Establishment of a derivatization method to quantify

thiol function in sulfur-containing plasma polymer

films

Damien Thiry ${ }^{{ }^{1 *}}$, Remy Francq ${ }^{1,2}$, Damien Cossement ${ }^{2}$, David Guerin ${ }^{3}$, Dominique Vuillaume ${ }^{3}$ and Rony Snyders ${ }^{1,2}$

(1) Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons, Belgium
(2) Materia Nova Research Center, Parc Initialis, B-7000 Mons, Belgium
(3) Molecular Nanostructures \& Devices" group, Institut d'Electronique, Microélectronique et Nanotechnologie (IEMN), Centre National de la Recherche Scientifique (CNRS), BP60069, avenue Poincaré, F-59652 cedex, Villeneuve d'Ascq, France

Silicon
 Oxygen

- Hydrogen

Sulfur
Nitrogen

Figure S1: Schematic description of a MPTS-SAM exhibiting a N-ethylmaleimide grafted at the sulfur extremity. The molecule geometry was optimized using MOPAC theoretical calculations (PM3 Optimization).

Figure S2: Schematic diagram of the minimal space between two N-ethylmaleimide molecules assimilated to cylinders.

Figure S3: Evolution of the [SH] (calculated using equation 2) measured by XPS and the normalized ToF-SIMS intensity of peak corresponding to $\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{~S}\right]^{-}$as a function of $<\mathrm{P}>$. The errors bars correspond to the standard deviations calculated from XPS and ToF-SIMS measurements using different areas on the sample's surface. For all the experiments, the duration reaction was fixed to 86 h . This condition allows to reach a complete derivatization reaction.

The Table S1 collects the elemental composition of the Pr-PPF as-deposited and after the chemical derivatization reaction during 86h. This condition allows to reach a complete derivatization reaction.

$\langle\mathrm{P}\rangle$ (W)	Pr-PPF as-deposited		Pr-PPF after CD during 86 h				
	\%C	\%S	\%C	\%S	\%O	\%N	[SH]
14	50.22 ± 0.05	49.76 ± 0.06	57.12 ± 0.25	29.16 ± 0.49	11.51 ± 0.13	2.2 ± 0.53	4.22 ± 0.88
38	64.42 ± 0.52	34.57 ± 0.52	65.43 ± 1.7	20.83 ± 0.41	10.52 ± 1.2	2.49 ± 0.27	4.6 ± 0.46
100	71.44 ± 0.6	28.52 ± 0.6	64.73 ± 1.54	23.07 ± 0.87	9.55 ± 1.73	2.14 ± 0.13	4.13 ± 0.31

