SUPPLEMENTAL INFORMATION:

Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin

Ralph A. Cacho¹, Yit-Heng Chooi^{1,3}, Hui Zhou^{1,4}, and Yi Tang^{1,2}*

1) Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095; 2) Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095

3.) Present Address: Research School of Biology, Australian National University, Acton ACT 0200, Australia

4.) Present address: Department of Biological Engineering, Massachusetts Institute of Technology, Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139

TABLE OF CONTENTS:

Sup	oplemental Materials and Methods4	S
-----	-----------------------------------	---

Supplementary Tables.

Table S1: Primers used for this study	7S
Table S2: Mass and UV-Vis spectra and NMR data of 5	10S
Table S3: Mass and UV-Vis spectra of 6	11S
Table S4: Mass and UV-Vis spectra and NMR data of 7	12S
Table S5: Mass and UV-Vis spectra and NMR data of 8	13S
Table S6: Mass and UV-Vis spectra and NMR data of 9.	14S
Table S7: Mass and UV-Vis spectra and NMR data of 10	15S
Table S8: Mass and UV-Vis spectra and NMR data of 11	16S
Table S9: Mass and UV-Vis spectra and NMR data of 12	
Table S10: Mass and UV-Vis spectra of 13	18S
Table S11: Mass and UV-Vis spectra and NMR data of 14.	19S
Table S12: Mass and UV-Vis spectra and NMR data of 15.	20S
Table S13: Mass and UV-Vis spectra and NMR data of 16.	21S
Table S14: Mass and UV-Vis spectra and NMR data of 17	22S
Table S15: Mass and UV-Vis spectra and NMR data of 18.	23S
Table S16: Mass and UV-Vis spectra and NMR data of 19.	24S

Supplementary Figures

Figure S1: Feeding of 5 to $\Delta gsfA$ mutant	258
Figure S2: In vitro assay of GsfI 10 as substrate	26S
Figure S3: Time course- <i>in vitro</i> assay of GsfF from 0-60 minutes	27S
Figure S4: Metabolic profile of $\Delta gsfH$ and $\Delta gsfK$ mutants	
Figure S5: In vitro assay of GsfE using 19 as substrate	
Figure S6: $\Delta gsfE$ mutant screening	
Figure S7: $\Delta gsfH$ mutant screening	
Figure S8: $\Delta gsfK$ mutant screening	
Figure S9: SDS-PAGE gels of GsfA, GsfE and GsfI	33S
Figure S10: SDS-PAGE gel of GsfB, GsfC and GsfD	34S
Figure S11: 1D ¹ H and ¹³ C NMR spectrum of 5	
Figure S12: 2D HSQC and HMBC of 5	
Figure S13: 1D ¹ H and ¹³ C NMR spectrum of 7	
Figure S14: 2D HSQC and HMBC of 7	
Figure S15: 1D ¹ H and ¹³ C NMR spectrum of 8	39S
Figure S16: 2D HSQC and HMBC of 8	
Figure S17: 1D ¹ H and ¹³ C NMR spectrum of 9	41S
Figure S18: 2D HSQC and HMBC of 9	
Figure S19: 1D ¹ H and ¹³ C NMR spectrum of 10	
Figure S20: 2D HSQC and HMBC of 10	

Figure S21: 1D ¹ H and ¹³ C NMR spectrum of 11	458
Figure S22: 2D HSQC and HMBC of 11	46S
Figure S23: 1D ¹ H and ¹³ C NMR spectrum of 12	47S
Figure S24: 2D HSQC and HMBC of 12	48S
Figure S25: 1D ¹ H and ¹³ C NMR spectrum of 14	49S
Figure S26: 2D HSQC and HMBC of 14	50S
Figure S27: 1D ¹ H and ¹³ C NMRspectrum of 15	51S
Figure S28: 2D HSQC and HMBC of 15	
Figure S29: 1D ¹ H and ¹³ C NMR spectrum of 16	53S
Figure S30: 2D HSQC and HMBC of 16	
Figure S31: 1D ¹ H and ¹³ C NMR spectrum of 17	
Figure S32: 2D HSQC and HMBC of 17	56S
Figure S33: 1D ¹ H and ¹³ C NMR spectrum of 18	57S
Figure S34: 2D HSQC and HMBC of 18	58S
Figure S35: 1D ¹ H and ¹³ C NMR spectrum of 19	
Figure S36: 2D HSQC and HMBC of 19	
-	

References for the Supplemental Materials and Methods	1S
---	----

Supplemental Materials and Methods

Strains and Culture Conditions. *P. aethiopicum* IBT 5753 was obtained from the IBT culture collection (Kgs. Lyngby, Denmark) and maintained on YMEG-agar (4g/L yeast extract, 10g/L malt extract, 4g/L dextrose, 16g/L agar) or glucose minimal media with 10 mM ammonium tartrate as sole nitrogen source (GMM-NH₄⁺)¹ at 28 °C. *Saccharomyces cerevisiae* strain BJ5464-NpgA (*MATa ura3-52 his3-* Δ 200 leu2- Δ 1 trp1 pep4::HIS3 prb1 Δ 1.6R can1GAL) was used as the yeast expression strain. *Escherichia coli* BL21 (DE3) (Novagen) was used as the *E.coli* expression strain.

General Molecular Biology Experiments. General molecular cloning techniques were done as described elsewhere.² PCR was performed using Phusion® DNA Polymerase (New England Biolabs). DNA restriction enzymes were used as recommended by the manufacturer (New England Biolabs). DNA sequences of the gene constructs were confirmed by Sanger sequencing by Laragen, Inc. *E. coli* TOP10 (Invitrogen) and XL1-Blue (Stratagene) were used for cloning, following standard recombinant DNA techniques.² RNA extraction was performed using a RiboPure Yeast Kit (Ambion) and ImProm-IITM Reverse Transcription System for RT-PCR (Promega) was used to synthesize complementary DNA (cDNA) from total RNA. Transformation of *S. cerevisiae* BJ5464 transformation was done using the *SC* EasyComp Transformation kit (Invitrogen).

General protocol for protein expression in *E.coli*. Expression plasmid p*ET28-gsfB*, p*ET30-gsfC*, p*ET24-gsfD*, p*ET24-gsfI* or p*ET28-gsfE* was transformed into electrocompetent *E.coli* BL21 (DE3) and the cells were grown in 500 mL LB at 37°C and 250 rpm. When the OD₆₀₀ reading reached 0.5, the cultures were cooled to 16 °C and protein expression was induced by addition of 60 μ M IPTG and grown for additional 16 hours prior to His-tag-fusion protein purification (*vide infra*).

Heterologous expression of GsfA in *S.cerevisiae*. The two fragments of the cDNA for *gsfA*, was amplified using primer pairs GsfA-*Nhe*I-F and GsfA-*Af/*II-R and GsfA-*Af/*II-F and GsfA-*EcoR*V-R and cut with the appropriate restriction enzymes. The two fragments were simultaneously ligated into YepLac195 vector (ura3 selection marker), linearized by digestion with *Nhe*I and *SmaI*, such that the *gsfA* cDNA is flanked upstream by ADH2 promoter and downstream by an inframe C-terminal His-tag and ADH2 terminator. The resulting YepLac195-GsfA plasmid was transformed for propagation in *E. coli* XL1and verified by sequencing. BJ5464-NpgA cells harboring YepLac195-GsfA were grown in YPD (10 g/L yeast extract, 20 g/L peptone) supplemented with 1% dextrose and incubated at 28 °C with shaking for 72 hours prior to His-tag fusion protein purification (*vide infra*).

General His-tag fusion protein purification. *S.cerevisiae* BJ5464-NpgA or *E.coli* BL21 cells expressing the desired protein were pelleted and resuspended in Buffer A (50 mM Tris-HCl pH 7.9, 500 mM NaCl) with 20 mM imidazole prior to lysing by sonification. The cell lysate was subjected to centrifugation at 27000g for 30 min for *E.coli* or 40000g for 1 hour for *S.cerevisiae*. Nickel-NTA-agarose resin was then added to the clarified lysate and the mixture was gently stirred at 4 °C overnight. The desired protein was then purified using gravity-flow column chromatography with increasing concentrations of imidazole (20-250 mM) in Buffer A. Purified protein was concentrated and buffer was exchanged into Buffer B (50 mM Tris-HCl, 2 mM EDTA, 50 mM NaCl, pH 8.0) using an Amicon Ultra-15 Centrifugal Filter Unit and stored in 10% glycerol.

LCMS Analysis of *In vitro* assay and knockout mutant metabolic extracts. LC-MS was conducted with a Shimadzu 2010 EV Liquid Chromatograpy Mass Spectrometer using both positive and negative electrospray ionization monitoring the m/z range 200-800 and photodiode array monitoring the 290 nm wavelength. Samples were separated on a Phenomenex Luna 5µ 100 x 2 mm C18 reverse-phase column using a flow rate of 0.1 mL/min on a linear gradient of 5-95% solvent B in 30 min followed by isocratic 95% solvent B for another 15 min (solvent A: water with 0.1% (v/v) formic acid, solvent B: acetonitrile with 0.1% (v/v) formic acid).

Purification and Characterization of Norlichexanthone (5) from S.cerevisiae. S. cerevisiae strain BJ5464-NpgA harboring YepLac195-GsfA plasmid was inoculated to 4 mL Yeast Synthetic Drop-Out medium without uracil. The cells were grown for 36 hours with constant shaking at 28 °C. The seed culture was inoculated 1 L YPD (10 g yeast extract, 20 g peptone and 950 mL Milli-Q water) supplemented with 1% dextrose and grown for an additional 72 hours at 28 °C with constant shaking. The cells were harvested by centrifugation (3750 rpm, 10 minutes, 4 °C), extracted twice with equal volume of ethyl acetate and was evaporated to dryness. The extract was redissolved, loaded into a Sephadex LH-20 column (300 mm x 30 mm) and eluted using 1:1 ratio of chloroform and methanol. The fractions containing the desired compound, as ascertained using thin-layer chromatography and LCMS, were pooled and dried. The dried extract was resuspended in minimal volume of methanol, centrifuged and injected to the HPLC equipped with a Phenomenex Luna 5µ 250 x 10mm C18 reverse-phase column at a flow rate 2.5 mL/min and using a linear gradient of 40-80% solvent B over 30 min (Solvent A: water with 0.1% trifluoroacetic acid (TFA), solvent B: acetonitrile with 0.1% TFA). NMR characterization (1D 1 H and ¹³C, 2D HSQC and HMBC) of the purified compound was then performed on a Bruker AV500 NMR (500 MHz) equipped with 5mm dual cryoprobe at the UCLA Molecular Instrumentation Center.

Fungal Transformation and Gene Deletion in *P. aethiopicum*. Polyethylene glycol (PEG)mediated transformation was done essentially as described previously.³ Briefly, conidia from *P.aethiopicum* was inoculated to 250 mL liquid GMM-NH₄⁺ for 13 hours at 28 °C, 250 rpm for germination. The harvested germlings were then digested with 3 mg/mL lysing enzyme (Sigma-Aldrich) and 2 mg/mL Yatalase (Takara Bio) to obtain the protoplasts, which were then transformed with the linear knockout cassette. The linear knockout cassettes containing the glufosinate resistance gene *bar* was constructed as described elsewhere^{3, 4} and using primers listed in Table S1 (See Supplemental Information Table S1). After PEG-mediated transformation, the protoplasts were inoculated into GMM-NH₄⁺ media supplemented with 1.2 M sorbitol, agar and 10mg/mL of glufosinate as selective agent. Genomic DNA from the transformants was isolated using Carlson lysis buffer and chloroform extraction followed by precipitation of DNA in the aqueous phase by addition of equal volume of isopropanol. PCR screening was performed as described previously³ using primers listed in Table S1.

Biotransformation of 11 to 14. *S. cerevisiae* BJ5464 transformed with *pESC-gsfF/AtCPR* was inoculated in 5 mL synthetic leucine dropout synthetic media (SDM, -Leu) and was grown overnight at 28 °C, 250 rpm. The overnight culture was inoculated to 500 mL synthetic leucine dropout media with galactose (SGMM, -Leu) for induction. The cells were grown at 28 °C, 250 rpm for 36 hours after induction and were pelleted by centrifugation at 4 °C. The cell pellet was resuspended in 50 mL SGMM, -Leu and 11 was added to a final concentration of 1 μ M. The culture was grown at 28 °C, 250 rpm for 24 hours after feeding. Thereafter 1 mL of whole cell

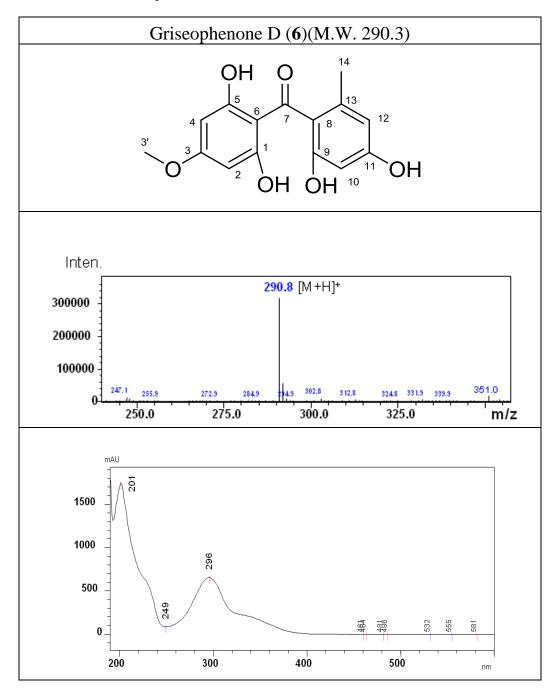
culture was taken, extracted twice with ethyl-acetate and dried to completeness before being subjected to LCMS analysis as described above.

Yeast microsome isolation and in vitro assay of GsfF. Yeast microsome extraction was adapted from the method described by Ralston et al and Barriuso et al.^{5, 6} The overnight culture of BJ5464-NpgA harboring pESC-gsfF/AtCPR, grown in the same manner as was done for the biotransformation of 11 to 14, was inoculated to 20 mL SDM, -Leu and shaken for an additional 24 hrs prior to transfer to 500 mL synthetic leucine dropout media with galactose (SGMM, -Leu) for induction. The cells were grown at 28 °C, 250 rpm for 24 hours after induction and were pelleted by centrifugation at 4 °C. The cell pellet was then resuspended in 100 mL TES buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA and 0.6 mM sorbitol). The cells were pelleted again, resuspended in 100 mL TES buffer with 10 mM β -mercaptoethanol and incubated at 25 °C for 10 minutes. The cells were then pelleted and resuspended in 2.5 mL extraction buffer (TES buffer supplemented with 1% bovine serum albumin and 2 mM β-mercaptoethanol and 1mM phenylmethylsulfonyl fluoride (Sigma-Aldrich)). Zirconia/silica beads (0.5 mm in diameter, Biospec Products) were added until skimming the surface of the cell suspension. Cell walls were disrupted manually by hand-shaking in a cold room for 10 min at 30 s intervals separated by 30 s intervals on ice. Cell extracts were transferred to a 50 mL centrifuge tube, the Zirconia/silica beads were washed three times with 5 mL of extraction buffer, and the washes were pooled with the original cell extracts. Finally, microsomes were obtained by differential centrifugation at 10,000g for 10 min at 4°C to remove cellular debris followed by centrifugation at 100,000g for 70 min at 4°C. The microsomal pellets were weighed prior to resuspension in 1.5 mL of TEG-M buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 20% glycerol, and 1.5 mM 2-mercaptoethanol) and stored frozen at -80 °C. The GsfF in vitro assay was performed by addition of microsomal protein to a final concentration of 0.42 mg/mL to 50 µM griseophenone B and 2mM NADPH in a 100 µL reaction. The reaction was incubated at 28 °C overnight and was extracted with ethyl acetate. The organic phase was dried and redissolved in 10 µL methanol prior to injection to LC-MS and analyzed as the same manner as above.

Primer	Notes	
name		
gsfB-KO-P1	ctatgaagaccettecacetggeta	Screening of mutants and cloning of KO cassette
gsfB-KO-P2	acgcactcgttgctatgtcaaaca	cloning of KO cassette
gsfB-KO-P3	cctgcccgtcaccgagatttagaacgagcaacctgtcaaggatg	
gsfB-KO-P4	cttcaatatcatcttctgtcgacgtcgcctgctaagggaatctgacgggcaa	
gsfB-KO-P5	cttgagegeeteetgagagtt	
gsfB-KO-P6	tccgacgacaggttccatcactct	Screening of mutants and cloning of KO cassette
gsfC-KO-P1	catecttgacaggttgetegtt	Screening of mutants and cloning of KO cassette
gsfC-KO-P2	cgacacgttcttgccctctcgaa	cloning of KO cassette
gsfC-KO-P3	ctgcccgtcaccgagatttagtaccttactcgtcagccagtct	
gsfC-KO-P4	cttcaatatcatcttctgtcgac-acaactctcaggaggcgctc	1
gsfC-KO-P5	tccataccccgacacctcc	1
gsfC-KO-P6	tcgaccagtctctccggcgta	Screening of mutants and cloning of KO cassette
gsfD-KO-P1	acgacttgccatcggcacca	Screening of mutants and cloning of KO cassette
gsfD-KO-P2		
gsfD-KO-P3	ctgcccgtcaccgagatttagaggctggatcggtattgagc	cloning of KO cassette
gsfD-KO-P4	cttcaatatcatcttctgtcgacg-gactaagaatatcacgaggt	1
gsfD-KO-P5	gattacgccaagccataaggca	1
gsfD-KO-P6	gacacagtctgcactatgtcgaata	Screening of mutants and cloning of KO cassette
gsfE-KO-P1	gcaagttctagtacccgcgc	Screening of mutants and cloning of KO cassette
gsfE-KO-P2	gtctgagtcggtacgctcg	cloning of KO cassette
gsfE-KO-P3	tgcccgtcaccgagatttaggaagccagcactgagcactgc	
gsfE-KO-P4	tcaatatcatcttctgtcgaccgacaagtttagacagctgggg]
gsfE-KO-P5	gccttgagattcttggtctggg	
gsfE-KO-P6	gcacctgggcaaattgaatgg	Screening of mutants and cloning of KO cassette

 Table S1: Primers used for this study

Primer name	Sequence (5'-> 3')	Notes	
gsfF-KO-P1 ggaccttaacccgactaagaatatc		Screening of mutants and cloning of KO cassette	
gsfF-KO-P2	aaggtccagctgatctcatgaatgtg	cloning of KO cassette	
gsfF-KO-P3	ctgcccgtcaccgagatttagcataggtcaaccatagtcgggtg		
gsfF-KO-P4	cttcaatatcatcttctgtcgac gtgctgacatcgtcacagattgctc		
gsfF-KO-P5	Ataggatggcatcgcgtataagg		
gsfF-KO-P6	cttagetteaggetetaeggg	Screening of mutants and cloning of KO cassette	
gsfH-KO-P1	gtatggtccctcgggtgc	Screening of mutants and cloning of KO cassette	
gsfH-KO-P2	ggatacattttcttcgtcggc	Cloning of KO cassette	
gsfH-KO-P3	tgcccgtcaccgagatttaggtggactagacatcctgatcc		
gsfH-KO-P4	tcaatatcatcttctgtcgacaccaaggtagtgtcgaatcc		
gsfH-KO-P5	gtggcccaggaaattggg		
gsfH-KO-P6 gcttggatcgggctcg		Screening of mutants and cloning of KO cassette	
<i>gsfK</i> -KO-P1	gtggtggcggttctcag	Screening of mutants and cloning of KO cassette	
gsfK-KO-P2	gaceteaggeaaggagae	Cloning of KO cassette	
gsfK-KO-P3	tgcccgtcaccgagatttaggctcgatgaggaactgtggcag		
gsfK-KO-P4	tcaatatcatcttctgtcgaccgtctaccacaacctaccgc		
gsfK-KO-P5	ggaaacccacccagtcttgc		
gsfK-KO-P6 ggccgagcgaaatgacgg		Screening of mutants and cloning of KO cassette	
gsfA-NheI-F	aaaatggctagcatgacttccgctaaggtctta	Cloning of YepLac195-	
<i>gsfA-Afl</i> II-R	gcetettaagaaccaegetteegaetee	gsfA	
gsfA-AflII-F	aattettaagaggettgaggatgeagaagee		
gsfA- EcoRV-R gatatcacgcacctcgatgccaaggtctt			
<i>gsfB-</i> F	aaattcatatggcgtccaatacaagtcggt	Cloning of pET28-gsfB	
<i>gsfB</i> - R caatggatccacacatgccgaaatcgatgtttctga			
<i>gsfC-</i> F	ggtattgagggtcgcatgactcttgaccaaattagtcggatac	Cloning of pET30-gsfC	
gsfC_R	agaggagagttagagccttatgacgtcgctaagctggc		


Table S1 (continued): Primers used for this study

Primer Sequence (5'-> 3')		Notes
name		
gsfD-F	agctacatatgtctacccctgagcaatggatcca	Cloning of pET24-gsfD
gsfD- R	aaatttggatccctcctctttaaccttgcct	
<i>gsfE-</i> F	tttacatatgccaaaaacagctttcatcactggc	Cloning of pET28-gsfE
<i>gsfE-</i> R	aatgaattcatttaggtatcaaccccagctgtc	
<i>gsfF-</i> F	accctcactaaagggcggccgcatgactgttttgtttattct	Cloning of pESC-Leu-
gsfF_R	cttatcgtcgtcatccttgtaatctagacctcggactgtaactttaacc	AtCPR/GsfF
<i>gsfI-</i> F	aaaaagctagcgcgattcctcaatcttgtac	Cloning of pET24-gsfI
<i>gsfI</i> -R	ataatgaatcccatttggagatcccct	

Table S1 (continued): Primers used for this study

Norlichexanthone (5) (M.W. 258.2 g/mol)						
259	$\begin{array}{c} \begin{array}{c} \\ 259 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals			
C1	158.026		H2			
C2	93.946	6.321, 1H, t, 2 Hz	H4			
C3	164.889		H4			
C4	98.686	6.189, , 1H, t, 2 Hz	H2, O5-H			
C5	164.563		H4, H14, O5-H			
C6	104.183		H4, H14, O5-H			
C7	182.984		H2			
C8	112.558		H12, H14			
С9	160.214		H10			
C10	101.967	6.721, 1H, s	H12, H14			
C11	160.231		H10, H12			
C12	116.889	6.708, 1H, s	H10, H14			
C13	144.368		H10, H14			
C14	23.426	2.776, 3H, s	H12			
О5-Н		13.452, 1H, s				

Table S2: Mass and UV-Vis spectra and NMR data of 5 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer

Table S3: Mass and UV-Vis spectra of 6.

Griseophenone E (7)(M.W. 290.3 g/mol)				
$Heten.$ $25600 - \frac{22609}{200} \frac{104H_{1}^{2}}{103} \frac{22609}{103} \frac{104H_{1}^{2}}{103} \frac{101}{103} \frac$				
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1, C5	166.54		H2, H4	
C2, C4	95.78	5.86, 2H, s	H2, H4	
C3	165.66		H2, H4	
C6	106.88		H2, H4	
C7	199.92			
C8	125.41		H14, H10, H12	
C9	158.32		H9', H10	
C9'	55.96	3.64, 3H,s		
C10	97.45	6.31,1H, d, 1.5 Hz		
C11	159.36		H10	
C12	109.62	6.29, 1H, d, 1.5Hz	H14, H10, H12	
C13	136.40		H14	
C14	19.17	2.08, 3H,s	H12	

Table S4: Mass and UV-Vis spectra and NMR data of 7 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer

Griseophenone F (8)(M.W. 324.7 g/mol)				
$\begin{bmatrix} \text{inten.} & & & & & & & & & & & & & & & & & & &$				
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1	161.38			
C2	99.95		H4	
C3	161.57		H4	
C4	95.81	6.08 , 1H, s		
C5	162.21			
C6	107.27		H4	
C7	200.51		H4	
C8	124.97		H14, H12, H10	
C9	158.46		H9', H10	
C9'	55.98	3.64 , 1H, s		
C10	97.63	6.32 , 1H, d, 1.8 Hz		
C11	159.55		H12	
C12	109.66	6.31, 1H, d, 1.8 Hz	H14, H10	
C13	136.61		H14	
C14	19.18	2.09, 3H, s	H12	

Table S5: Mass and UV-Vis spectra and NMR data of **8** in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer

Desmethyl-dehydrogriseofulvin B (9)(M.W. 336.7 g/mol)					
$\begin{array}{c} \hline & \\ \hline \\ \hline$					
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals		
C1	170.3114				
C2	95.4402		H4		
C3	165.0561		H4		
C4	94.6581	6.795 ,1H, s			
C5	157.9998		H5', H4		
C5'	55.6593	3.868, 3H, s			
C6	102.9		H4		
C7	187.4717		H4		
C8	88.4008		H14, H10, H12		
C9	167.8811		H9', H10		
C9'	56.0094	3.707,3H, s			
C10	103.1345	5.681 ,1H, d, 1.1 Hz			
C11	185.3387		H10		
C12	128.6774	6.149,1H, t, 1.1 Hz	H10, H14		
C13	147.2017		H14		
C14	15.4892	1.773 ,3H, d, 1.1 Hz	H12		

Table S6: Mass and UV-Vis spectra and NMR data of **9** in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer

Griseophenone C (10) (M.W. 304.1 g/mol)				
0	05 	$\begin{array}{c} OH \\ 5 \\ 4 \\ 3 \\ 2 \\ OH \\ OH \\ 0 \\ 10 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	-246 	
250.0 30	00.0 350.0 m/z	9' 20) 300 400 500 nm	
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1, C5	165.3484		H(2,4)	
C4, C2	94.18	5.93, 2H, s	H(2,4)	
C3	167.5571		H3', H(2, 4)	
C3'	55.94	3.81, 3H, s		
C6	107.5		H(2,4)	
C7	200.56			
C8	125.31		H12, H14	
С9	158.36		Н9'	
C9'	55.8272	3.64, 3H, s		
C10	97.3642	6.33, 1H, d, 1.8 Hz	H12	
C11	159.41		H10, H12	
C12	109.59	6.31, 1H, d, 1.8 Hz	H10,H14	
C13	136.41		H14	
C14	19.1588	2.08, 3H, s	Н9'	

Table S7: Mass and UV-Vis spectra and NMR data of 10 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer

Griseophenone B (11) (M.W. 338.1 g/mol)				
0	+H] ⁺ 339 341 3 5.0 375.0 m/z	$\begin{array}{c} OH \\ 5 \\ 7 \\ 1 \\ 2 \\ OH \\ 9 \\ 9 \\ \end{array} \begin{array}{c} 14 \\ 1000 \\ 10 \\ 10 \\ 0 \\ 200 \\ 0 \\ 200 \\ 0 \\ 200 \\ 0 \\ 200 \\ 0 \\ $	255 000 000 000 000 000 000 000 000 000	
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1	159.1			
C2	99.72		H4	
C3	161.52		H3',H4	
C3'	55.93	3.905, 3H, s		
C4	91.79	6.164, 1H, s		
C5	162.33			
C6	106.8		H4	
C7	200.05		H4	
C8	123.96		H10,H12, H14	
С9	157.64		H9'	
C9'	55.11	3.628, 3H, s		
C10	96.48	6.323, 1H, d, 1.8 Hz	H9', H12	
C11	158.79		H10, H12	
C12	108.84	6.315, 1H, d 1.8 Hz	H10, H14	
C13	135.83		H14	
C14	18.3164	2.08, 3H, s	H12	

Table S8: Mass and UV-Vis spectra and NMR data of **11** in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer.

Griseophenone G (12) (M.W. 372.0 g/mol)				
$\begin{bmatrix} [M+H]^+ \\ 373 \\ 375 \\ 275.0 300.0 325.0 350.0 375.0 400.0 m/z \end{bmatrix} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{I12} $				
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1 and C5	160.2667			
C2 and C4	158.044			
C3	158.98		Н3'	
C3'	56.025	3.626 , 3H, s		
C6	110.781			
C7	201.7137			
C8	124.185		H12, H14	
С9	159.223		H9', H10	
C9'	61.21	3.963, 3H, s		
C10	97.39	6.341, 1H, s	H12	
C11	107.909		H10, H11	
C12	110.049	6.341 , 1H,s	H10, H14	
C13	137.428		H14	
C14	19.358	2.12 , 3H, s	H12	

Table S9: Mass and UV-Vis spectra and NMR data of 12 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer.

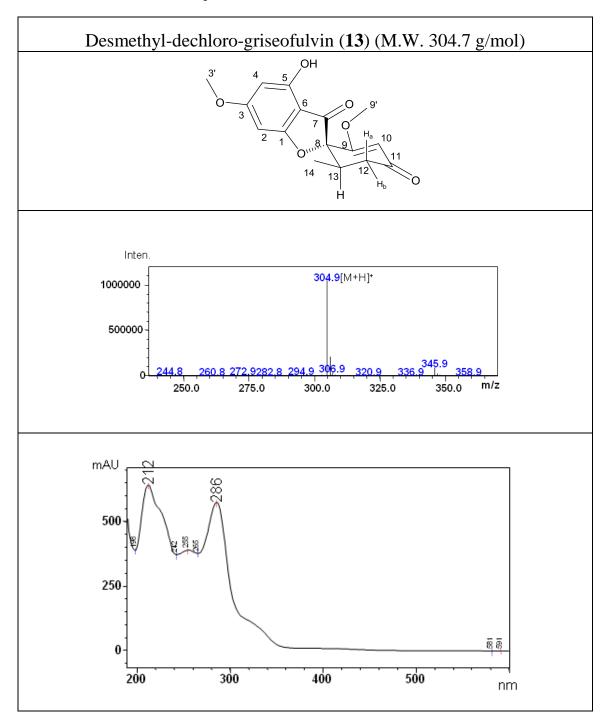


Table S10: Mass and UV-Vis spectra of 13.

Table S11: Mass and UV-Vis spectra and NMR data of 14 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer.

г

Desmethyl-dehydro-griseofulvin A (14) (M.W. 336.7 g/mol)				
$\frac{1}{10000} \underbrace{10000}_{25000} \underbrace{1000}_{25000} \underbrace{1000}_{25000} \underbrace{1000}_{25000} \underbrace{1000}_{25000} \underbrace{10000}_{25000} \underbrace{10000}_{250000} \underbrace{10000}_{2500000} \underbrace{10000}_{2500000} \underbrace{10000}_{2500000} \underbrace{10000}_{2500000} \underbrace{10000}_{2500000} \underbrace{10000}_{2500000} \underbrace{10000}_{250000} \underbrace{10000}_{2500000} \underbrace{10000}_{250000} \underbrace{100000}_{250000} \underbrace{10000}_{250000} \underbrace{10000}_{250000} 100$				
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1	169.42			
C2	104.52		H4	
C3	165.69		H3', H4	
C3'	57.69	4.01, 3H, s		
C4	95.59	6.42, 1H, s		
C5	158.46		H4	
C6	96.15		H4	
C7	190.24		H4	
C8	89.31		H10, H12, H14	
C9	168.62		H9', H10	
C9'	57.09	3.72, 3H, s		
C10	104.24	5.7, 1H, d, 1.05 Hz		
C11	186.2		H10	
C12	129.82	6.17, 1H, t, 1.3 Hz	H10, H14	
C13	147.87		H14	
C14	16.53	1.79, 3H, d, 1.2 Hz	H12	

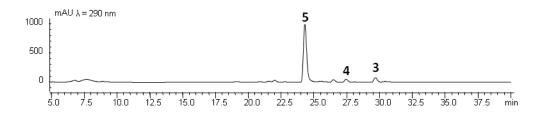
	Desmethyl-griseofulvin (15) (M.W. 338.7 g/mol)			
$\frac{100000}{100000} \int_{\frac{1}{2249}}^{\frac{1}{2958}} \frac{10000}{3000} \int_{\frac{3250}{3500}}^{\frac{1}{308}} \frac{1000}{3750} \frac{1}{1000} \frac{1}{100000} \int_{\frac{1}{100000}}^{\frac{1}{1000000}} \frac{1}{1000000} \int_{\frac{1}{10000000}}^{\frac{1}{10000000}} \frac{1}{10000000} \int_{\frac{1}{10000000}}^{\frac{1}{10000000}} \frac{1}{1000000} \int_{\frac{1}{10000000}}^{\frac{1}{1000000}} \frac{1}{1000000} \int_{\frac{1}{10000000}}^{\frac{1}{1000000}} \frac{1}{1000000} \int_{\frac{1}{10000000}}^{\frac{1}{1000000}} \frac{1}{1000000}} \frac{1}{1000000} \int_{\frac{1}{1000000}}^{\frac{1}{1000000}} \frac{1}{1000000} \frac{1}{1000000} \frac{1}{1000000}} \frac{1}{1000000} \frac{1}{10000000} \frac{1}{100000000} \frac{1}{100000000} \frac{1}{10000000} \frac{1}{1000000$				
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1	168.327			
C2	95.204		H4	
C3	164.704		H3', H4	
C3'	56.763	3.99, 3H, s		
C4	94.197	6.393, 1H, s		
C5	156.209		H4	
C6	104.181		H4	
C7	192.884		H4	
C8	90.499		H10,H14	
C9	170.4		H9', H10	
C9'	56.404	3.69, 3H, s		
C10	104.443	5.554, 3H, s		
C11	194.957		H10, H12a, H12b,	
C12	39.769	H12a-2.35, 1H, dd, 3.6 Hz, 14 Hz H12b,-2.80, 1H, dd(overlap)	H10, H13	
C13	36.235	2.80, 1H, m (overlap)	H12, H14	
C14	13.573	0.92, 3H, d, 6.2 Hz	H13	

Table S12: Mass and UV-Vis spectra and NMR data of **15** in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer.

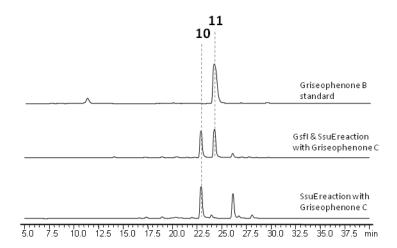
Griseoxanthone C (16) (M.W. 272.3 g/mol)				
$1000000 \int [M+H]^{+}$ $272.9 \\ 500000 \int 272.9 \\ 225.0 \\ 250.0 \\ 250.0 \\ 275.0 \\ 300.0 \\ 325.0 \\ 300.0 \\ 325.0 \\ m/z \\ m$				
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1	157.87		H2	
C2	92.48	6.42, 1H, d, 2 Hz	H4	
C3	166.98		H4, H3'	
C3'	56.27	3.92, 3H, s		
C4	97.50	6.260, , 1H, d, 2 Hz	H2, O5-H	
C5	163.80		H4, H14, O5-H	
C6	104.33		H4, H14, O5-H	
C7	183.08		H2	
C8	112.50		H12, H14	
С9	160.30		H10	
C10	101.50	6.786, 1H, s	H12, H14	
C11	164.58		H10, H12	
C12	117.05	6.736, 1H, s	H10, H14	
C13	144.39		H10, H14	
C14	23.42	2.770, 3H, d, 1.5 Hz	H12	
О5-Н		13.489, 1H, s		

Table S13: Mass and UV-Vis spectra and NMR data of 16 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer.

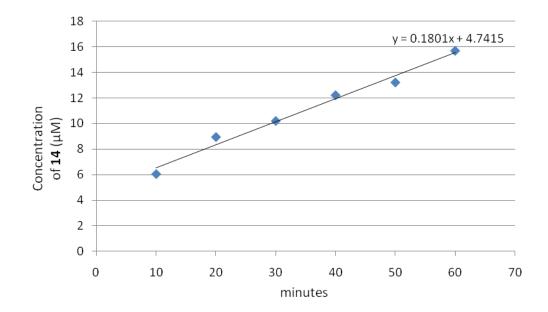
Griseophenone H (17) (M.W. 324.7 g/mol)				
$\begin{array}{c} \hline \\ \hline $				
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1	157.09			
C2	100.6		H4	
C3	162.07		H3', H4	
C3'	56.8	3.91 ,3H, s		
C4	92.83	6.21,1H, s		
C5	162.63		H4	
C6	108.49		H4	
C7	200.73			
C8	122.55		H12, H14	
С9	159.29		H10	
C10	101.17	6.26, 1H, d, 1.8 Hz		
C11	160.15		H10, H12	
C12	109.84	6.25, 1H, d, 1.8 Hz	H10,H14	
C13	138.13		H14	
C14	19.72	2.1,3H, s	H12	


Table S14: Mass and UV-Vis spectra and NMR data of 17 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer.

	Dehydro-griseofulvin (18) (M.W. 350.8 g/mol)				
DCHYGHO-gHISCOHHVIII (H3) (H4.44.5506.8 g/HIOH)					
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals		
C1	170.303				
C2	97.4693		H4		
C3	165.9245		H3', H4		
C3'	57.9741	4.125,3H,s			
C4	91.8759	6.789 ,1H, s			
C5	159.4749		H5', H4		
C5'	56.9964	4.000 ,3H,s			
C6	104.2393		H4		
C7	186.9645		H4		
C8	89.3667		H14, H10, H12		
C9	168.5715		H9', H10		
C9'	57.0895	3.714 ,3H,s			
C10	104.9241	5.700,1H, d, 1.3 Hz			
C11	186.2087		H10		
C12	129.8836	6.169, 1H, t, 1.4 Hz	H10, H14		
C13	147.7481		H14		
C14	16.4739	1.772,3H, d, 1.37 Hz	H12		


Table S15: Mass and UV-Vis spectra and NMR data of 18 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer.

Dehydro—dechlorogriseofulvin (19)(M.W. 316.3 g/mol)				
$\frac{1000000}{500000} \frac{316.8 \text{ [M+H]}^2}{250.0 275.0 300.0 325.0 350.0 m/2} = 5 5 6 6 9 10 $				
Assignment	¹³ C ppm	¹ H ppm, integration, mult, J _{HH} (Hz)	HMBC signals	
C1	177.1366		H2	
C2	94.2726	6.266, 1H, d,1.7 Hz	H4	
C3	169.0983		H2,H3', H4	
C3'	56.9068	3.9773, 3H,s		
C4	90.1736	6.4462 ,1H, d, 1.7 Hz	H2	
C5	160.5407		H5', H4	
C5'	56.5022	3.909, 3H,s		
C6	104.0223		H4	
C7	189.0155		H4	
C8	88.9061		H14, H10, H12	
С9	171.6062		H9', H10	
C9'	56.8816	3.699, 3H,s		
C10	104.0091	5.664 ,1H, d, 1.3 Hz	H12	
C11	186.3979		H10	
C12	129.8836	6.130, 1H, t, 1.4 Hz	H10, H14	
C13	148.4656		H14	
C14	16.4971	1.741, 3H, d, 1.5 Hz	H12	


Table S16: Mass and UV-Vis spectra and NMR data of 19 in $(CD_3)_2CO$ on 500 MHz Bruker NMR spectrometer.

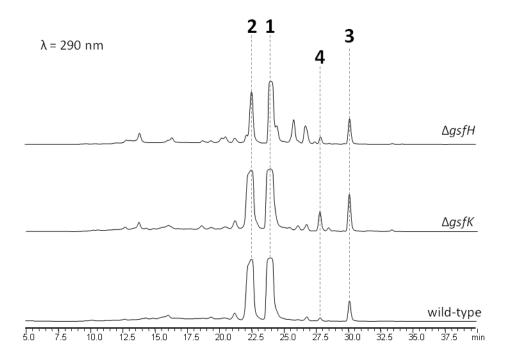
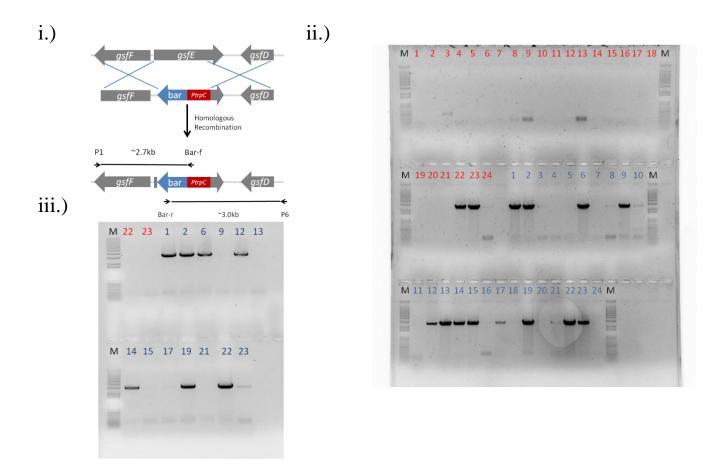

Figure S1: Feeding of norlichexanthone (5) to $\Delta gsfA$ mutant. Chromatogram from the LCMS analysis from the extracts of $\Delta gsfA$ mutant fed with 0.1 mg/mL of 5, showing that feeding of 5 did not restore the production of griseofulvin(1) or dechlorogriseofulvin (2). Also shown in the trace are viridicatumtoxin (3) and tryptoquialanine (4).

Figure S2: *In vitro* assay of GsfI using griseophenone C (**10**) as substrate. GsfI, heterologously expressed and purified from *E.coli* BL21 cells was incubated together with the NADPH-dependent flavin reductase SsuE and griseophenone C in 100 mM sodium phosphate buffer (pH 7.4) and 50 mM NaCl showing the conversion of **10** to griseophenone B


Figure S3: Time course-*in vitro* assay of GsfF from 0-60 minutes using 50 μ M griseophenone B (10) and 1mM NADPH as substrates and 0.412 mg/mL microsomal protein in 100 mM Tris-HCl (pH 7.5) showing a turnover rate of 0.437 μ M/ min·mg of micromal protein. The concentration of protein from the microsomes was determined by comparison with bovine serum albumin (BSA) standard curve. The amount of product desmethyl-dehydrogriseofulvin (14) was quantified by comparison with a standard curve using purified 14 from $\Delta gsfD$ fermentation.

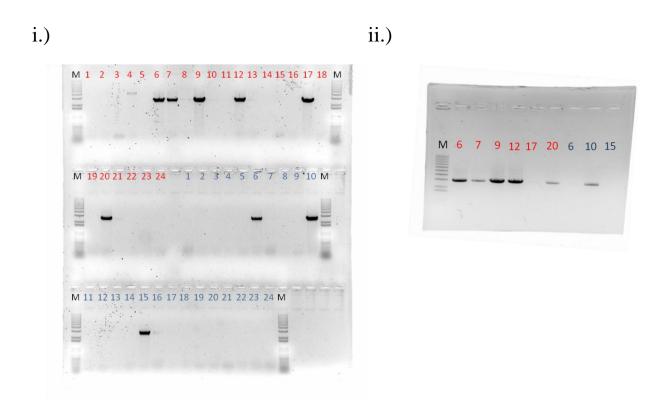
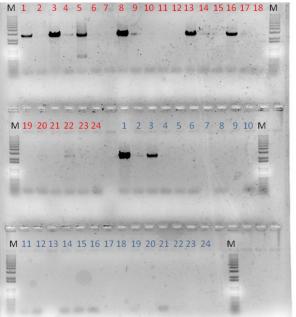

Figure S4: Metabolic profile of $\Delta gsfH$ and $\Delta gsfK$ mutants showing the production of griseofulvin (1) and dechlorogriseofuvlin (2).

Figure S5: *In vitro* assay of GsfE using dechloro-dehydrogriseofulvin (**19**) as substrate. a,) i.) Chromatogram ($\lambda = 290$ nm) from extract of **19** incubated overnight with GsfE only in 100 mM Tris-HCl (pH 7.5). ii.) .) Chromatogram ($\lambda = 290$ nm) from extract of **19** incubated overnight with GsfE and 1 mM NADPH in 100 mM Tris-HCl (pH 7.5) showing conversion to dechlorogriseofulvin (**2**). b.) Extracted ion chromatogram of (a, i.) showing **19** (m/z = 317, [M+H]⁺). c.) Extracted ion chromatogram of (a, ii.) showing **2** (m/z = 319, [M+H]⁺).



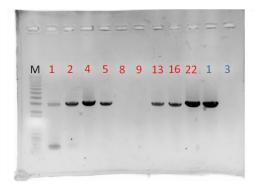

Figure S6: $\Delta gsfE$ mutant screening shown as example of PCR screening method. i.) Linear knockout cassette showing the positions of the primer binding site after successful disruption of the targeted gene. ii.) Amplification of genomic DNA from 48 $\Delta gsfE$ transformants (plate I, 1-24 in red and plate II, 1-24 in blue) using primer pair $\Delta gsfE$ -KO-P1 and bar-f showing expected ~2.7 kb amplicon. iii.) Amplification of genomic DNA from $\Delta gsfE$ transformants that passed the screening from (ii.) using primer pairs $\Delta gsfE$ -KO-P6 and bar-r.

Figure S7: $\Delta gsfH$ mutant screening. i.) Amplification of genomic DNA from 48 $\Delta gsfH$ transformants (plate I, 1-24 in red and plate II, 1-24 in blue) using primer pair $\Delta gsfH$ -KO-P1 and bar-f showing expected ~2.7 kb amplicon. ii.) Amplification of genomic DNA from $\Delta gsfH$ transformants that passed the screening from (i.) using primer pairs $\Delta gsfH$ -KO-P6 and bar-r.

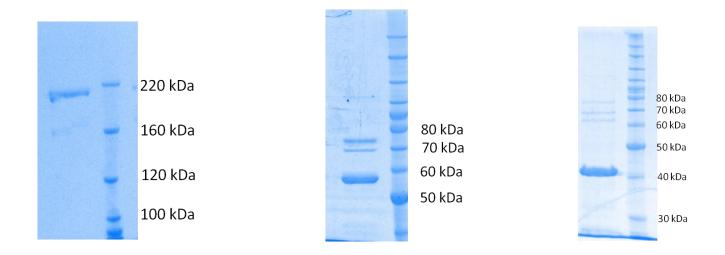

ii.)

Figure S8: $\Delta gsfK$ mutant screening. i.) Amplification of genomic DNA from 48 $\Delta gsfK$ transformants (plate I, 1-24 in red and plate II, 1-24 in blue) using primer pair $\Delta gsfK$ -KO-P1 and bar-f showing expected ~2.7 kb amplicon. ii.) Amplification of genomic DNA from $\Delta gsfK$ transformants that passed the screening from (i.) using primer pairs $\Delta gsfK$ -KO-P6 and bar-r.

32S

Figure S9: SDS-PAGE gels of the PKS GsfA (left, expected size 185 kDa), halogenase GsfI (middle, expected size 58 kDa) and the dehydrogriseofulvin reductase GsfE (right, expected size 41 kDa)

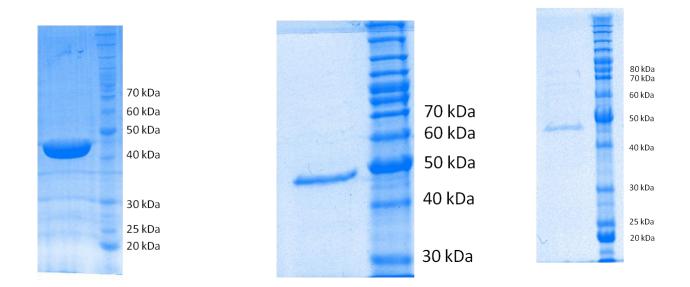


Figure S10: SDS-PAGE gel of GsfB (left, expected size 47 kDa), GsfC (middle, 49 kDa) and GsfD (right, 47 kDa)

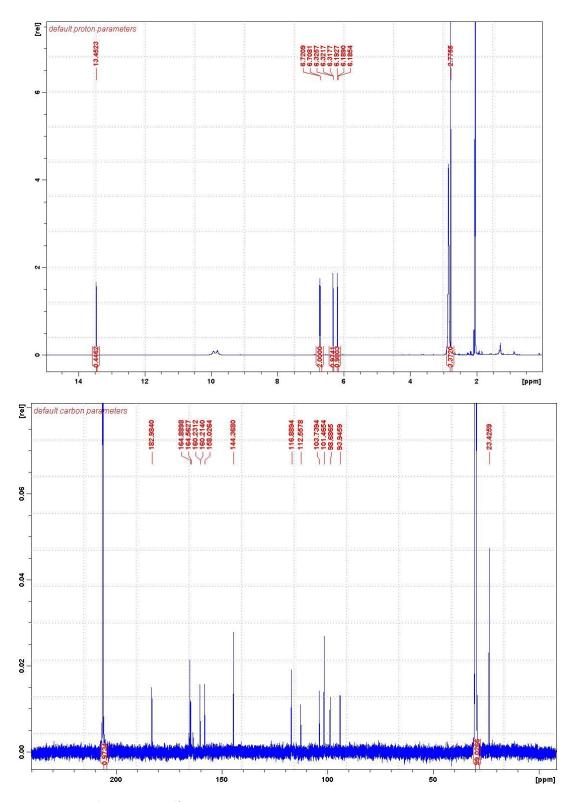


Figure S11: 1D 1 H (top) and 13 C NMR (bottom)spectrum of 5 in (CD₃)₂CO (500 MHz).

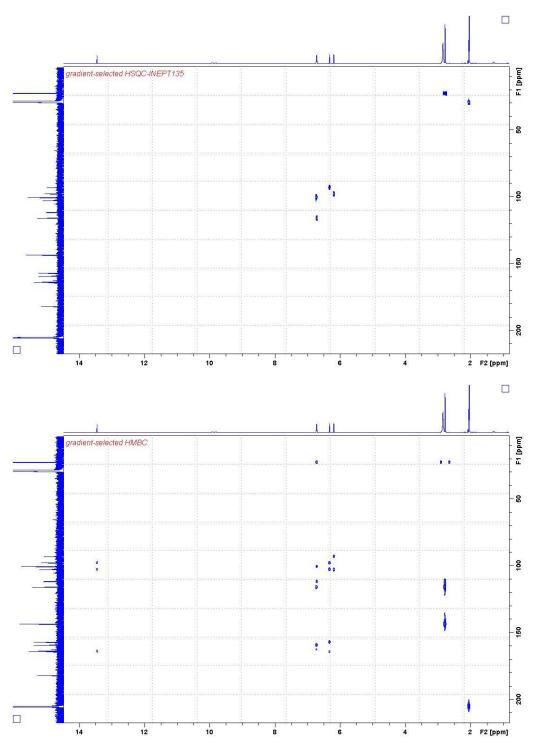


Figure S12: 2D HSQC (top) and HMBC (bottom) of 5 in (CD₃)₂CO (500 MHz).

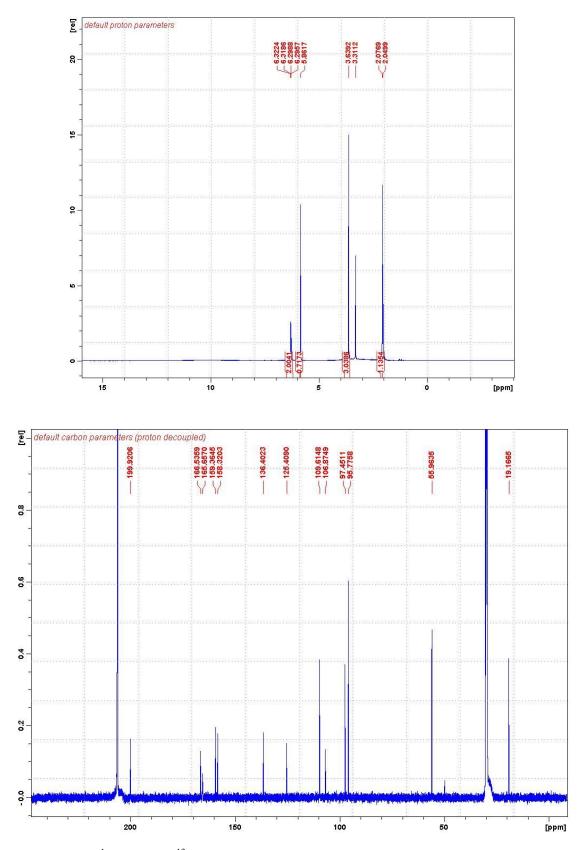


Figure S13: 1D 1 H (top) and 13 C NMR (bottom)spectrum of 7 in (CD₃)₂CO (500 MHz).

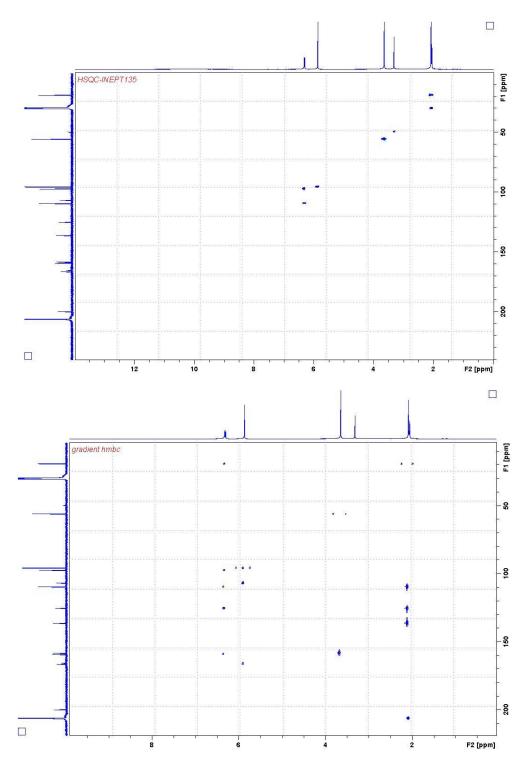
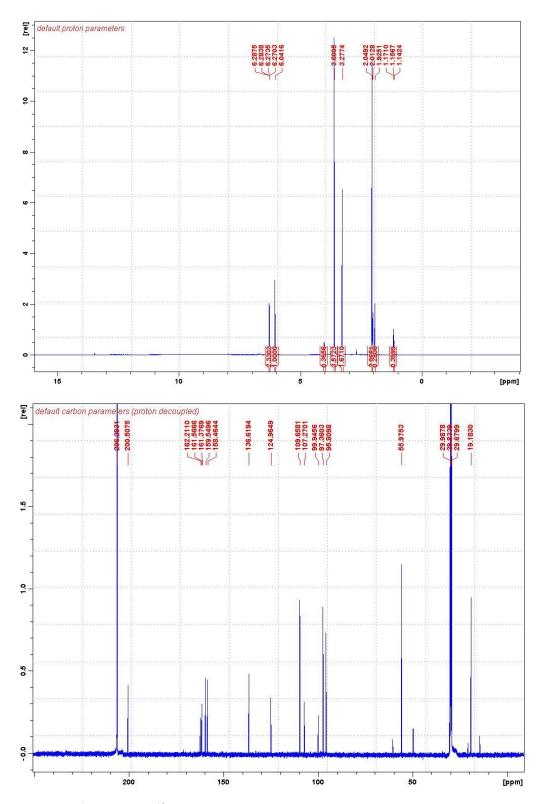



Figure S14: 2D HSQC (top) and HMBC (bottom) of 7 in (CD₃)₂CO (500 MHz).

Figure S15: 1D 1 H (top) and 13 C NMR (bottom)spectrum of 8 in (CD₃)₂CO (500 MHz).

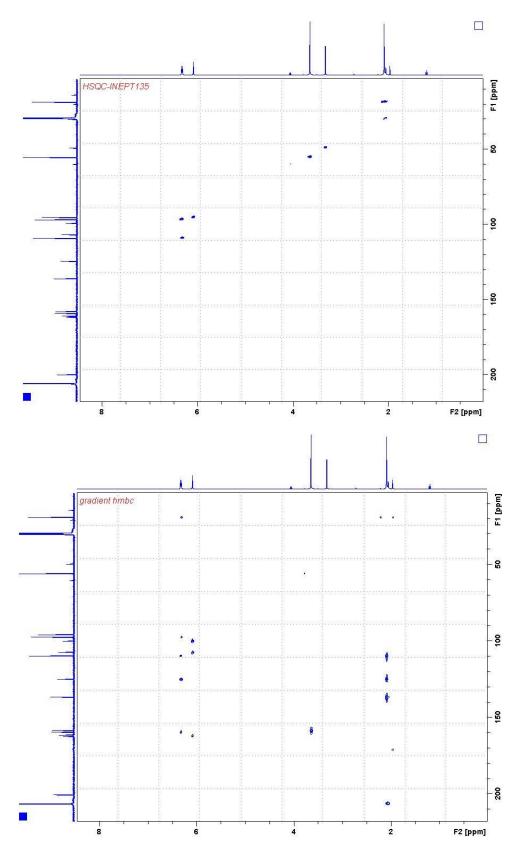


Figure S16: 2D HSQC (top) and HMBC (bottom) of 8 in (CD₃)₂CO (500 MHz).

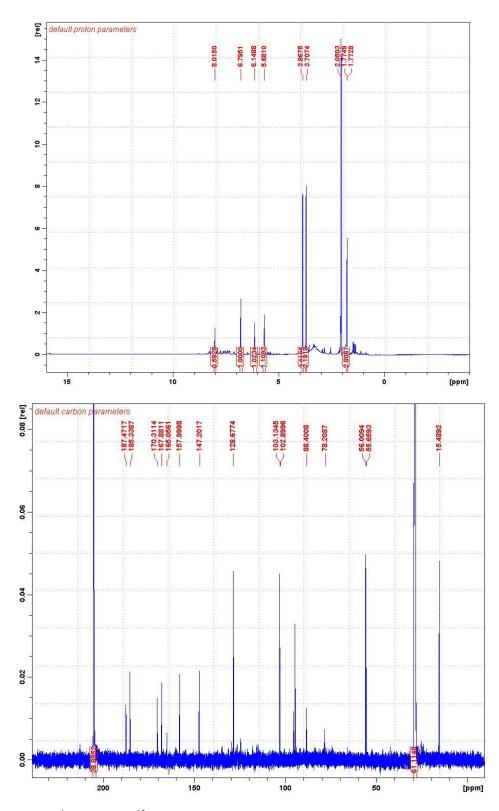


Figure S17: 1D 1 H (top) and 13 C NMR (bottom)spectrum of 9 in (CD₃)₂CO (500 MHz).

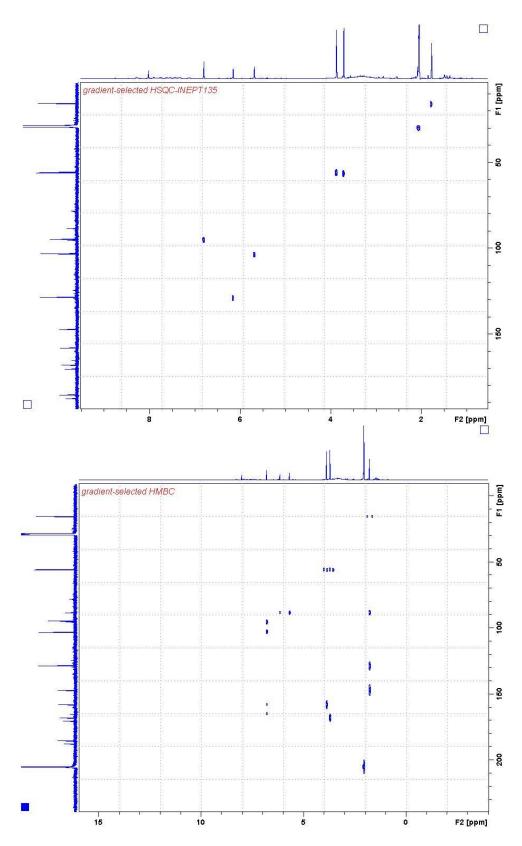
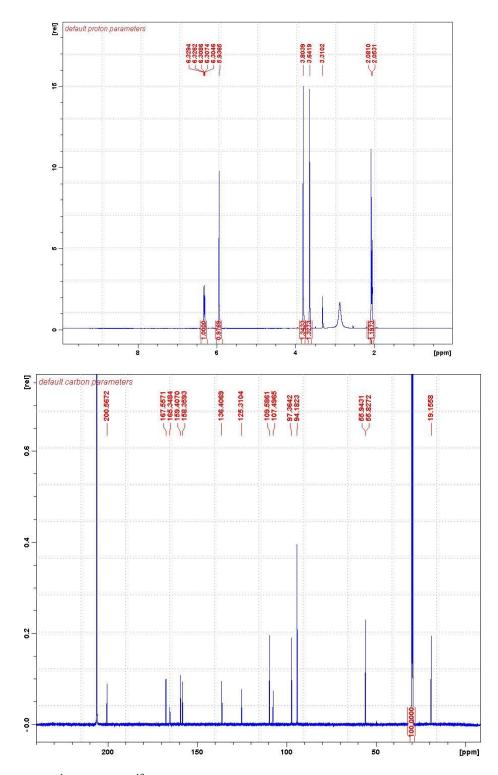



Figure S18: 2D HSQC (top) and HMBC (bottom) of 9 in (CD₃)₂CO (500 MHz).

Figure S19: 1D 1 H (top) and 13 C NMR (bottom)spectrum of **10** in (CD₃)₂CO (500 MHz).

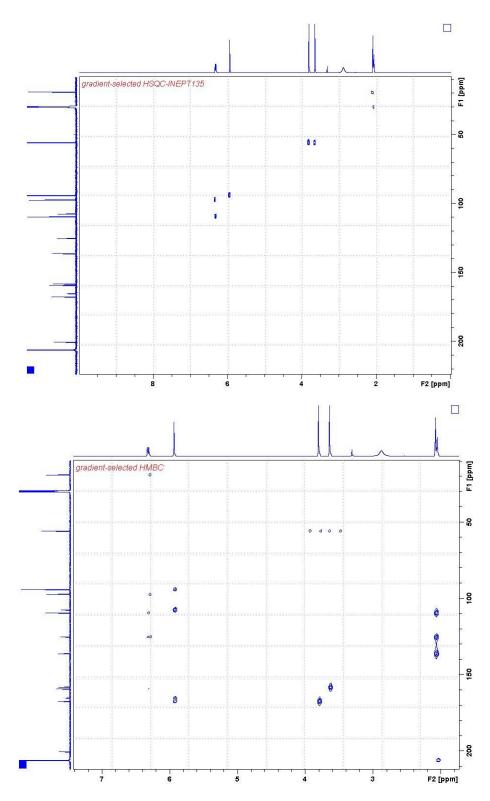
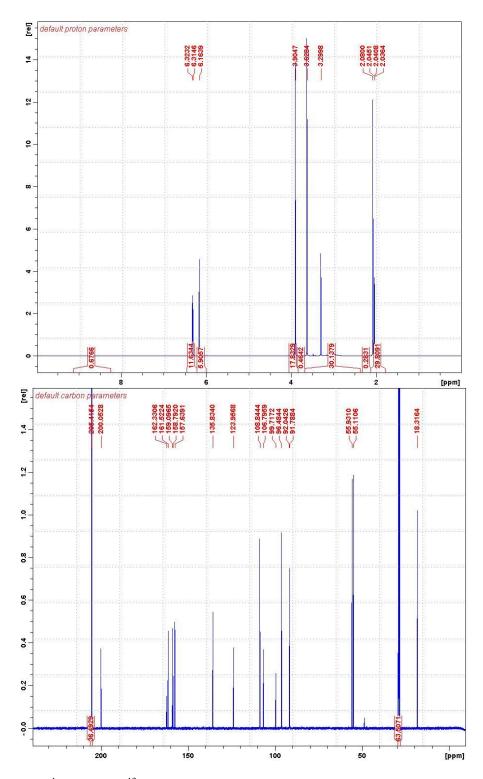



Figure S20: 2D HSQC (top) and HMBC (bottom) of 10 in (CD₃)₂CO (500 MHz).

Figure S21: 1D 1 H (top) and 13 C NMR (bottom)spectrum of **11** in (CD₃)₂CO (500 MHz).

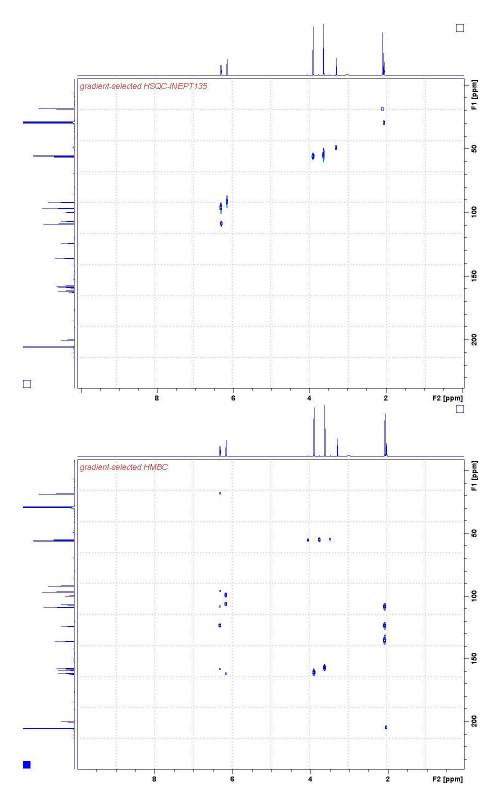
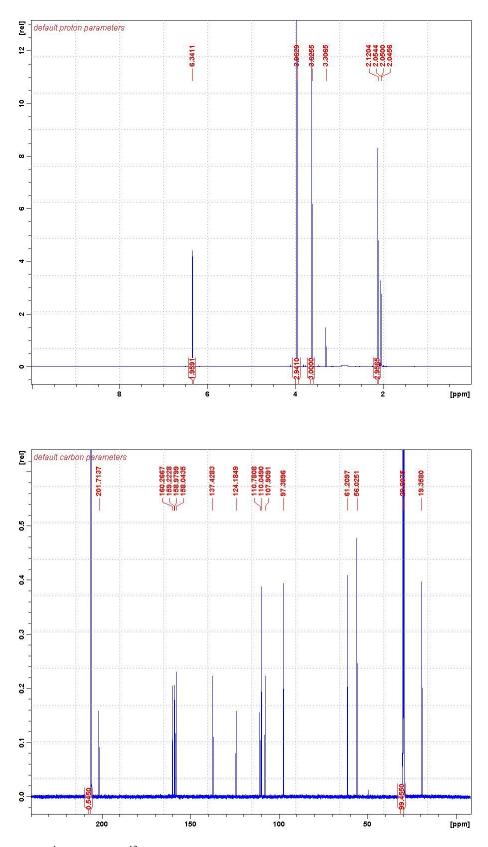



Figure S22: 2D HSQC (top) and HMBC (bottom) of 11 in (CD₃)₂CO (500 MHz).

Figure S23: 1D 1 H (top) and 13 C NMR (bottom)spectrum of **12** in (CD₃)₂CO (500 MHz).

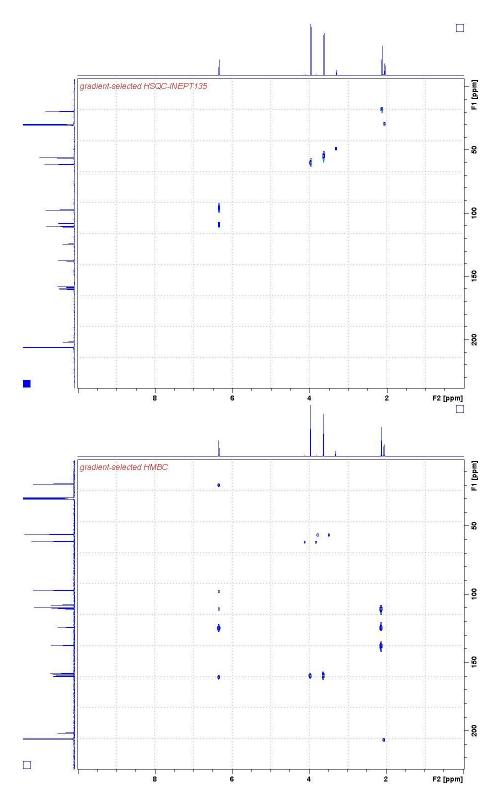


Figure S24: 2D HSQC (top) and HMBC (bottom) of 12 in (CD₃)₂CO (500 MHz).

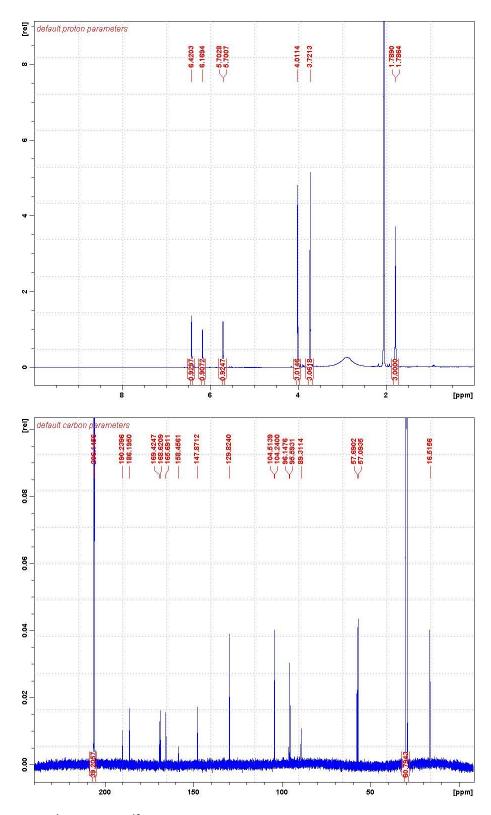


Figure S25: 1D 1 H (top) and 13 C NMR (bottom)spectrum of 14 in (CD₃)₂CO (500 MHz).

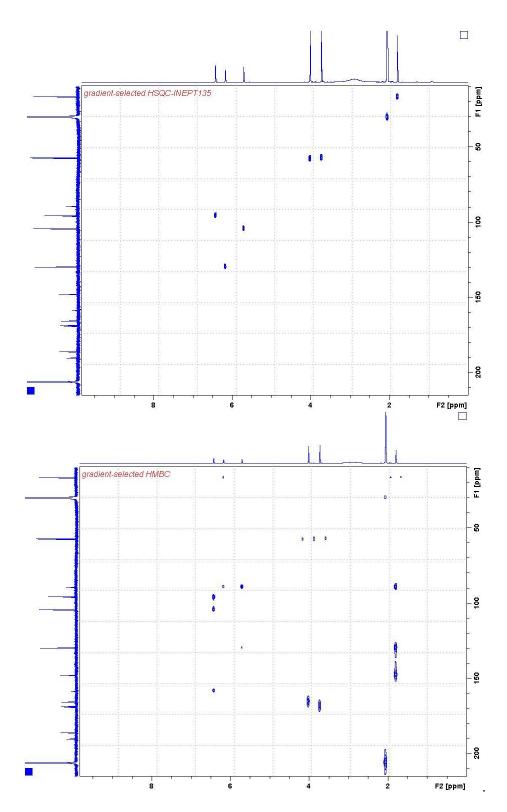


Figure S26: 2D HSQC (top) and HMBC (bottom) of 14 in (CD₃)₂CO (500 MHz).

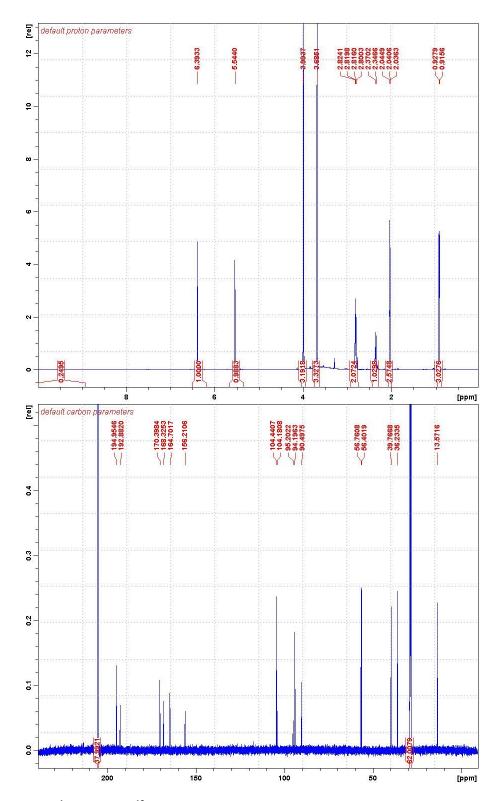


Figure S27: 1D 1 H (top) and 13 C NMR (bottom)spectrum of 15 in (CD₃)₂CO (500 MHz).

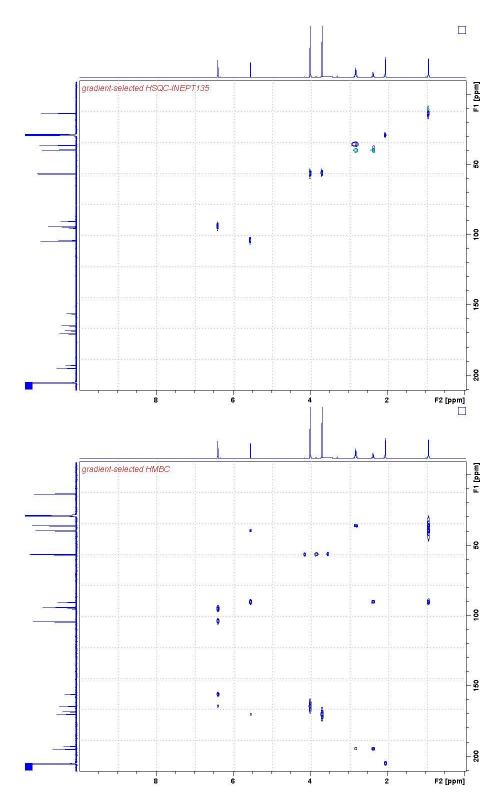
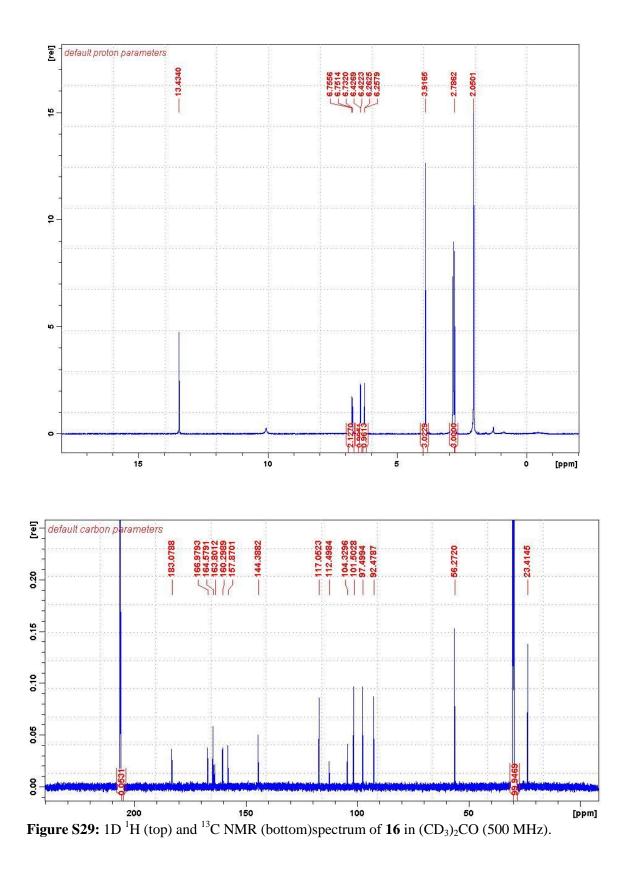



Figure S28: 2D HSQC (top) and HMBC (bottom) of 15 in (CD₃)₂CO (500 MHz).

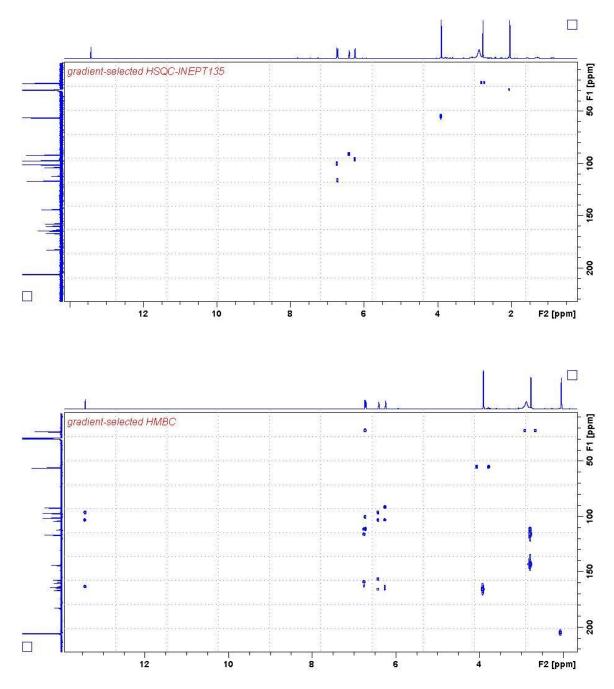
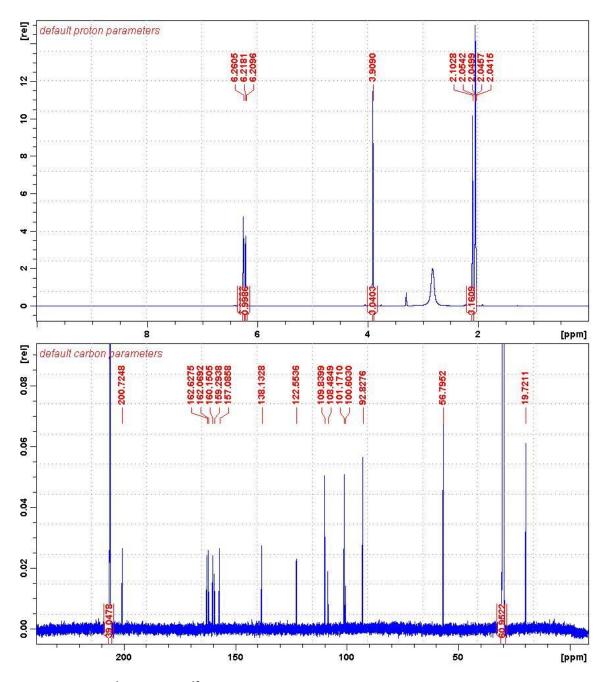



Figure S30: 2D HSQC (top) and HMBC (bottom) of 16 in (CD₃)₂CO (500 MHz).

Figure S31: 1D 1 H (top) and 13 C NMR (bottom)spectrum of **17** in (CD₃)₂CO (500 MHz).

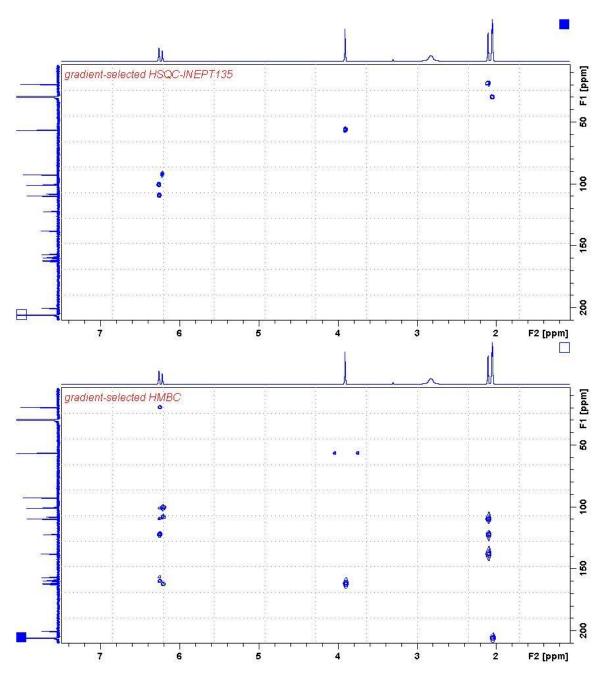


Figure S32: 2D HSQC (top) and HMBC (bottom) of 17 in (CD₃)₂CO (500 MHz).

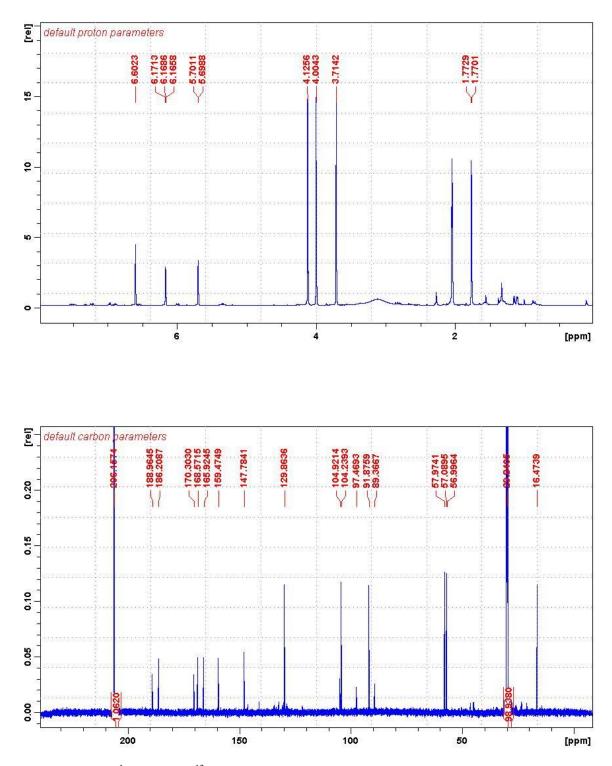


Figure S33: 1D 1 H (top) and 13 C NMR (bottom)spectrum of 18 in (CD₃)₂CO (500 MHz).

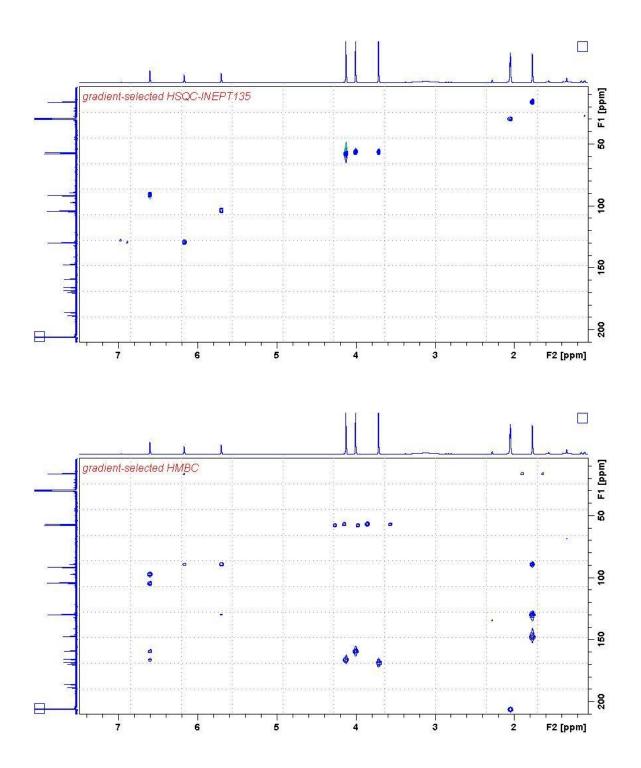
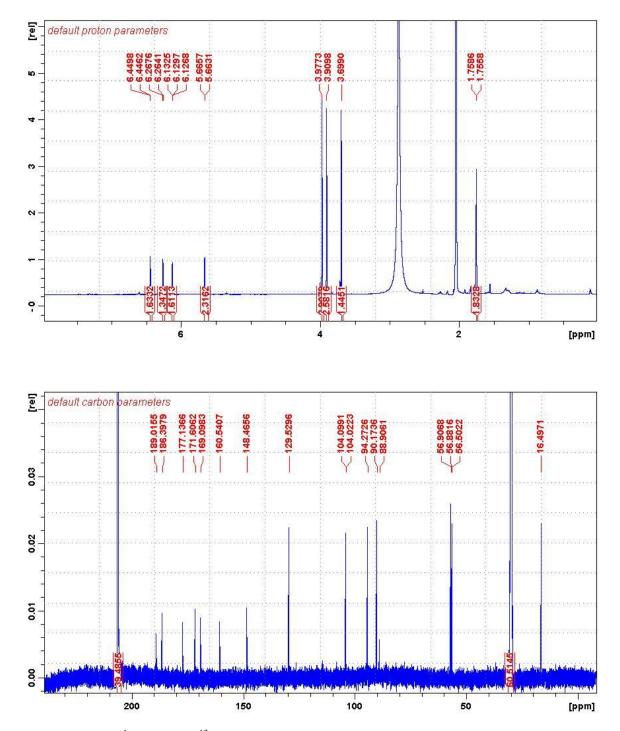



Figure S34: 2D HSQC (top) and HMBC (bottom) of 18 in (CD₃)₂CO (500 MHz).

Figure S35: 1D 1 H (top) and 13 C NMR (bottom)spectrum of **19** in (CD₃)₂CO (500 MHz).

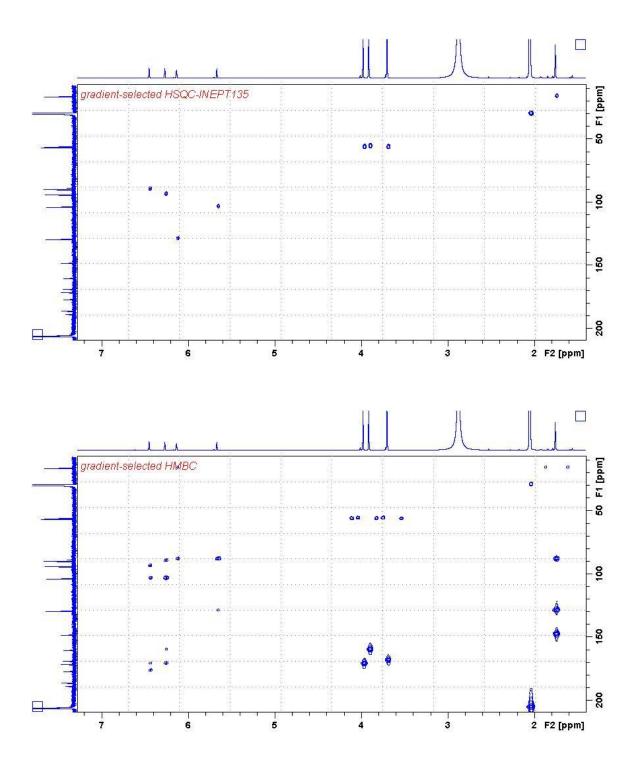


Figure S36: 2D HSQC (top) and HMBC (bottom) of 19 in (CD₃)₂CO (500 MHz).

References for the Supplemental Materials and Methods:

- 1. Cove, D. J. (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans, *Biochim et Biophys Acta 113*, 51-56.
- 2. Sambrook, J., and Russell, D. W. (2001) *Molecular cloning: a laboratory manual*, Cold Spring Harbor Laboratory.
- 3. Chooi, Y.-H., Cacho, R., and Tang, Y. (2010) Identification of the viridicatumtoxin and griseofulvin gene clusters from *Penicillium aethiopicum*, *Chem Biol* 17, 483-494.
- 4. Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A., and Oakley, B. R. (2007) Fusion PCR and gene targeting in *Aspergillus nidulans*, *Nat Protocols 1*, 3111-3120.
- Barriuso, J., Nguyen, D. T., Li, J. W., Roberts, J. N., MacNevin, G., Chaytor, J. L., Marcus, S. L., Vederas, J. C., and Ro, D. K. (2011) Double oxidation of the cyclic nonaketide dihydromonacolin L to monacolin J by a single cytochrome P450 monooxygenase, LovA, J Am Chem Soc 133, 8078-8081.
- 6. Ralston, L., Kwon, S. T., Schoenbeck, M., Ralston, J., Schenk, D. J., Coates, R. M., and Chappell, J. (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (*Nicotiana tabacum*), *Arch Biochem Biophys* 393, 222-235.