Supporting Information

Iron-Catalyzed Ring-Opening Azidation and Allylation of *O*-Heterocycles

YoshinariSawama^{*1},Kyoshiro Shibata¹, Yuka Sawama², Masato Takubo¹,Yasunari Monguchi¹, Norbert Krause³, Hironao Sajiki^{*1}

¹Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

 ²Laboratory of Pharmaceutical Physical Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
³Organic Chemistry, Dortmund University of Technology, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany

Contents

- 1. General information
- 2. General procedure
- **3.** Optimization of reaction conditions in azidative ring-opening of 2-phenyltetrahydrofuran (1a)
- 4. Spectroscopic data of products
- 5. References
- 6. ¹H and ¹³C NMR spectra of products

1. General information: All reactions were performed in oven-dried glassware under argon. Anhydrous CH₂Cl₂ as solvent was purchased from commercial sources and used without further purification.Flash column chromatography was performed with Silica Gel 60 N (Kanto Chemical Co., Inc., 63–210 µm spherical, neutral). ¹H and ¹³C NMR spectra were recorded on a JEOL EX 400, AL 400 or ECA 500 spectrometer at room temperature in CDCl₃ as a solvent and internal standard (¹H NMR: $\delta = 7.27$; ¹³C NMR: $\delta = 77.0$) with tetramethylsilane as an internal standard, or CD₃OD as a solvent and internal standard (¹H NMR: $\delta = 3.31$; ¹³C NMR: $\delta = 49.0$). IR spectra were recorded by a Brucker FT-IR ALPHA. ESI high resolution mass spectra (HRMS) were measured by a Shimazu hybrid IT-TOF mass spectrometer. FAB mass spectra was taken on a JEOL JMS-SX102A instrument. Substrate **1a, 1b, 1c, 1d, 1i** and **1j** were prepared according to the procedure depicted in references1, 2 and 3. Substrate **1e** was prepared according to the procedure depicted in reference 4. Substrate **1f** was prepared according to the procedure depicted in references 5 and 6. Substrate **1g** and **1h** were prepared according to the procedure depicted in reference7.Substrate **1k** was purchased from Aldrich. Substrate **1l** was prepared according to the procedure depicted in references 8 and 9. Substrate **1m** was prepared according to the procedure depicted in references 10 and 11. Substrate **1n** was purchased from TCI. Substrate **1o** was prepared according to the procedure depicted in references 12 and 13.

2. General procedure

Typical procedure for the azidation: To a solution of the 2-aryltetrahydrofuran (0.25 mmol) in dry CH_2Cl_2 (0.2 M) was added TMSN₃ (0.50 mmol) and FeCl₃ (0.0125 mmol) in order and the reaction mixture was stirred at room temperature under argon. After the adequate reaction time, the reaction mixture was quenched with *n*-Bu₄NF (0.60 mmol) and water and extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried with Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel-columun chromatography using hexane/EtOAc (2/1) as an eluent.

Typical procedure for the allylation: To a solution of the 2-aryltetrahydrofuran (0.25 mmol) in dry CH_2Cl_2 (0.2 M) was added allylsilane (0.50 mmol) and FeCl₃ (0.0125 mmol) in order and the reaction mixture was stirred at room temperature under argon. After the adequate reaction time, the reaction mixture was quenched with *n*-Bu₄NF (0.60 mmol) and water and extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried with Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel-columun chromatography using hexane/EtOAc (3/1) as an eluent.

3. Optimization of reaction conditions in azidative ring-opening of 2-phenylteterahydrofuran (1a)

		\bigcap	catalyst (10 mol%) azido source (4 eq.)		∕ОН	
		Ph ^r O ^r 1a	solvent, rt then TBAF	N ₃	2a	
entry	catalyst		azido source	solvent	time	yield (%)
1	$HAuCl_4 \bullet 3H_2O$		TMSN ₃	CH_2Cl_2	5 min.	81
2	AuCl ₃		TMSN ₃	CH_2Cl_2	5 min.	79

Table. Lewis acid-catalyzed azidative ring-opening of 2-phenylteterahydrofuran (1a)

3	(Ph ₃ P)AuCl / AgSbF ₆	TMSN ₃	CH_2Cl_2	1 h	38
4	AgOTf	TMSN ₃	CH_2Cl_2	24 h	NR
5	BF ₃ •Et ₂ O	TMSN ₃	CH_2Cl_2	24 h	trace
6	TMSOTf	TMSN ₃	CH_2Cl_2	24 h	trace
7	ZnCl ₂	TMSN ₃	CH_2Cl_2	24 h	68
8	FeCl ₂ •4H ₂ O	TMSN ₃	CH_2Cl_2	24 h	53
9	TFA	TMSN ₃	CH_2Cl_2	24 h	trace
10	FeCl ₃	TMSN ₃	CH_2Cl_2	5 min.	87
11	FeBr ₃	TMSN ₃	CH_2Cl_2	5 min.	88
12 ^a	FeCl ₃	TMSN ₃	CH_2Cl_2	15 min.	85
13	FeCl ₃	NaN ₃	CH_2Cl_2	24 h	NR
14	FeCl ₃	DPPA	CH_2Cl_2	24 h	NR
15	FeCl ₃	TMSN ₃	CHCl ₃	6 h	60
16	FeCl ₃	TMSN ₃	toluene	6 h	67
17	FeCl ₃	TMSN ₃	1,4-dioxane	6 h	trace
18	FeCl ₃	TMSN ₃	THF	6 h	trace

 a 5 mol% of FeCl_3 and 1. 5 eq. of TMSN_3 were used.

4. Spectroscopic data of products

4-Azido-4-phenylbutan-1-ol (2a):

Colorless oil; IR (ATR) cm⁻¹: 3331, 2945, 2091, 1493, 1453, 1243; ¹H NMR (400 MHz, CD₃OD): δ 7.40—6.30 (5H, m), 4.89 (1H, s), 4.53 (1H,t, *J* = 7.0 Hz), 3.55 (2H,t, *J* = 6.5 Hz,),1.92—1.84 (1H, m), 1.83—1.76 (1H, m), 1.65—1.56 (1H, m), 1.52—1.43 (1H, m); ¹³C NMR (100 MHz, CD₃OD): δ 141.1, 129.7, 129.2, 128.0, 67.35, 62.36, 33.6, 30.2; FAB-HRMS m/z: 192.1133 ([M]⁺); Calcd for C₁₀H₁₄N₃O: 192.1136.

4-Azido-4-(4-methoxyphenyl)butan-1-ol (2b):

Colorless oil; IR (ATR) cm⁻¹: 3347, 2936, 2091, 1610, 1512, 1245; ¹H NMR (500 MHz, CDCl₃): δ 7.23 (2H, d, J = 9.0 Hz), 6.90 (2H, d, J = 9.0 Hz), 4.41 (1H, t, J = 7.0 Hz), 3.81 (3H, s), 3.64 (2H, t, J = 6.0 Hz), 1.93—1.86 (1H, m), 1.85—1.77 (1H, m), 1.67—1.60 (1H, m), 1.56—1.49 (1H, m); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 131.6, 128.2,

114.2, 65.8, 62.4, 55.3, 32.5, 29.5; ESI-HRMS m/z: 221.1132 ($[M]^+$); Calcd for $C_{11}H_{15}N_3O_2$: 221.1159.

4-Azido-4-(2-methoxyphenyl)butan-1-ol (2c):

Colorless oil; IR (ATR) cm⁻¹: 3333, 2939, 2839, 2090, 1600, 1587, 1491, 1462; ¹H NMR (400 MHz, CDCl₃): δ 7.33—7.24 (2H, m), 6.98 (1H, t, *J* = 7.2 Hz), 6.90 (1H, d, *J* = 8.0 Hz), 4.96 (1H, t, *J* = 6.8 Hz), 3.83 (3H, s), 3.64 (2H, t, *J* = 6.4 Hz), 1.90—1.80 (2H,m), 1.73—1.63 (1H, m), 1.62—1.53 (1H, m); ¹³C NMR (100 MHz, CDCl₃): δ 156.6, 129.1, 127.8, 127.1, 120.8, 110.7, 62.4, 59.5, 55.4, 31.1, 29.4; ESI-HRMS m/z: 244.1052 ([M+Na]⁺); Calcd for C₁₁H₁₅N₃O₂Na: 244.1056.

4-Azido-4-(4-chlorophenyl)butan-1-ol (2d):

Colorless oil; IR (ATR) cm⁻¹: 3322, 2945, 2876, 2090, 1595, 1491, 1448, 1410, 1330; ¹H NMR (400 MHz, CDCl₃): δ 7.36 (2H, d, *J* = 8.4 Hz),7.25 (2H, d, *J* = 8.4 Hz), 4.48 (1H, t, *J* = 7.0 Hz),3.66 (2H, t, *J* = 6.0 Hz),3.81 (3H, s), 1.91—1.86 (1H, m), 1.85—1.79 (2H, m), 1.68—1.54 (2H, m); ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 134.0, 129.0, 128.2, 65.4, 62.2, 32.6, 29.1; ESI-HRMS m/z: 248.0582 ([M+Na]⁺); Calcd for C₁₀H₁₂N₃OCINa:248.0561.

4-Azido-4-phenylpentan-1-ol (2f):

Colorless oil; IR (ATR) cm⁻¹: 3332, 3060, 2948, 2875, 2101, 1600, 1494, 1445, 1380; ¹H NMR (400MHz; CDCl₃): δ 7.41—7.34 (4H, m), 7.32—7.26 (1H, m), 3.58 (2H, t, J = 6.4 Hz), 1.98—1.86 (2H, m), 1.70 (3H, s), 1.57 (1H, s, br), 1.55—1.35 (2H, m);¹³C NMR (125 MHz; CDCl₃): δ 143.4, 128.6, 127.4, 125.7, 66.8,62.7, 38.7, 27.7, 25.8; ESI-HRMS m/z: 205.1212 ([M]⁺); Calcd for C₁₁H₁₅N₃O: 205.1210.

cis-4-Azido-6-phenyl-5-hexen-1-ol (2g):

Colorless oil; IR (ATR) cm⁻¹: 3360, 2927, 2096, 1493, 1449, 1236; ¹H NMR (400 MHz, CDCl₃): δ 7.42—7.39 (2H, m), 7.36—7.31 (2H, m), 7.30—7.27 (1H, m), 6.63 (1H, d, *J* = 16.0 Hz), 6.12 (1H, dd, *J* = 16.0, 8.0 Hz), 4.09—4.03 (1H, m), 3.69 (2H, t, *J* = 6.0 Hz), 1.77—1.62 (4H, m), 1.36 (1H,brs); ¹³C NMR (100 MHz, CDCl₃): δ 136.0, 133.7, 128.8, 128.4, 127.0, 126.8, 64.9, 62.6, 31.4, 29.2; ESI-HRMS m/z: 217.1213 ([M]⁺); Calcd for C₁₂H₁₅N₃O: 217.1210.

4-Azido-6-phenyl-5-hexyne-1-ol (2i):

Colorless oil; IR (ATR) cm⁻¹:3320, 2935, 2872, 2100, 1598, 1490, 1443, 1331; ¹H NMR (400MHz; CDCl₃): δ 7.49—7.44 (2H, m), 7.40—7.30 (3H, m), 4.39 (1H, t, *J* = 6.4 Hz), 3.73 (2H, t, *J* = 6.0 Hz), 1.93—1.83 (2H, m), 1.82—1.76 (2H, m); ¹³C NMR (125 MHz; CDCl₃): δ 131.9, 128.8,128.3, 121.9, 87.3, 84.2, 62.1, 53.4, 31.9, 28.7; ESI-HRMS m/z: 216.1120 ([M+H]⁺); Calcd for C₁₂H₁₄N₃O: 216.1131.

5-Azido-5-phenylpentan-1-ol (2j):

Colorless oil; IR (ATR) cm⁻¹:3325, 3030, 2936, 2863, 2091, 1602, 1493, 1453; ¹H NMR (400MHz; CDCl₃): δ 7.41—7.29 (5H, m), 4.42 (1H, t, *J* = 7.2 Hz), 3.63 (2H, t, *J* = 6.4 Hz), 1.89—1.76 (2H, m), 1.62—1.55 (3H, m), 1.49—1.46 (1H, m), 1.38—1.34 (1H, m), 1.33(1H, s, br); ¹³C NMR (125 MHz; CDCl₃): δ 139.7, 128.8, 128.2, 126.8, 66.3, 62.6, 36.0, 32.2, 22.5; ESI-HRMS m/z: 205.1221 ([M]⁺); Calcd for C₁₁H₁₅N₃O: 205.1210.

1,4-Diazido-tetraline(2k)

Sseparable diastereomers: First one; Colorless oil; IR (ATR) cm⁻¹: 2936, 2085, 1489, 1450, 1335, 1296; ¹H NMR (400MHz; CDCl₃): δ 7.42–7.39 (2H, m), 7.37–7.33 (2H,

m), 4.64—4.63 (2H, m), 2.27—2.23 (2H, m), 2.00—1.94 (2H, m); ¹³C NMR (125 MHz; CDCl₃): δ 133.6, 129.7, 129.0, 58.4, 24.7; ESI-HRMS m/z: 215.1027 ([M+H]⁺); Calcd for C₁₀H₁₁N₆: 215.1040. Second one; Colorless oil; IR (ATR) cm⁻¹: 2951, 2094, 1490, 1452, 1350, 1325, 1241; ¹H NMR (400MHz; CDCl₃): δ 7.43—7.37 (4H, m), 4.55—4.52 (2H, m), 2.19—2.08 (4H, m); ¹³C NMR (125 MHz; CDCl₃): δ 134.4, 128.9, 128.8, 58.9, 26.0; ESI-HRMS m/z: 215.1048 ([M+H]⁺); Calcd for C₁₀H₁₁N₆: 215.1040.

1-(Azidophenylmethyl)-2-(hydroxymethyl)benzene (2l):

Brown oil; IR (ATR) cm⁻¹: 3346, 3064, 3029, 2888, 2096, 1493, 1453, 1238;¹H NMR (400MHz; CDCl₃): δ 7.47—7.45 (2H, m), 7.41—7.29 (7H, m), 6.12 (1H, s), 4.63 (1H, d, J = 13.2 Hz), 4.62 (1H, d, J = 13.2 Hz), 1.68 (1H, brs); ¹³C NMR (125 MHz; CDCl₃): 140.0, 138.1, 137.5, 129.1, 128.7, 128.4, 128.3, 128.2, 128.1, 127.4, 65.0, 63.0; ESI-HRMS m/z: 239.1048 ([M]⁺); Calcd for C₁₄H₁₃N₃O: 239.1053.

Mixture of 1-(1-Azido-3-phenyl-2-propen-1-yl)-2-(hydroxymethyl)benzene (2ma) and 1-(3-Azido-3-phenyl-1-propen-1-yl)-2-(hydroxymethyl)benzene (2mb):

Mixture of regioisomers; Colorless oil; IR (ATR) cm⁻¹: 3333, 3062, 3029, 2886, 2096, 1601, 1492, 1452; ¹H NMR (400MHz; CDCl₃): δ 7.50—7.47 (1H, m), 7.41—7.24 (8H, m), 7.07(0.6H, d, *J* = 15.6 Hz), 6.71(0.4H, d, *J* = 15.6 Hz), 6.31(0.4H, dd, *J* = 15.6 Hz, *J* = 6.8 Hz), 6.22(0.6H, dd, *J* = 15.6 Hz, *J* = 7.2 Hz), 5.62(0.4H, d, *J* = 6.8 Hz), 5.24(0.6H, d, *J* = 7.2 Hz), 4.78(0.8H, s), 4.77(1.2H, s), 1.91(0.4H, s, br), 1.70(0.6H, s, br); ¹³C NMR (125 MHz; CDCl₃): δ 138.4, 138.0, 137.8, 137.0, 135.8, 135.1, 132.9, 129.9, 129.4, 129.5, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 127.8, 127.0, 126.7, 126.5, 126.4, 67.2, 63.6, 63.4, 63.2; ESI-HRMS m/z: 265.1223 ([M]⁺); Calcd for C₁₆H₁₅N₃O: 265.1210.

Ph^LCO₂H **2n**

4-Azido-4-phenylbutanoic acid (2n):

Colorless oil;¹H NMR (400MHz; CDCl₃): δ 7.42—7.31 (5H, m), 4.56 (1H, t, *J* = 7.0 Hz), 2.45 (2H, t, *J* = 7.2 Hz), 2.15—2.04 (2H, m); ¹H NMR data was identical with that in the reference 14.

5-Azido-5-phenylpentanoic acid (20):

Colorless oil;¹H NMR (400MHz; CDCl₃): δ 7.41—7.29 (5H, m), 4.43 (1H, t, *J* = 6.8 Hz), 2.38 (2H, t, *J* = 7.0 Hz), 1.92—1.57 (4H, m); ¹H NMR data was identical with that in the reference 14.

4-Phenyl-6-heptene-1-ol (3a):

Colorless oil; IR (ATR) cm⁻¹: 3347, 3077, 3027, 2931, 2249, 1639, 1602, 1493, 1451;¹H NMR (400MHz; CDCl₃): δ 7.30—7.25 (2H, m), 7.20—7.14 (3H, m), 5.70—5.61 (1H, m), 4.49—4.91 (2H, m), 3.55 (2H, t, *J* = 6.6 Hz), 2.63—2.59 (1H, m), 2.37 (2H, t, *J* = 7.0 Hz), 1.81—1.74 (1H, m), 1.64—1.55 (1H, m), 1.48—1.34 (2H, m), 1.32(1H, s, br);¹³C NMR (125 MHz; CDCl₃): δ 144.9, 136.9, 128.3, 127.6, 126.1, 115.9, 62.9, 45.7, 41.4, 31.9, 30.7;ESI-HRMS m/z: 190.1346 ([M]⁺); Calcd for C₁₃H₁₈O: 190.1352.

4,6-Diphenyl-6-heptene-1-ol (3b):

Colorless oil; IR (ATR) cm⁻¹: 3353, 3027, 2929, 2249, 1627, 1600, 1493, 1451;¹H NMR (400MHz; CDCl₃): δ 7.33—7.26 (7H, m), 7.19—7.15 (1H, m), 7.08—7.06 (2H, m), 5.16 (1H, d, *J* = 1.4 Hz), 4.89 (1H, d, *J* = 1.4 Hz), 3.49 (2H, t, *J* = 6.6 Hz), 2.86—2.75 (2H, m), 2.66—2.61 (1H, m), 1.83—1.74 (1H, m), 1.65—1.55 (1H, m), 1.38—1.30 (2H, m), 1.15 (1H, brs); ¹³C NMR (125 MHz; CDCl₃): 146.7, 144.9, 141.0, 128.3, 128.2, 127.6, 127.3, 126.4, 126.1, 114.4, 62.9, 43.7, 43.4, 31.7, 30.7; HRMS (EI): ESI-HRMS m/z: 266.1651 ([M]⁺); Calcd for C₁₉H₂₂O: 266.1665.

6-Bromo-4-phenyl-6-heptene-1-ol (3c):

Colorless oil; IR (ATR) cm⁻¹: 3348, 3061, 3027, 2929, 2858, 1629, 1601, 1493, 1452, 1428;¹H NMR (400MHz; CDCl₃): δ 7.31—7.27 (2H, m), 7.22—7.16 (3H, m), 5.38 (1H, dd, *J* = 1.6, 0.8 Hz), 5.30 (1H, d, *J* = 1.6 Hz), 3.59 (2H, t, *J* = 7.0 Hz), 3.02—2.95 (1H, m), 2.73—2.63 (2H, m), 1.83—1.75 (1H, m), 1.68—1.58 (1H, m), 1.52—1.37 (2H, m), 1.18(1H, s, br); ¹³C NMR (125 MHz; CDCl₃):143.5, 132.6, 128.4, 127.7, 126.5, 118.3, 62.8, 48.8, 43.7, 31.3, 30.6;HRMS (EI): ESI-HRMS m/z: 269.0539 ([M+H]⁺); Calcd for C₁₃H₁₈OBr: 269.0536.

Ph OH 3d

1-Ethenyl-(4-hydroxy-1-pnehyl-1-butyl)cyclohexane (3d):

Colorless oil; IR (ATR) cm⁻¹:3352, 3080, 3026, 2930, 2854, 2249, 1632, 1601, 1492, 1450, 1410; ¹H NMR (400MHz; CDCl₃): δ 7.41—7.28 (5H, m), 5.73 (1H, dd, J = 18.0,11.2 Hz), 5.42 (1H, dd, J = 11.2, 1.6 Hz), 5.07 (1H, dd, J = 18.0,1.6 Hz), 3.67 (2H, t, J = 7.0 Hz), 2.55 (1H, dd, J = 12.4,3.2 Hz), 2.08—1.99 (2H, m), 1.81—1.71 (1H, m), 1.69—1.55 (4H, m), 1.48—1.26 (7H, m); ¹³C NMR (125 MHz; CDCl₃): δ 143.1, 141.8, 129.8, 127.5, 126.0, 115.5, 63.1, 56.7, 43.1, 35.1, 34.5, 31.5, 29.7, 26.5, 25.1, 22.3; HRMS (EI): ESI-HRMS m/z: 281.1852 ([M+Na]⁺); Calcd for C₁₈H₂₆ONa: 281.1876.

4-Phenylethynyl-6-heptene-1-ol (3e):

Colorless oil; IR (ATR) cm⁻¹: 3343, 3077, 2933, 2863, 2230, 1640, 1597, 1572, 1489, 1441; ¹H NMR (400MHz; CDCl₃): δ 7.40—7.38 (2H, m), 7.29—7.26 (3H, m), 5.98— 5.91 (1H, m), 5.16—5.07 (2H, m), 3.71 (2H, t, *J* = 6.4 Hz), 2.68—2.64 (1H, m), 2.33 (2H, t, *J* = 6.8 Hz), 1.89—1.83 (1H, m), 1.76—1.52 (3H, m), 1.39 (1H, brs); ¹³C NMR (125 MHz; CDCl₃): δ 135.9, 131.6, 128.2, 127.6, 123.8, 116.7, 92.5, 82.4, 62.8, 39.5, 32.0, 30.7, 30.6; HRMS (EI): ESI-HRMS m/z: 215.1444 ([M+H]⁺); Calcd for C₁₅H₁₉O: 215.1430.

6-Phenyl-4-phenylethynyl-6-heptene-1-ol (3f):

Colorless oil; IR (ATR) cm⁻¹: 3388, 3081, 2927, 2249, 1627, 1598, 1491, 1444; ¹H NMR (400MHz; CDCl₃): δ 7.44—7.41 (2H, m), 7.36—7.24 (8H, m), 5.36 (1H, d, *J* = 1.2 Hz), 5.20 (1H, d, *J* = 1.2 Hz), 3.66 (2H, t, *J* = 6.4 Hz), 2.87—2.75 (1H, m), 2.71—2.68 (2H, m), 1.87—1.84 (1H, m), 1.73—1.65 (2H, m), 1.56—1.53 (1H, m); ¹³C NMR (125 MHz; CDCl₃): δ 146.1, 140.8, 131.6, 128.4, 128.1, 127.6, 127.5, 126.4, 123.9, 114.9, 92.6, 82.6, 62.8, 41.4, 30.9, 30.6, 30.5; HRMS (EI): ESI-HRMS m/z: 291.1735 ([M+H]⁺); Calcd for C₂₁H₂₃O: 291.1743.

Ph

Br **3g**

6-Bromo-4-phenylethynyl-6-heptene-1-ol (3g):

Colorless oil; IR (ATR) cm⁻¹: 3345, 2926, 2859, 1722, 1630, 1598, 1490, 1442, 1346; ¹H NMR (400MHz; CDCl₃): δ 7.40—7.37 (2H, m), 7.29—7.27 (3H, m), 5.72 (1H, m), 5.53 (1H, d, *J* = 1.6 Hz), 3.73 (2H, t, *J* = 6.2 Hz), 3.02—3.00 (1H, m), 2.75—2.69 (1H, m), 2.63—2.58 (1H, m), 1.91—1.88 (1H, m), 1.81—1.68 (2H, m), 1.59—1.54 (1H, m);¹³C NMR (125 MHz; CDCl₃): δ 131.6, 131.3, 128.2, 127.8, 123.5, 118.9, 91.1, 83.0, 62.6, 47.0, 30.8, 30.4, 30.2;HRMS (EI): ESI-HRMS m/z: 315.0351 ([M+Na]⁺); Calcd for C₁₅H₁₇OBrNa: 315.0355.

1-(1-Phenyl-3-butene-1-yl)-2-(hydroxymethyl)benzene (3h):

Colorless oil;IR (ATR) cm⁻¹: 3027, 2944, 2250, 1600, 1487, 1450; ¹H NMR (400MHz; CDCl₃): δ 7.40—7.13 (9H, m), 5.78—5.67 (1H, m), 5.04 (2H, m), 4.65 (2H, m,), 4.37 (1H, t, *J* = 7.8 Hz), 2.80 (2H, t, *J* = 7.4 Hz), 1.56 (1H, s, br);¹³C NMR (125 MHz; CDCl₃): δ 144.2, 142.0, 138.4, 136.7, 128.7, 128.4, 128.3, 128.0, 127.4, 126.5, 126.2, 116.6, 63.2, 45.8, 40.5;HRMS (EI):ESI-HRMS m/z: 239.1429 ([M+H]⁺); Calcd for C₁₇H₁₉O: 239.1430.

Ph CO₂H

4-Phenyl-6-heptenolic acid (3i):

Colorless oil; IR (ATR) cm⁻¹: 3400, 3062, 3028, 2924, 1703, 1640, 1602, 1494, 1452, 1413, 1291; ¹H NMR (400MHz; CDCl₃): δ 7.34—7.25 (2H, m), 7.20—7.18 (1H, m),

7.15—7.13(2H, m), 5.71—5.61(1H, m), 5.01—4.93(2H, m), 2.68—2.60(1H, m), 2.38 (2H, t, J = 6.8 Hz), 2.18 (2H, t, J = 7.8 Hz), 2.11—2.03(1H, m), 1.89—1.79(1H, m); ¹³C NMR (125 MHz; CDCl₃): δ ; 180.1, 143.7, 136.4, 128.5, 127.6, 126.4, 116.3, 45.1, 41.1, 32.0, 30.5;HRMS (EI): ESI-HRMS m/z: 204.1167 ([M]⁺); Calcd for C₁₃H₁₆O₂: 204.1145.

5. References

1) W. Li; Y.Lam, J. Comb. Chem. 2005, 7, 721-725.

- 2)D. S. Brown; M. Bruno; R. J. Davenport; S.V. Ley, *Tetrahedron* **1989**, *13*, 4293-4308.
- 3) S. V. Ley; B. Lygo; F. Sternfeld; A. Wonnacott, Tetrahedron 1986, 15, 4333-4342.
- 4) T. Maegawa; A. Akashi; H. Sajiki, Synlett 2006, 9, 1440-1442.
- 5)A. Takemura; J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 6042-6043.
- 6) X. Franck; B. Figadére; A. Cavé, Tetrahedron Lett. 1997, 8, 1413-1414.
- 7) Z.-Q. Liu; L. Sun; J.-G. Wang; J. Han; Y.-K.Zhao; B. Zhou, Org. Lett. 2009, 6, 1437-1439.
- 8) M. Yoshioka; H. Osawa; S. Fukuzawa, Bull. Chem. Soc. Jpn. 1982, 55, 877-879.
- 9) N. Meyer, D. Seebach, Angew. Chem. Int. Ed. 1978, 7, 521-522.
- 10) S. G. Newman, C. S. Bryan, D. Perez; M. Lautens, Synthesis 2011, 2, 342-346.
- 11) T. Delacroix, L. Bérillon, G. Cahiez, P. Knochel, J. Org. Chem. 2000, 65, 8108-8110.
- 12) P. Kazmierczak; L. Skulski; L. Kraszkiewicz, Molecules 2001, 6, 881-891.
- 13) T. Dohi; N. Takenaga; A. Goto; A. Maruyama; Y. Kita, Org. Lett. 2007, 16, 3129-3132.
- 14) L. Benati; R. Leardini; M. Minozzi; D. Nanni; P. Spagnolo; S. Strazzari; G. Zanardi, *Org. Lett.* **2002**, *18*, 3079-3081.

6. ¹H and ¹³C NMR spectra of products

¹H NMR of 4-azido-4-phenylbutan-1-ol (**2a**)

¹³C NMR of 4-azido-4-phenylbutan-1-ol (2a)

¹H NMR of 4-azido-4-(4-methoxyphenyl)butan-1-ol (**2b**)

¹³C NMR of 4-azido-4-(4-methoxyphenyl)butan-1-ol (**2b**)

¹H NMR of 4-azido-4-(2-methoxyphenyl)butan-1-ol (2c)

¹³C NMR of 4-azido-4-(2-methoxyphenyl)butan-1-ol (2c)

¹H NMR of 4-azido-4-(4-chlorophenyl)butan-1-ol (2d)

¹³C NMR of 4-azido-4-(4-chlorophenyl)butan-1-ol (2d)

¹H NMR of 4-azido-4-phenylpentan-1-ol (2f)

 $^{13}\mathrm{C}$ NMR of 4-azido-4-phenylpentan-1-ol (2f)

¹³C NMR of *cis*-4-azido-6-phenyl-5-hexen-1-ol (2g)

¹H NMR of 4-Azido-6-phenyl-5-hexyne-1-ol (2i)

¹³C NMR of 4-Azido-6-phenyl-5-hexyne-1-ol (2i)

¹H NMR of 5-azido-5-phenylpentan-1-ol (2j)

¹³C NMR of 5-azido-5-phenylpentan-1-ol (**2j**)

¹H NMR of 1,4-diazido-tetraline (**2k**, First one)

¹³C NMR of 1,4-diazido-tetraline (**2k**, First one)

¹H NMR of 1,4-diazido-tetraline (**2k**, Second one)

¹³C NMR of 1,4-diazido-tetraline (**2k**, Second one)

¹H NMR of 1-(azidophenylmethyl)-2-(hydroxymethyl)benzene (2l)

¹³C NMR of 1-(azidophenylmethyl)-2-(hydroxymethyl)benzene (**2**I)

¹H NMR ofmixture of 1-(1-azido-3-phenyl-2-propen-1-yl)-2-(hydroxymethyl)benzene (**2ma**) and 1-(3-Azido-3-phenyl-1-propen-1-yl)-2-(hydroxymethyl)benzene (**2mb**)

¹³C NMR of mixture of 1-(1-azido-3-phenyl-2-propen-1-yl)-2-(hydroxymethyl)benzene (**2ma**) and 1-(3-Azido-3-phenyl-1-propen-1-yl)-2-(hydroxymethyl)benzene (**2mb**)

¹H NMR of 4-Azido-4-phenylbutanoic acid (**2n**)

¹H NMR of 5-Azido-5-phenylbutanoic acid (**2o**)

¹H NMR of 4-phenyl-6-heptene-1-ol (3a)

¹³C NMR of 4-phenyl-6-heptene-1-ol (**3a**)

¹H NMR of 4,6-diphenyl-6-heptene-1-ol (**3b**)

¹³C NMR of 4,6-diphenyl-6-heptene-1-ol (**3b**)

¹H NMR of 6-bromo-4-phenyl-6-heptene-1-ol (**3**c)

 13 C NMR of 6-bromo-4-phenyl-6-heptene-1-ol (**3c**)

¹H NMR of 1-ethenyl-(4-hydroxy-1-pnehyl-1-butyl)cyclohexane (**3d**)

¹³C NMR of 1-ethenyl-(4-hydroxy-1-pnehyl-1-butyl)cyclohexane (**3d**)

¹H NMR of 4-phenylethynyl-6-heptene-1-ol (**3e**)

¹³C NMR of 4-phenylethynyl-6-heptene-1-ol (**3e**)

 1 H NMR of 6-phenyl-4-phenylethynyl-6-heptene-1-ol (**3f**)

 13 C NMR of 6-phenyl-4-phenylethynyl-6-heptene-1-ol (**3f**)

 1 H NMR of 6-bromo-4-phenylethynyl-6-heptene-1-ol (**3g**)

 13 C NMR of 6-bromo-4-phenylethynyl-6-heptene-1-ol (**3g**)

¹H NMR of 1-(1-phenyl-3-butene-1-yl)-2-(hydroxymethyl)benzene (**3h**)

¹³C NMR of 1-(1-phenyl-3-butene-1-yl)-2-(hydroxymethyl)benzene (**3h**)

¹H NMR of 4-phenyl-6-heptenolic acid (**3i**)

¹³C NMR of 4-phenyl-6-heptenolic acid (3i)

