Supporting Information for

Synthesis and Characterization of Dimolybdenum(II) Complexes Connected by Carboxylate Linkers

Xu-Min Cai[#], Dominik Höhne[#], Mathias Köberl, Mirza Cokoja, Alexander Pöthig,

Eberhardt Herdtweck, Stefan Haslinger, Wolfgang A. Herrmann*, and Fritz E. Kühn*

Table of contents:

NMR spectra		S2 - S5
UV-Vis spectra of 1 and 1	3	S6
TGA / MS results		S6 – S7
SC-XRD details		S8 – S12

Figure S1. ¹H NMR spectrum of **2** in CD₃CN.

Figure S2. ¹H NMR spectra of FMCA (red) and 2 (blue) in CD₃CN.

^{5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 11 (}ppm)

Figure S3. ¹H NMR spectrum of the unpurified product 2 after 20h in CD₃CN. (t: trans-structure; c: cis-structure).

Figure S4. ¹H NMR spectrum of **3** at -10 °C in CD₃CN.

Figure S5. Variable-temperature ¹H NMR spectra of compound **3** in CD₃CN at temperatures from +20 °C to -30 °C. The scrambling of the ferrocene (4.21-5.34 ppm) ligand can be stopped at around 0 °C.

20°C	
0°C	
-10°C	
-20°C	
-30°C	

Figure S6. Variable-temperature ¹¹B NMR spectra of compound **3** at temperatures from

+20 °C to -30 °C in CD₃CN.

	20°0	2																
	0°C	3																
	-10°	С																
	-20°	Ċ																
	-30°	°C																
-10) -20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm)	-110	-120	-130	-140	-150	-160	-170	-180	-190

Figure S7. Variable-temperature ¹⁹F NMR spectra of compound **3** at temperatures from + 20 °C to -30 °C in CD₃CN.

Figure S8. Absorption spectra of FDCA, 1 and 3 in CH₃CN.

Figure S9. TGA (blue) and MS curves (green acetonitrile, red CO₂) of compound 3.

Figure S10. TGA (blue) and MS curves (green propionitrile, red CO₂) of compound 4.

Figure S11. TGA (blue) and MS curves (green acetonitrile, red CO₂) of compound 5.

General:

Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (Bruker APEX II, *k*-CCD), a rotating anode (Bruker AXS, FR591) (compound 5) or a fine-focussed sealed tube (compound 2) with MoK_{α} radiation ($\lambda =$ 0.71073 Å), and a graphite monochromator by using the SMART software package. [1] The measurements were performed on a single crystal coated with perfluorinated ether. The crystal was fixed on the top of a glass fiber and transferred to the diffractometer. The crystal was frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT. [2] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS. [2] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using WinGX [7] based on SIR-92 [3], or SHELXLE [8] in conjunction with SHELXL-97 [5] (for compound 2). Hydrogen atoms were assigned to ideal positions and refined using a riding model with an isotropic thermal parameter 1.2 times that of the attached carbon atom (1.5 times for methyl hydrogen atoms). If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w(F_o^2 - F_c^2)^2$ with SHELXL-97 [5] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. [4] Images of the crystal structures were generated by PLATON. [6]

Compound 2: (CCDC 942543)

Crystal Data

Formula	C30	Н30	В	F4	Fe2	Mo2	N4	04,	2 (C2	HЗ	N),	B F4
Formula Weight											10	69.89
Crystal System										Ort	horh	ombic
Space group							1	P212	121		(Nc	. 19)
a, b, c [Angstrom]			g	.38	389(2)	11	.299	6(2)	4	4.71	44(8)
V [Ang**3]										47	43.7	9(16)
Z												4
D(calc) [g/cm**3]												1.498
Mu(MoKa) [/mm]												1.186
F(000)												2128
Crystal Size [mm]								0.0	9 x	0.1	2 x	0.30
	Dat	ta Co	ɔ 11	.ect	cion							

Temperature (K)									12	3
Radiation [Angstrom]				М	oKa		0	.7	107	3
Theta Min-Max [Deg]							1.8,		25.	4
Dataset	-11:	11	L ;		0:	13	;	0	: 5	3
Tot., Uniq. Data, R(int)			86	658	,	86	58,	0	.00	0
Observed data $[I > 2.0 \text{ sigma}(I)]$									689	1

Refinement

Nref, Npar	8658, 530
R, wR2, S	0.0524, 0.1182, 1.04
w = 1/[\s^2^(Fo^2^)+(0.0537P)^2^+8.8786P]	where P=(Fo^2^+2Fc^2^)/3
Max. and Av. Shift/Error	0.00, 0.00
Flack x	0.0(5)
Min. and Max. Resd. Dens. [e/Ang^3]	-0.91, 2.86

Due to physical meaningless ADP the ISOR-restraint was applied for the refinement of the B1 atom. The large positive residual electron density is located on the molybdenum-molybdenum bond, not unusual for the IAM-refinement of the metal-centers. The unit cell contains 5 methylene chloride molecules which have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON.[6]

<u>Compound 5:</u> (CCDC 904006)

Figure S13 - Ortep drawing drawing of compound 5 with 50% ellipsoids. [6]

Operator:	*** Herdtweck ***
Molecular Formula:	$C_{56}H_{57}B_6F_{27}Mo_6N_{16}O_{12}$
	$[(C_{48} H_{45} F_3 Mo_6 N_{12} O_{12})^{6+}], [6(B F_4)^-], 4(C_2 H_3 N)$
Crystal Color / Shape	Red fragment
Crystal Size	Approximate size of crystal fragment used for data collection:
	$0.18 \times 0.36 \times 0.51$ mm
Molecular Weight:	2299.80 a.m.u.
F ₀₀₀ :	2252
Systematic Absences:	none

Space Group:	Trigonal	P 3	(I.TNo.: 147)							
Cell Constants:	Least-squares refi	nement of 9212 r	eflections with the prog	rams "APEX						
	suite" and "SAINT	[" [1,2]; theta rang	ge $1.14^{\circ} < \theta < 25.41^{\circ}; N$	$Io(K\alpha); \lambda =$						
	71.073 pm									
	<i>a</i> =	2063.55(3) pm	α =	90°						
	<i>b</i> =	2063.55(3) pm	$\beta =$	90°						
	<i>c</i> =	1366.58(2) pm	$\gamma =$	120°						
	V = 5039.60(13).	10^6 pm^3 ; $Z = 2$; D	$_{calc} = 1.516 \text{ g cm}^{-3}$; Mos	s. = 0.69						
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); sealed tul									
	graphite monochro	omator; 40 kV; 30) mA; $\lambda = 71.073$ pm; N	$Mo(K\alpha)$						
Temperature:	(-150±1) °C;		(123±1) K							
Measurement Range:	$1.14^{\circ} < \theta < 25.41^{\circ}$; h: -24/24, k:	-24/24, 1: -16/16							
Measurement Time:	2×5 s per film									
Measurement Mode:	measured: 7 runs; 3969 films / scaled: 7 runs; 3969 films									
	φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 50.0 mm									
LP - Correction:	Yes [2]									
Intensity Correction	No/Yes; during sc	aling [2]								
Absorption Correction:	Multi-scan; during	g scaling; $\mu = 0.82$	26 mm ⁻¹ [2]							
	Correction Factors	s: T _{min}	$T_{n} = 0.6490$ T_{n}	_{nax} =						
	0.7452									
Removing solvent molecules	Besides the solve	ent molecule, we	ll located in the different	ence Fourier						
	maps, unresolved	solvent molecule	es remained and had to	be removed						
	with the SQUEEZ	E procedure. [6]								
Reflection Data:	123391	reflections were	integrated and scaled							
	123391	reflections to be	merged							
	6214	independent refl	ections							
	0.022	R_{int} : (basis F_o^2)								
	6214	independent re	eflections (all) were	e used in						
	refinements									
	5935	independent refl	ections with $I_o > 2\sigma(I_o)$							
	100 %	completeness of	the data set							
	398	parameter full-m	natrix refinement							
	15.6	reflections per p	arameter							
Solution:	Direct Methods [3	, 7]; Difference F	ourier syntheses							
Refinement Parameters:	In the asymmetric	unit:								
	41 No	on-hydrogen ator	ms with anisotropic	displacement						
	parameters									
Hydrogen Atoms:	In the difference	map(s) calculat	ed from the model co	ontaining all						
	non-hydrogen ato	oms, not all of	the hydrogen position	ns could be						
	determined from t	he highest peaks.	For this reason, the hyd	lrogen atoms						
	were placed in a	calculated position	ons $(d_{C-H} = 95, 98 \text{ pr})$	n). Isotropic						

		displacement parameters were calculated from the parent carb	on atom
		$(U_{\rm H} = 1.2/1.5 \ U_{\rm C})$. The hydrogen atoms were included in the	structure
		factor calculations but not refined.	
Atomic Form Fac	ctors:	For neutral atoms and anomalous dispersion [4, 5, 7]	
Extinction Correct	ction:	no	
Weighting Schen	ne:	$w^{-1} = \sigma^2 (F_o^2) + (a*P)^2 + b*P$	
		with a: 0.0593; b: 21.0221; P: [Maximum(0 or F_0^2)+2* F_c^2]/3	
Shift/Err:		Less than 0.001 in the last cycle of refinement	
Resid. Electron I	Density:	+2.18 $e_{0;}^{-}/Å^{3}$; -0.91 $e_{0;}^{-}/Å^{3}$	
R1:		$\Sigma(F_{o} - F_{c})/\Sigma F_{o} $	
$[F_{o} > 4\sigma(F_{o});$	N=5935]:		=
		0.0437	
[all reflctns;	N=6214]:		=
		0.0450	
wR2:		$[\Sigma w (F_{\rm o}^{2} - F_{\rm c}^{2})^{2} / \Sigma w (F_{\rm o}^{2})^{2}]^{1/2}$	
$[F_{o} > 4\sigma(F_{o});$	N=5935]:		=
		0.1199	
[all reflctns;	N=6214]:		=
		0.1207	
Goodness of fit:		$[\Sigma w (F_o^2 - F_c^2)^2 / (\text{NO-NV})]^{1/2}$	=
		1.063	
Remarks:		Refinement expression $\Sigma w (F_o^2 - F_c^2)^2$	

References:

- APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [2] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [3] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli M. "SIR92", J. Appl. Cryst. 1994, 27, 435-436.
- International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1998).
- [6] Spek, A. L. "PLATON", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).
- [7] L. J. Farrugia, "WinGX (Version 1.70.01 January 2005)", J. Appl. Cryst. 1999, 32, 837-838.
- [8] Huebschle, C. B., Sheldrick, G. M. & Dittrich, B. "SHELXLE", J. Appl. Cryst. 2011, 44, 1281-1284.