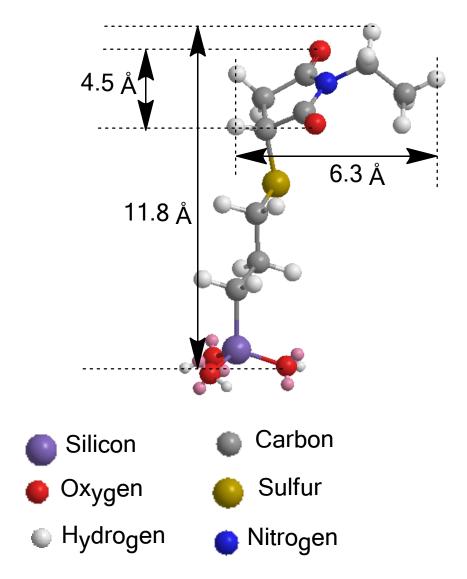
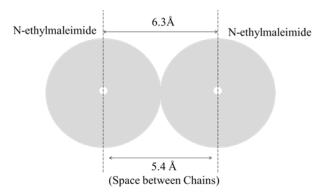
Supporting Data Information


Establishment of a derivatization method to quantify thiol function in sulfur-containing plasma polymer films

Damien Thiry^{1*}, Remy Francq^{1,2}, Damien Cossement², David Guerin³, Dominique Vuillaume³ and Rony Snyders^{1,2}


- (1) Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons, Belgium
- (2) Materia Nova Research Center, Parc Initialis, B-7000 Mons, Belgium
- (3) Molecular Nanostructures & Devices" group, Institut d'Electronique, Microélectronique et

 Nanotechnologie (IEMN), Centre National de la Recherche Scientifique (CNRS), BP60069, avenue

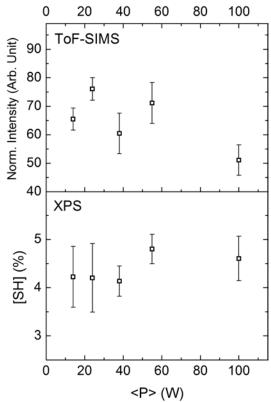

 Poincaré, F-59652 cedex, Villeneuve d'Ascq, France

Figure S1: Schematic description of a MPTS-SAM exhibiting a N-ethylmaleimide grafted at the sulfur extremity. The molecule geometry was optimized using MOPAC theoretical calculations (PM3 Optimization).

Figure S2: Schematic diagram of the minimal space between two N-ethylmaleimide molecules assimilated to cylinders.

Figure S3: Evolution of the [SH] (calculated using equation 2) measured by XPS and the normalized ToF-SIMS intensity of peak corresponding to $[C_6H_8NO_2S]^-$ as a function of <P>. The errors bars correspond to the standard deviations calculated from XPS and ToF-SIMS measurements using different areas on the sample's surface. For all the experiments, the duration reaction was fixed to 86h. This condition allows to reach a complete derivatization reaction.

The Table S1 collects the elemental composition of the Pr-PPF as-deposited and after the chemical derivatization reaction during 86h. This condition allows to reach a complete derivatization reaction.

<p> (W)</p>	Pr-PPF as-deposited		Pr-PPF after CD during 86 h				
	%C	%S	%C	%S	%O	%N	[SH]
14	50.22 ±0.05	49.76±0.06	57.12±0.25	29.16±0.49	11.51±0.13	2.2±0.53	4.22±0.88
38	64.42±0.52	34.57±0.52	65.43±1.7	20.83±0.41	10.52±1.2	2.49 ± 0.27	4.6±0.46
100	71.44±0.6	28.52±0.6	64.73±1.54	23.07±0.87	9.55±1.73	2.14±0.13	4.13±0.31