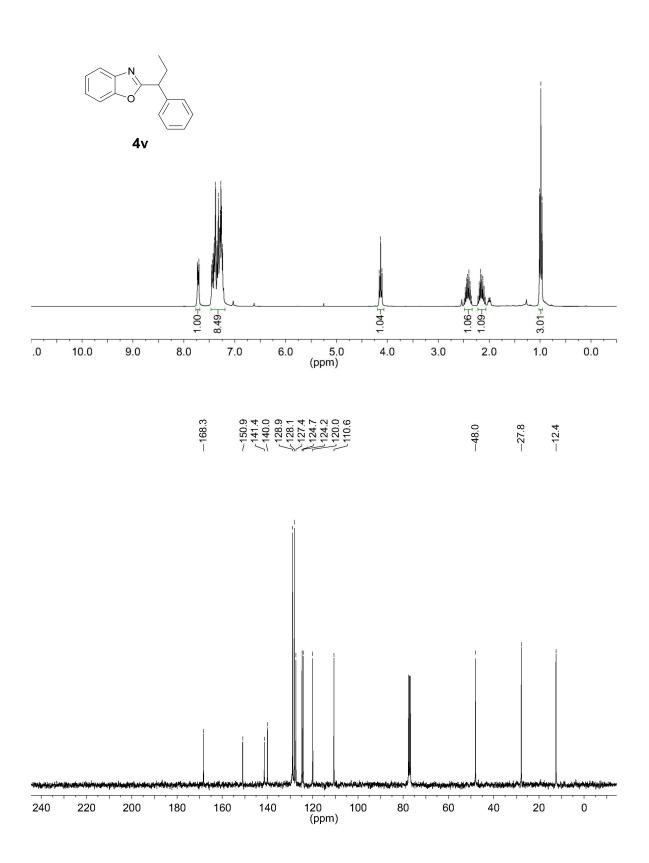


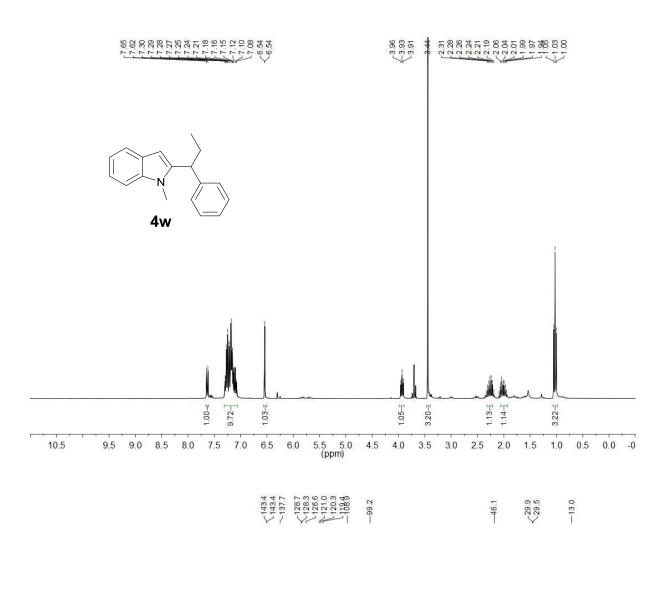


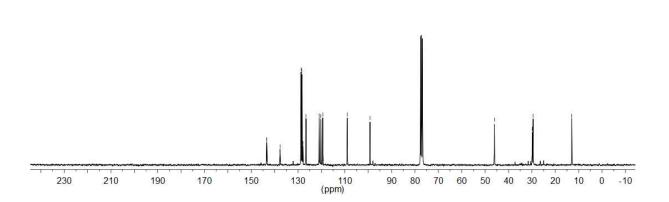


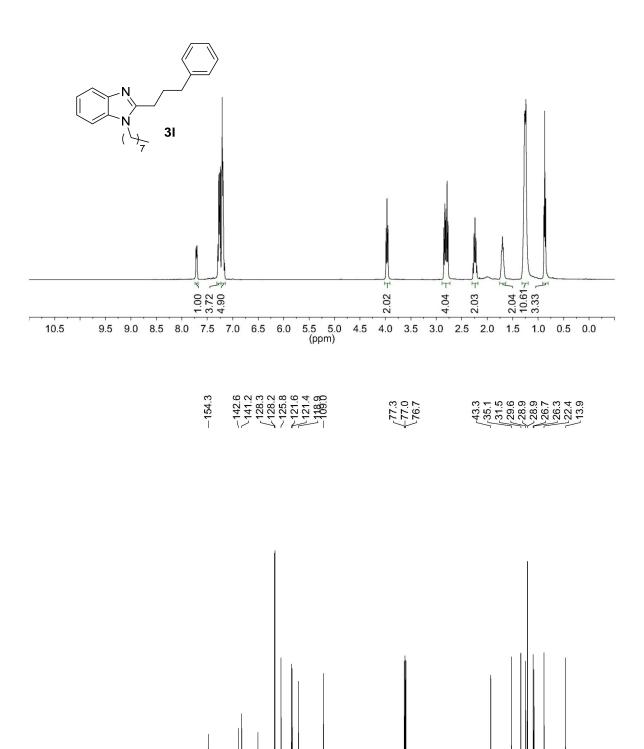


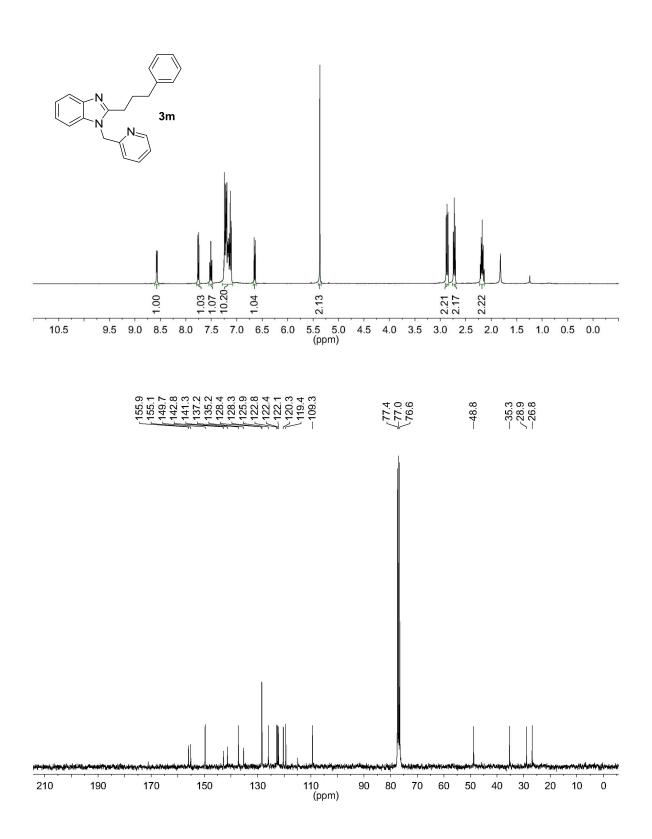


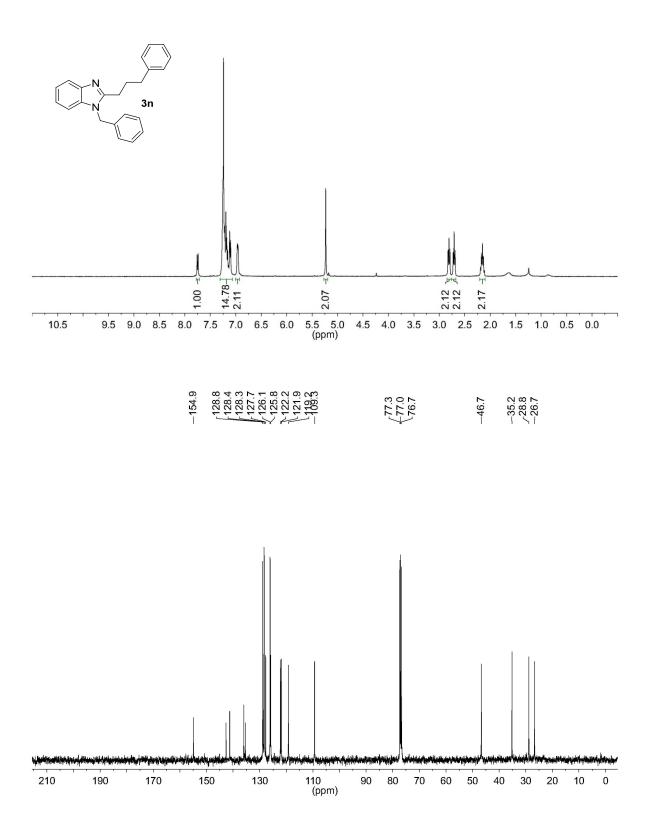

$\begin{array}{c} & 1.12\\$

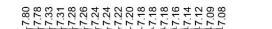


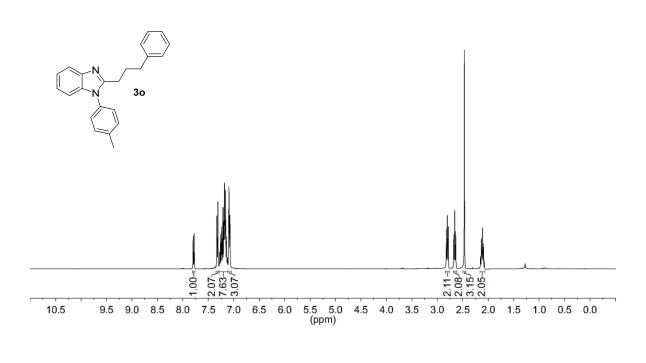


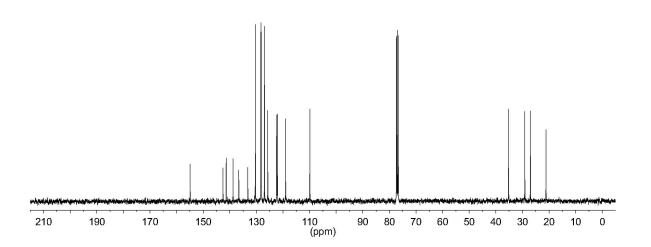


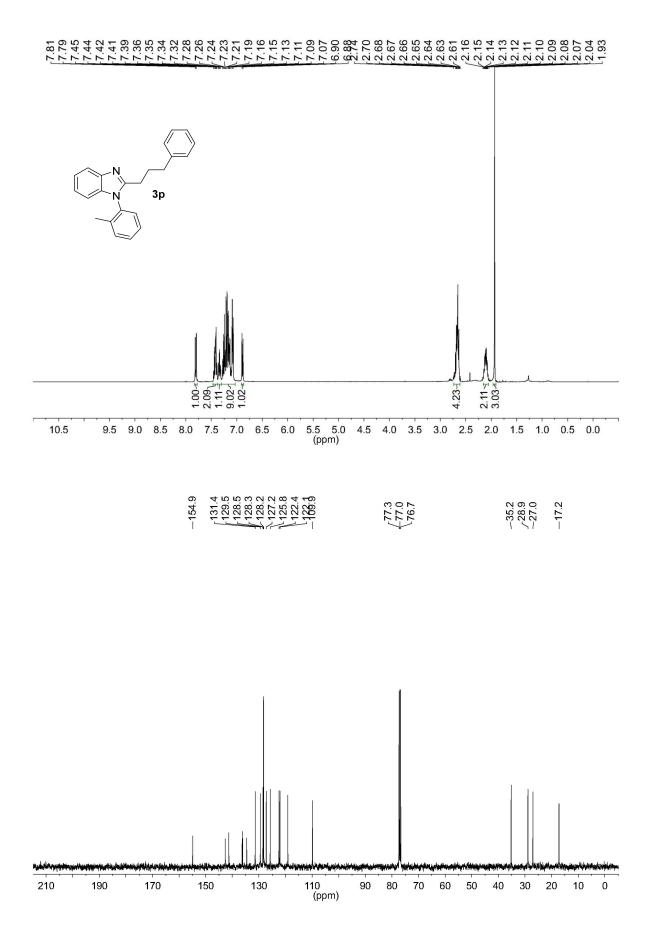


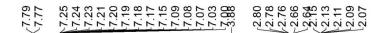


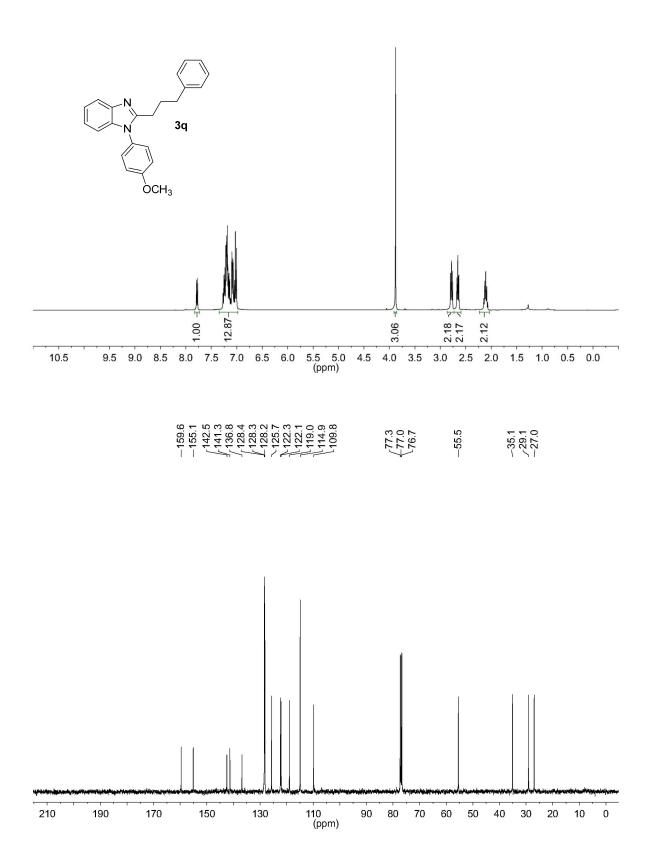

16 222 252 252 252 252 252 252 252 252 25	99 97 95	81 81 81 79	81 83 83 83 83 83 83 83 83 83 83 83 83 83
	ကိုကိုကို		20011111100c

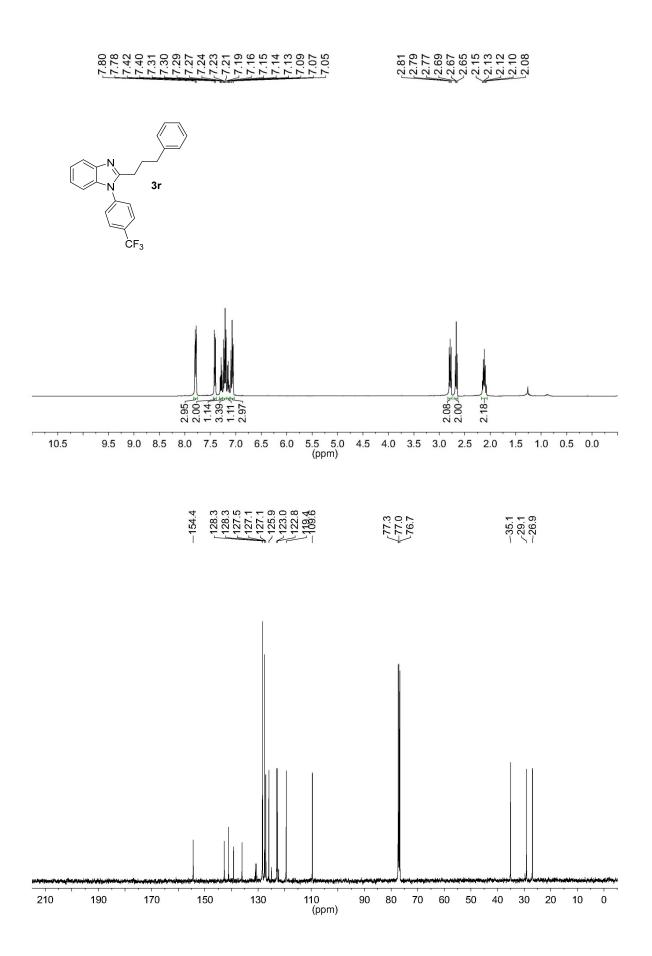

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 (ppm)

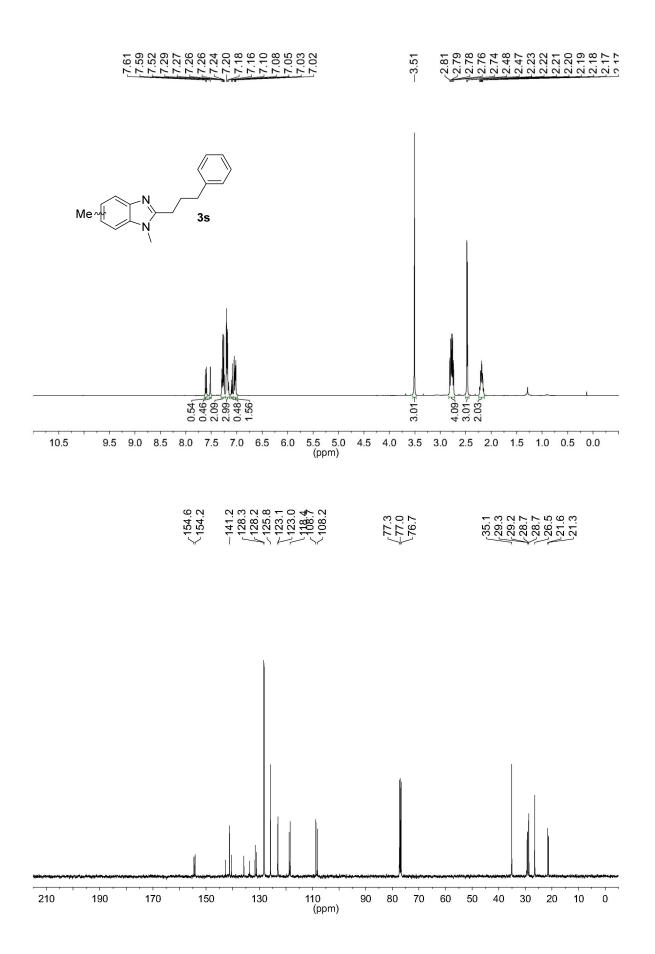


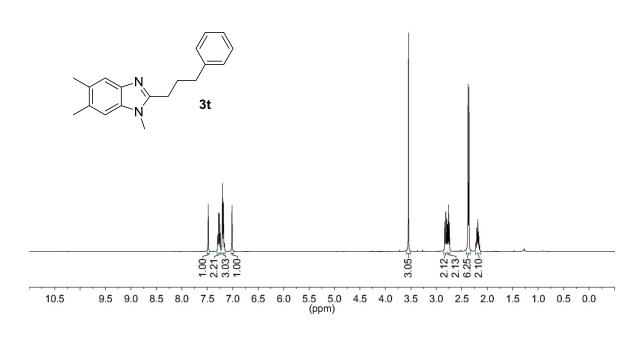


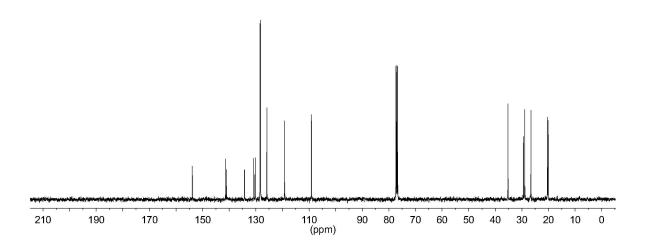

 $\begin{array}{c} 2.82\\ -2.82\\ -2.15\\ -2.15\\ -2.15\\ -2.13\\ -2.13\\ -2.13\\ -2.13\\ -2.13\\ -2.13\\ -2.13\\ -2.13\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.13\\ -2.06\\ -2.$

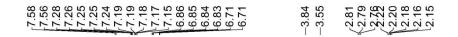


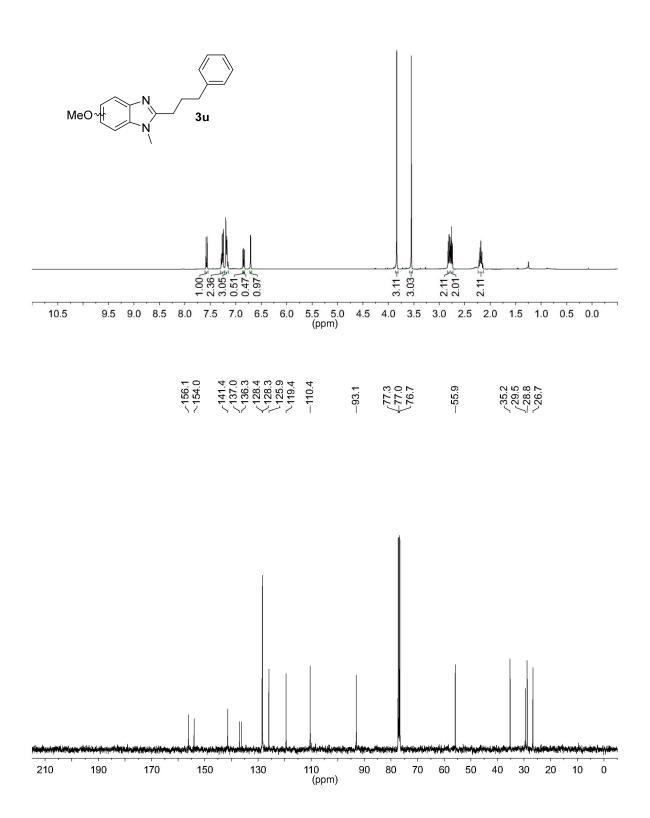


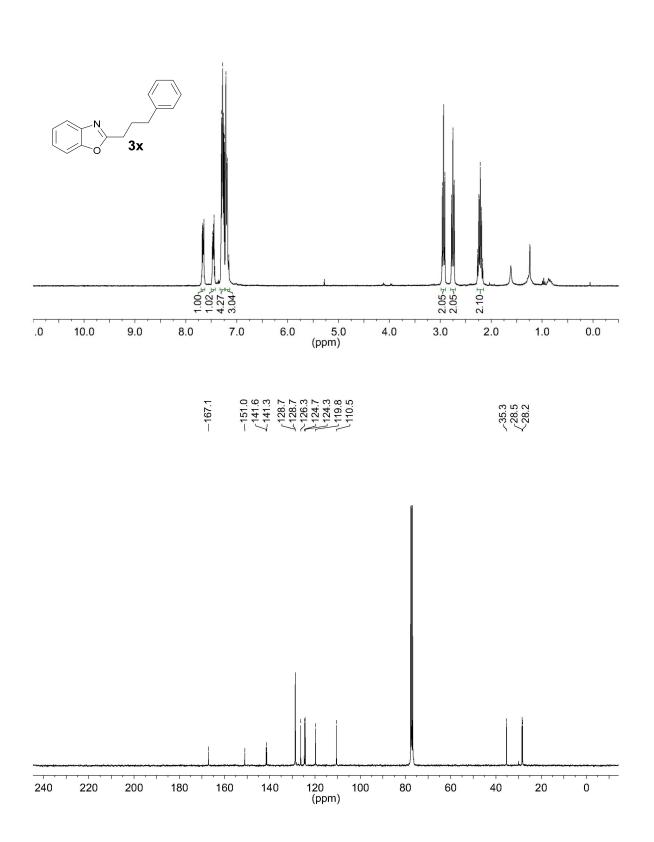


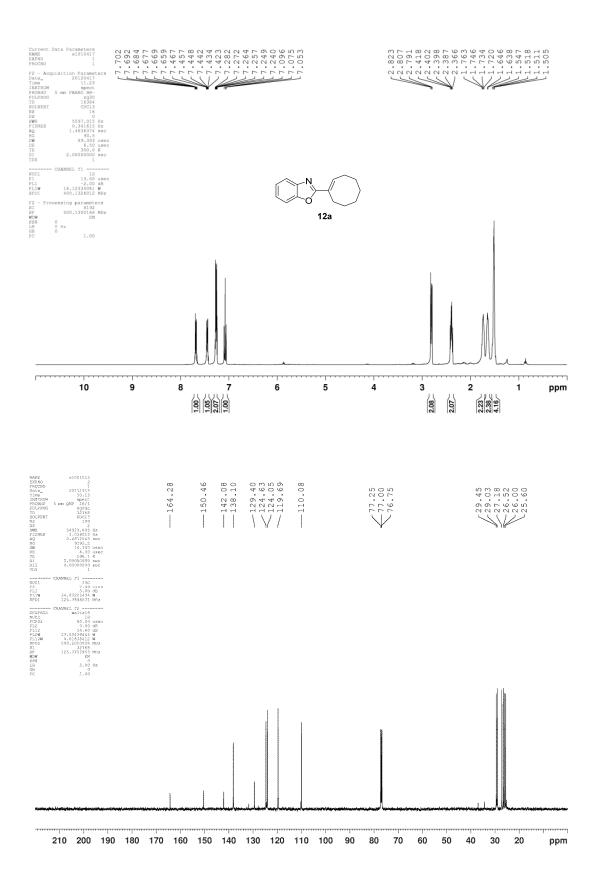


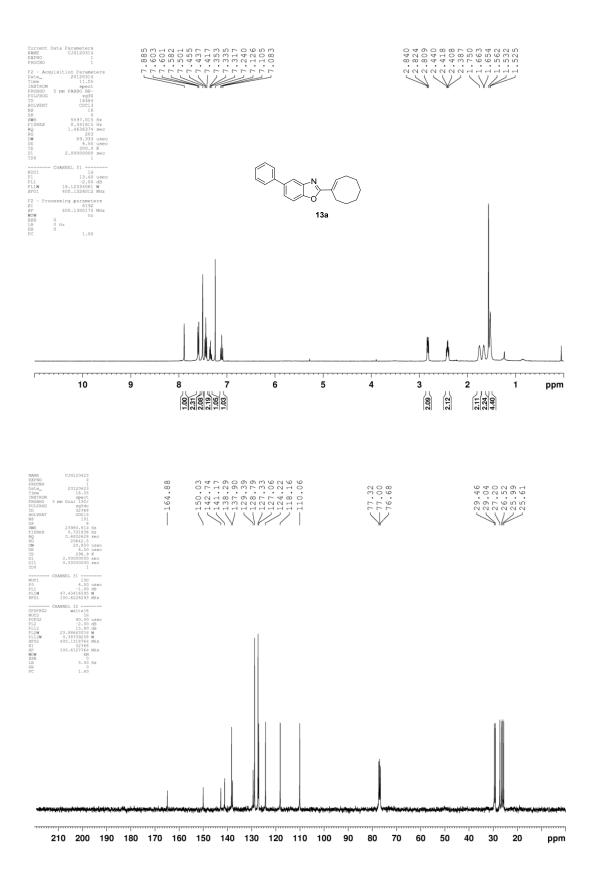


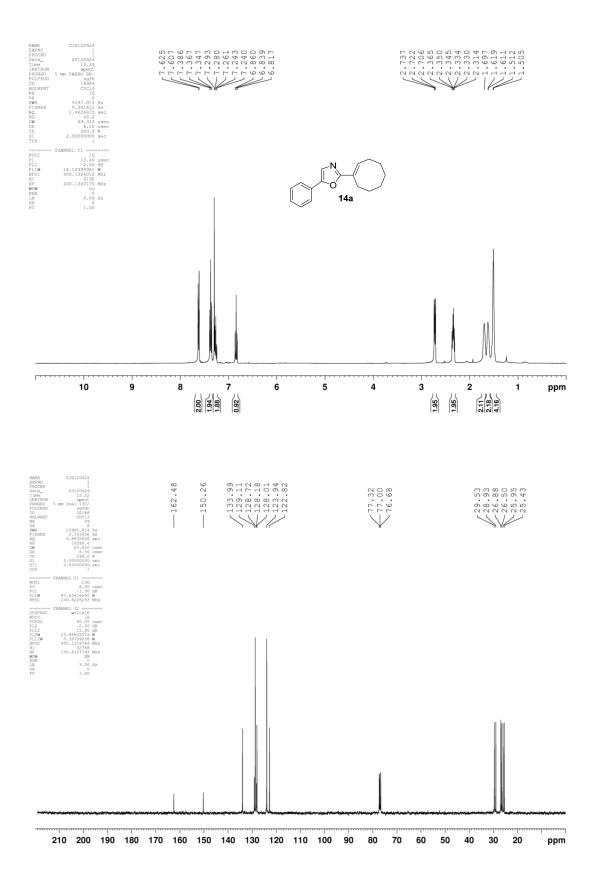


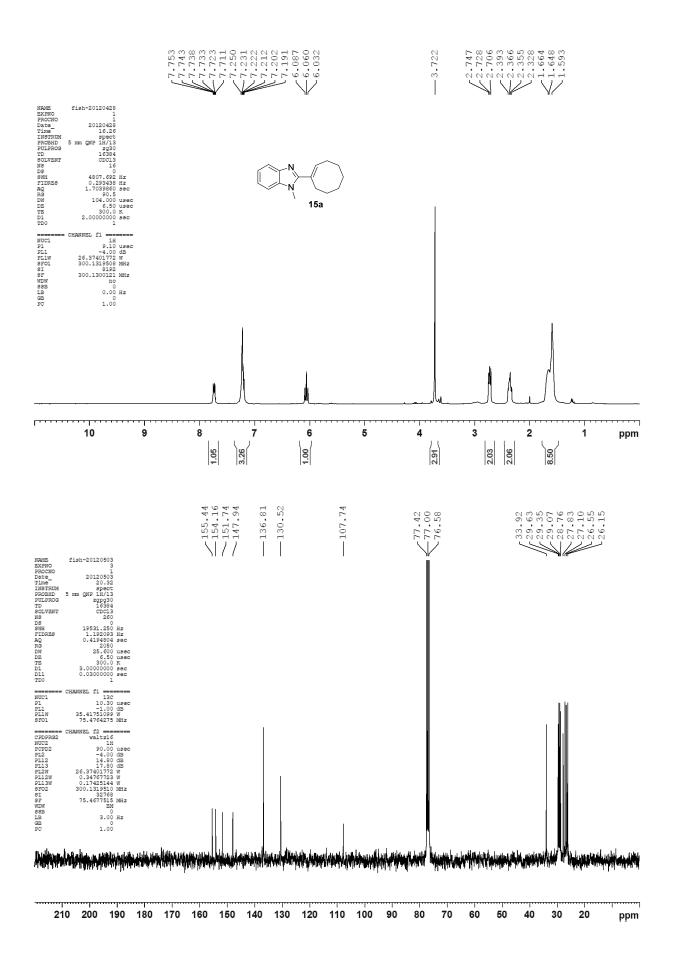


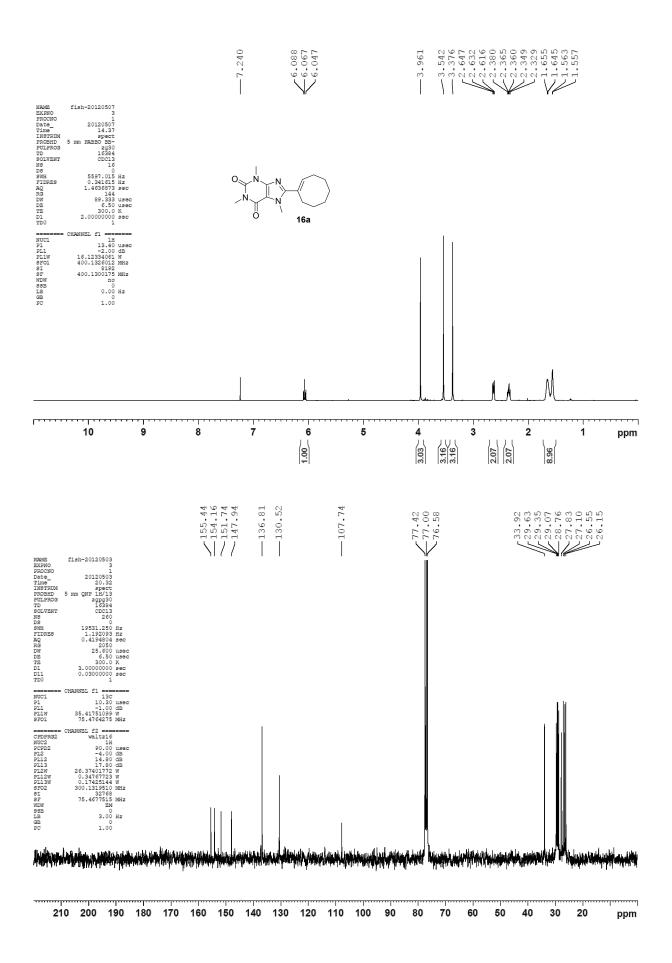


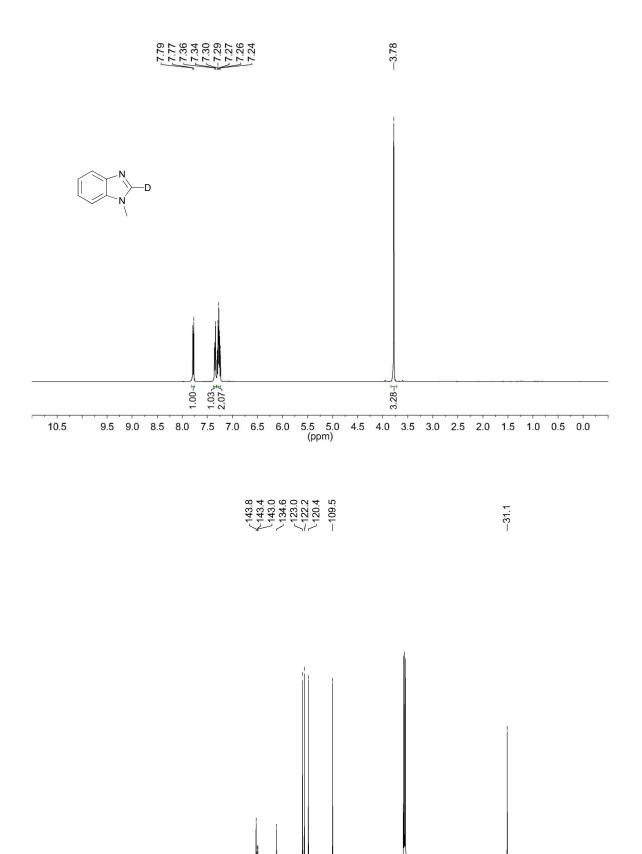







7.65 7.67 7.65 7.65 7.7.47 7.45 7.7.45 7.7.45 7.7.45 7.7.45 7.7.45 7.7.28 7.7.29 7.7.29 7.7.29 7.7.49 7.7.45 7.7.745 7.7.746 7.7.745 7.7.747 7.7.758





240 220 200 180 160 140 120 100 80 60 40 20 0 (ppm)