Supporting Information

Rhodium-Catalyzed Hetero-(5 + 2) Cycloaddition of Vinyl Aziridines and Alkynes: A Theoretical View of Mechanism and Chirality Transfer

Lei Zhu,[†] Xiaotian Qi,[†] and Yu Lan^{*}

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China.

E-mail: lanyu@cqu.edu.cn

Table of contents

1. Complete Reference for Gaussian 09	S1
2. Comparison of Different DFT Results	S2
3. Absolute Calculation Energies, Enthalpies, and Free Energies	S3

1. Complete Reference for Gaussian 09

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.

J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2013**.

2. Comparison of Different DFT Results

Figure S1. Free energy profiles of different DFT results for the intramolecular formal hetero-(5+2) cycloaddition of reactant (*E*, *S*)-1.

To investigate whether this discrepancy is due to the employed functional, we recalculated the free energy profile using the M06L and B3LYP-D3 methods by performing single-point calculations on the B3LYP-optimized geometries. Indeed, the calculations show that the energy profile changes depending on the functional employed, which is shown in figure S1. The computation results indicate that when different functionals are taken into consideration, the fluctuation tendency of free energy in this pathway is almost the same among these functionals. Therefore, taken

together, all the B3LYP-D3, M06L and M11-L functionals give a quite similar overall picture of the reaction mechanism. we can draw the conclusion as that the M11-L functional could provide great accuracy in energetic information for this work and the use of other functionals will not affect the over conclusions on which are the preferred pathways.

3. Absolute Calculation Energies, Enthalpies, and Free Energies

Geometry	$E_{(elec-B3LYP)}^{1}$	G _(corr-B3LYP) ²	H _(corr-B3LYP) ³	E _(solv,M11-L) ⁴	IF ⁵
NBD	-271.4723186	0.100906	0.134829	-271.504391	-
$\mathbf{RhL_2}^+$	-653.4040931	0.221926	0.27489	-653.6789874	-
(E,S)-1	-2290.33219	0.432264	0.54319	-2290.457389	-
(Z,R)-2	-2290.401807	0.442099	0.545223	-2290.537785	-
(Z,S)-2	-2290.410145	0.438538	0.545198	-2290.546955	-
(Z,S)-3	-2290.333285	0.433536	0.543419	-2290.461308	-
4 A	-2672.275743	0.555957	0.683591	-2672.61691	-
4B	-2672.279563	0.557908	0.683752	-2672.630774	
5A-ts	-2672.262732	0.556393	0.682069	-2672.608381	-102.21
5B-ts	-2672.23502	0.559935	0.681251	-2672.5846	-376.43
5C-ts	-2672.230443	0.551656	0.680309	-2672.585487	-190.78
6A	-2672.268996	0.557706	0.682471	-2672.625171	-
6B	-2672.264929	0.559078	0.683154	-2672.614185	-
6C	-2672.252514	0.554874	0.68276	-2672.607064	-
7A	-2672.268461	0.562768	0.683768	-2672.629462	-
7B	-2672.284466	0.564665	0.684571	-2672.639716	-
8A-ts	-2672.247848	0.563359	0.681924	-2672.616037	-195.21
8B-ts	-2672.281079	0.564967	0.683606	-2672.62853	-200.26
9	-2672.300634	0.565872	0.683417	-2672.661413	-
10-ts	-2672.269849	0.565014	0.682675	-2672.622034	-104.19

Table S1. The absolute calculation energies, enthalpies, and free energies.

11	-2672.339213	0.567356	0.685614	-2672.687879	-
12-ts	-2672.266078	0.558419	0.682751	-2672.6044	-200.20
13	-2672.274334	0.554252	0.683276	-2672.618392	-
14-ts	-2672.250895	0.55838	0.682369	-2672.60254	-55.51
15	-2672.250965	0.556938	0.682426	-2672.604831	-
16	-2672.216119	0.562771	0.682856	-2672.592428	-
17-ts	-2672.213113	0.561913	0.681131	-2672.597661	-198.90
18	-2672.262677	0.562933	0.683845	-2672.635144	-
19-ts	-2672.238532	0.563815	0.682038	-2672.588093	-235.39
20	-2672.265684	0.565824	0.68403	-2672.615708	-
(E,S)-21	-2290.344343	0.441763	0.544691	-2290.485196	-
(E,R)-21	-2290.349859	0.440657	0.544733	-2290.488151	-
22	-2672.266452	0.554971	0.683565	-2672.610515	-
23-ts	-2672.251705	0.560133	0.682434	-2672.598401	-163.33
24	-2672.272422	0.562635	0.683993	-2672.625534	-
25	-2672.26659	0.562784	0.68368	-2672.614749	-
26-ts	-2672.249155	0.563243	0.682281	-2672.608564	-164.82
27	-2672.29566	0.565823	0.684186	-2672.643308	-
28-ts	-2672.281515	0.564566	0.682399	-2672.628986	-152.62
29	-2672.337472	0.566493	0.685453	-2672.691891	-
30-ts	-2672.251384	0.556984	0.682208	-2672.598196	-14.89
31	-2672.271971	0.554646	0.683098	-2672.615981	-
32-ts	-2672.24811	0.558827	0.68214	-2672.601138	-79.49
33	-2672.24723	0.556749	0.683112	-2672.600253	-
34	-2672.228295	0.561788	0.682969	-2672.590923	-
35-ts	-2672.218112	0.562465	0.681545	-2672.593777	-246.33
36	-2672.263453	0.562156	0.684077	-2672.624595	-
37-ts	-2672.236237	0.561223	0.682148	-2672.592097	-162.82
38	-2672.268547	0.567912	0.683435	-2672.621832	-
¹ The electronic energy calculated by B3LYP in gas phase. ² The thermal correction to					

Gibbs free energy calculated by B3LYP in gas phase. ³The thermal correction to enthalpy calculated by B3LYP in gas phase. ⁴The electronic energy calculated by M11-L in Dichloroethane (DCE) ⁵The B3LYP calculated imaginary frequencies for the transition states.

Geometry	E _(solv,B3LYP-D3) ¹	$E_{(solv,M06-L)}^2$
NBD	-271.5617564	-271.5079249
RhL_{2}^{+}	-653.6392403	-653.5816048
(E,S)-1	-2290.838188	-2290.620791
(Z,R)-2	-2290.90488	-2290.689571
4A	-2672.882632	-2672.681899
5A-ts	-2672.873015	-2672.669633
6A	-2672.887107	-2672.681417
7 A	-2672.883417	-2672.686544
8A-ts	-2672.866593	-2672.675841
9	-2672.910993	-2672.715137
10-ts	-2672.869565	-2672.869565
11	-2672.930415	-2672.930415

Table S2. The electronic single point energy calculated by B3LYP-D3 and M06-L in Dichloroethane (DCE).

¹The electronic energy calculated by B3LYP-D3 in Dichloroethane (DCE) solvent. ²The electronic energy calculated by M06-L in Dichloroethane (DCE) solvent.