Supporting Information

Access to Indenones by Rhodium(III)-Catalyzed C-H Annulation of

Arylnitrones with Internal Alkynes

Zisong Qi,^{†,‡} Mei Wang,[‡] Xingwei Li^{*,†}

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China Email: xwli@dicp.ac.cn

I.	General	2
II.	General procedures for the synthesis of indenones	2
III.	Mechanic Studies	12
IV.	References	13
V.	NMR Spectra	14

I. General

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All reactions were carried out using Schlenk techniques or in an argon-filled glovebox. NMR Spectra were recorded on a Bruker 400 MHz or 500 MHz NMR spectrometer in the solvents indicated. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. HRMS data were obtained on a Thermo Scientific LTQ Orbirap Discovery (Bremen, Germany). Column chromatography was performed on silica gel (300-400 mesh) using 1,2-dichloroethane (DCE)/petroleum ether (PE).

N-tert-butyl- α -phenylnitrone (PBN), phenylethynyltrimethylsilane, ethyl phenylpropiolate and diphenylacetylene were obtained from commercial sources. Other *N-tert*-butyl- α -arylnitrones ¹ and diarylacetylenes ² were prepared according to literature reports and the NMR data agree with those in the literature reports.

II. General procedures for the synthesis of indenones

N-tert-butyl- α -arylnitrones (0.36 mmol), diarylacetylenes (0.25 mmol), [Cp*Rh(MeCN)₃](SbF₆)₂ (6 mol%), PivOH (1.0 equiv) and DCE (2 mL) were charged into the sealed tube. The reaction mixture was stirred at 80 °C for 15 h. After cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using DCE/PE to afford compounds **3**.

2,3-Diphenyl-1*H*-inden-1-one (3aa)

3aa was obtained according to the general procedure in 70% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 7.0 Hz, 1H), 7.42 – 7.34 (m, 6H), 7.30 – 7.23 (m, 6H), 7.14 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 155.5, 145.4, 133.6, 132.9, 132.6, 130.9, 130.1, 129.4, 129.1, 128.9, 128.7, 128.2, 127.9, 123.1, 121.4. One carbon is not visible due to overlapping peaks. The NMR data

agree with those in a literature report.³

2,3-Diphenyl-5-methyl-1*H*-inden-1-one (**3ba**)

3ba was obtained according to the general procedure in 63% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.3 Hz, 1H), 7.43 – 7.34 (m, 5H), 7.28 – 7.20 (m, 5H), 7.06 (d, *J* = 7.3 Hz, 1H), 6.93 (s, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 155.1, 145.9, 144.6, 133.0, 132.9, 131.0, 130.1, 129.3, 129.1, 128.9, 128.7, 128.5, 128.2, 127.8, 123.2, 122.7, 22.2. The NMR data agree with those in a literature report. ³

2,3-Diphenyl-5-methoxy-1*H*-inden-1-one (3ca)

3ca was obtained according to the general procedure in 49% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.9 Hz, 1H), 7.43 – 7.33 (m, 5H), 7.29 – 7.19 (m, 5H), 6.70 – 6.63 (m, 2H), 3.82 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 195.3, 164.6, 153.3, 148.1, 134.0, 132.8, 131.0, 130.2, 129.3, 129.0, 128.7, 128.2, 127.9, 125.1, 123.6, 110.6, 110.5, 55.9. The NMR data agree with those in a literature report.

5-(*tert*-Butyl)-2,3-diphenyl-1*H*-inden-1-one (3da)

3da was obtained according to the general procedure in 70% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 7.5 Hz, 1H), 7.44 – 7.40 (m, 3H), 7.39 – 7.36 (m, 2H), 7.29 (dd, J = 7.6, 1.6 Hz, 1H), 7.26 – 7.22 (m, 5H), 7.17 (d, J = 1.3 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 196.4, 157.8, 155.4, 145.5, 133.1, 133.0, 131.1, 130.14 129.4, 129.0, 128.7, 128.6, 128.2, 127.8, 125.4, 123.1, 119.2, 35.7, 31.3. The NMR data agree with those in a literature report. ³

2,3-Diphenyl-5-fluoro-1*H*-inden-1-one (**3ea**)

3ea was obtained according to the general procedure in 73% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 7.9, 5.2 Hz, 1H), 7.44 – 7.38 (m, 3H), 7.37 – 7.32 (m, 2H), 7.28 – 7.22 (m, 5H), 6.91 (ddd, J = 9.0, 8.0, 2.2 Hz, 1H), 6.85 (dd, J = 8.5, 2.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 166.6 (d, $J_{C-F} = 252.6$ Hz), 153.2 (d, $J_{C-F} = 2.3$ Hz), 148.8 (d, $J_{C-F} = 9.3$ Hz), 133.9, 132.4, 130.6, 130.1, 129.7, 129.1, 128.6, 128.3, 128.2, 126.7, 124.9 (d, $J_{C-F} = 9.7$ Hz), 114.6 (d, $J_{C-F} = 22.9$ Hz), 110.3 (d, $J_{C-F} = 25.7$ Hz). The NMR data agree with those in a literature report. ³

5-Chloro-2,3-diphenyl-1*H*-inden-1-one (3fa)

3fa was obtained according to the general procedure in 83% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.6 Hz, 1H), 7.44 – 7.38 (m, 3H), 7.37 – 7.32 (m, 2H), 7.27 – 7.22 (m, 6H), 7.10 (d, J = 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 154.2, 147.4, 139.9, 133.7, 132.3, 130.5, 130.1, 129.7, 129.2, 129.0, 128.7, 128.5, 128.3, 128.2, 124.0, 122.1. The NMR data agree with those in a literature report. ³

5-Bromo-2,3-diphenyl-1*H*-inden-1-one (**3ga**)

3ga was obtained according to the general procedure in 85% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 5H), 7.37 – 7.32 (m, 2H), 7.25 (s, 6H). ¹³C NMR (125MHz, CDCl₃) δ 195.4, 154.3, 147.4, 133.5, 132.3, 131.8, 130.4, 130.1, 129.7, 129.5, 129.2, 128.5, 128.5, 128.3, 128.2, 124.8, 124.2. The NMR data agree with those in a literature report. ³

Methyl 1-oxo-2,3-diphenyl-1*H*-indene-5-carboxylate (**3ha**) **3ha** was obtained according to the general procedure in 79% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.77 (d, *J* = 0.7 Hz, 1H), 7.63 (d, *J* = 7.4 Hz, 1H), 7.46 – 7.42 (m, 3H), 7.41 – 7.37 (m, 2H), 7.28 – 7.24 (m, 5H), 3.90 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 195.7, 166.3, 155.4, 145.5, 134.8, 134.4, 133.4, 132.3, 131.4, 130.43, 130.1, 129.8, 129.1, 128.6, 128.3, 128.2, 122.7, 121.7, 52.6. The NMR data agree with those in a literature report. ³

5-Cyano-2,3-diphenyl-1*H*-inden-1-one (**3ia**)

3ia was obtained according to the general procedure in 51% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.48 – 7.43 (m, 3H), 7.40 – 7.34 (m, 3H), 7.30 – 7.24 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 154.6, 146.2, 134.1, 134.0, 133.9, 131.8, 130.2, 130.1, 129.9, 129.3, 128.6, 128.5, 128.4, 123.8, 123.1, 118.3, 116.8. HRMS: [M + H]⁺ calculated for C₂₂H₁₄NO: 308.10699, found 308.10663. The NMR data agree with those in a literature report.⁴

2,3-Diphenyl-5-nitro-1*H*-inden-1-one (**3ja**)

3ja was obtained according to the general procedure in 68% yield.

¹H NMR (500 MHz, CDCl₃) δ 8.22 (dd, *J* = 7.8, 1.9 Hz, 1H), 7.95 (d, *J* = 1.8 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.50 – 7.45 (m, 3H), 7.43 – 7.37 (m, 2H), 7.31 – 7.26 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 194.3, 154.3, 151.6, 147.0, 135.3, 134.6, 131.7, 130.3, 130.1, 129.9, 129.4, 128.7, 128.5, 128.5, 125.4, 123.2, 115.9. HRMS: [M + H]⁺ calculated for C₂₁H₁₄NO₃: 328.09682, found 328.09689. The NMR data agree with those in a literature report. ⁵

6-Methyl-2,3-diphenyl-1*H*-inden-1-one **3ka**

3ka was obtained according to the general procedure in 66% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.33 (m, 6H), 7.27 – 7.20 (m, 5H), 7.14 (dd, *J* = 7.4, 0.6 Hz, 1H), 7.01 (d, *J* = 7.4 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 155.8, 142.6, 139.4, 133.5, 133.1, 132.0, 131.3, 131.1, 130.1, 129.4, 128.9, 128.7, 128.2, 127.7, 124.2, 121.3, 21.5. The NMR data agree with those in a literature report. ³

6-Bromo-2,3-diphenyl-1*H*-inden-1-one **3la**

3la was obtained according to the general procedure in 73% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 1.8 Hz, 1H), 7.47 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.42 – 7.37 (m, 3H), 7.36 – 7.31 (m, 2H), 7.24 (s, 5H), 7.00 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 155.3, 143.9, 135.8, 132.6, 132.5, 132.4, 130.5, 130.1, 129.7, 129.1, 128.6, 128.3, 128.1, 126.4, 123.0, 122.7. The NMR data agree with those in a literature report. ³

2,3-Diphenyl-6-trifluoromethyl-1*H*-inden-1-one **3ma**

3ma was obtained according to the general procedure in 68% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.46 – 7.41 (m, 3H), 7.39 – 7.35 (m, 2H), 7.29 – 7.24 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 194.9, 154.5, 148.7, 134.4, 132.2, 131.4, 131.3 (q, $J_{C-F} = 32.7$ Hz), 130.9 (q, $J_{C-F} = 3.9$ Hz), 130.21, 130.15, 129.9, 129.2, 128.6, 128.5, 128.4, 123.9 (q, $J_{C-F} = 270.5$ Hz), 121.3, 119.9 (q, $J_{C-F} = 3.5$ Hz). HRMS: [M + H]⁺ calculated for C₂₁H₁₄F₃O: 351.09913, found 351.09879.

2,3-Diphenyl-7-fluoro-1*H*-inden-1-one 3na

3na was obtained according to the general procedure in 52% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 3H), 7.37 – 7.31 (m, 3H), 7.24 (s, 5H), 6.93 (dd, *J* = 11.6, 5.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 192.73, 158.0 (d, *J*_{*C*-*F*} = 262.3 Hz), 154.6 (d, *J*_{*C*-*F*} = 4.5 Hz), 147.5, 136.0 (d, *J*_{*C*-*F*} = 8.2 Hz), 133.1, 132.6, 130.4, 130.2, 129.6, 129.0, 128.7, 128.2, 128.1, 118.4 (d, *J*_{*C*-*F*} = 21.4 Hz), 117.9 (d, *J*_{*C*-*F*} = 1.7 Hz), 115.8 (d, *J*_{*C*-*F*} = 12.4 Hz). HRMS: [M + H]⁺ calculated for C₂₁H₁₄FO: 301.10232, found 301.10263.

2,3-Di-p-tolyl-1H-inden-1-one **3ab**

3ab was obtained according to the general procedure in 61% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.0 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.24 – 7.12 (m, 5H), 7.07 (d, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 155.0, 145.6, 139.5, 137.7, 133.5, 132.2, 131.1, 130.1, 130.0, 129.6, 129.0, 128.9, 128.7, 128.1, 123.0, 121.3, 21.7, 21.5. The NMR data agree with those in a literature report. ³

2,3-Bis(4-methoxyphenyl)-1*H*-inden-1-one **3ac**

3ac was obtained according to the general procedure in 42% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.1 Hz, 1H), 7.38 – 7.31 (m, 3H), 7.28 –

7.21 (m, 3H), 7.15 (d, J = 7.2 Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 197.1, 160.5, 159.2, 154.0, 145.6, 133.4, 131.43, 131.38, 131.2, 130.3, 128.8, 125.3, 123.6, 122.9, 121.1, 114.4, 113.8, 55.5, 55.3. The NMR data agree with those in a literature report. ³

2,3-Bis(4-*tert*-butylphenyl)-1*H*-inden-1-one **3ad 3ad** was obtained according to the general procedure in 47% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 6.9 Hz, 1H), 7.46 – 7.39 (m, 2H), 7.39 – 7.31 (m, 3H), 7.30 – 7.21 (m, 5H), 7.16 (d, *J* = 7.3 Hz, 1H), 1.36 (s, 9H), 1.30 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 197.2, 154.9, 152.6, 150.7, 145.8, 133.5, 132.0, 131.1, 130.1, 129.8, 128.8, 128.5, 128.1, 125.8, 125.2, 122.9, 121.5, 35.1, 34.8, 31.5. HRMS: [M + H]⁺ calculated for C₂₉H₃₁O: 395.23694, found 395.23696.

2,3-Bis(4-chlorophenyl)-1*H*-inden-1-one **3ae**

3ae was obtained according to the general procedure in 79% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 7.1 Hz, 1H), 7.42 – 7.35 (m, 3H), 7.33 – 7.27 (m, 3H), 7.26 – 7.22 (m, 2H), 7.20 – 7.16 (m, 2H), 7.10 (d, J = 7.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 195.9, 154.4, 144.8, 135.7, 134.2, 133.8, 131.7, 131.4, 131.0, 130.6, 130.0, 129.5, 129.0, 128.7, 123.4, 121.3. One carbon is not visible due to overlapping peaks. The NMR data agree with those in a literature report. ³

2,3-Bis(4-bromophenyl)-1H-inden-1-one 3af

3af was obtained according to the general procedure in 65% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 3H), 7.42 – 7.35 (m, 3H), 7.32 – 7.27 (m, 1H), 7.26 – 7.21 (m, 2H), 7.14 – 7.08 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 195.8, 154.5, 144.69, 133.83, 132.46, 131.64, 131.61, 131.43, 130.59, 130.20, 129.52, 129.45, 123.97, 123.45, 122.53, 121.34. One carbon is not visible due to overlapping peaks. The NMR data agree with those in a literature report. ³

2,3-Bis(4-trifluoromethylphenyl)-1*H*-inden-1-one **3ag**

3ag was obtained according to the general procedure in 74% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.1 Hz, 2H), 7.65 – 7.60 (m, 1H), 7.56 – 7.48 (m, 4H), 7.42 (td, J = 7.6, 1.2 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.14 – 7.09 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 195.5, 155.2, 144.5, 136.1, 134.1, 134.0, 132.1, 131.7 (q, $J_{C-F} = 32.6$ Hz), 130.41, 130.36 (q, $J_{C-F} = 11.4$ Hz), 130.0, 129.7, 129.0, 126.3 (q, $J_{C-F} = 3.7$ Hz), 125.4 (q, $J_{C-F} = 3.7$ Hz), 124.2 (q, $J_{C-F} = 270.5$ Hz), 124.9 (q, $J_{C-F} = 270.8$ Hz), 123.8, 121.6. The NMR data agree with those in a literature report. ³

2,3-Bis(3-methylphenyl)-1*H*-inden-1-one **3ah**

3ah was obtained according to the general procedure in 73% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.56 (ddd, J = 7.1, 1.1, 0.6 Hz, 1H), 7.35 (td, J = 7.6, 1.2 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.22 – 7.19 (m, 2H), 7.16 – 7.10 (m, 4H), 7.05 (d, J = 7.6 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 196.9, 155.6, 145.6, 138.5, 137.7, 133.5, 132.9, 132.5, 131.0, 130.9, 130.8, 130.2, 129.0, 128.8, 128.7, 128.0, 127.2, 125.8, 123.0, 121.4, 21.64, 21.63. One carbon is not visible due to overlapping peaks. The NMR data agree with those in a literature report. ³

2,3-Bis(3-chlorophenyl)-1*H*-inden-1-one **3ai 3ai** was obtained according to the general procedure in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.0 Hz, 1H), 7.43 – 7.28 (m, 6H), 7.26 – 7.15 (m, 3H), 7.13 – 7.05 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 154.7, 144.6, 135.1, 134.3, 133.9, 132.2, 131.7, 130.5, 130.5, 130.0, 129.9, 129.7, 129.6, 128.3, 128.2, 126.9, 123.5, 121.5. Two carbon are not visible due to overlapping peaks. The NMR data agree with those in a literature report. ³

2,3-Bis(2-fluorophenyl)-1H-inden-1-one 3aj

3aj was obtained according to the general procedure in 77% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.0 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.32 – 7.21 (m, 4H), 7.17 – 7.04 (m, 4H), 6.97 (t, J = 9.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 160.3 (d, J_{C-F} = 248.3 Hz), 159.6 (d, J_{C-F} = 249.4 Hz), 153.0, 144.7, 133.9, 131.8 (d, J_{C-F} = 3.3 Hz), 131.5(d, J_{C-F} = 8.1 Hz), 130.7, 130.5, 130.2 (d, J_{C-F} = 8.1 Hz), 129.9 (d, J_{C-F} = 3.1 Hz), 129.4, 124.5 (d, J_{C-F} = 3.5 Hz), 124.0 (d, J_{C-F} = 3.6 Hz), 123.3, 121.8 (d, J_{C-F} = 2.4 Hz), 121.0 (d, J_{C-F} = 16.9 Hz), 119.1 (d, J_{C-F} = 15.7

Hz), 116.5 (d, $J_{C-F} = 21.3$ Hz), 116.37 (d, $J_{C-F} = 21.8$ Hz). HRMS: $[M + H]^+$ calculated for C₂₁H₁₃F₂O: 319.09290, found 319.09329.

2,3-Bis(thiophen-2-yl)-1*H*-inden-1-one **3ak**

3ak was obtained according to the general procedure in 71% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, J = 5.1, 1.1 Hz, 1H), 7.54 (d, J = 7.0 Hz, 1H), 7.48 (dd, J = 3.7, 1.1 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.27 – 7.22 (m, 2H), 7.20 (dd, J = 5.0, 3.6 Hz, 1H), 7.02 (dd, J = 5.1, 3.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 195.2, 146.2, 145.8, 134.1, 133.3, 132.2, 130.3, 129.5, 129.3, 129.1, 129.0, 128.1, 127.9, 127.5, 127.2, 123.2, 121.5. HRMS: [M + H]⁺ calculated for C₁₇H₁₁OS₂: 295.02458, found 295.02491.

2-Phenyl-3-(trimethylsilyl)-1H-inden-1-one 3al

3al was obtained according to the general procedure in 62% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.0 Hz, 1H), 7.41 – 7.34 (m, 4H), 7.27 -7.18 (m, 4H), 0.16 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 197.9, 157.0, 148.9, 148.1, 134.2, 133.5, 130.2, 129.9, 128.5, 128.2, 128.0, 123.34, 123.33, 0.2. HRMS: [M + H]⁺ calculated for C₁₈H₁₉OSi: 279.119967, found 279.12006. The NMR data agree with those in a literature report. ⁶

Ethyl 1-oxo-2-phenyl-1*H*-indene-3-carboxylate **3am**

3am was obtained according to the general procedure in 46% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m, 2H), 7.49 – 7.35 (m, 6H), 7.32 – 7.23

(m, 1H), 4.31 (q, J = 7.1 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 164.7, 143.0, 142.7, 138.7, 134.7, 129.92, 129.86, 129.5, 129.3, 129.2, 128.1, 123.9, 122.8, 61.6, 14.0. HRMS: [M + H]⁺ calculated for C₁₈H₁₅O₃: 279.10157, found 279.10177.

III. Mechanic Studies

1. KIE mesurement

An equimolar mixture of PBN and PBN- d_5 (0.5 mmol in total, 90.0 mg), di(2-thienyl)acetylene (0.25 mmol, 47.6 mg), [Cp*Rh(MeCN)₃](SbF₆)₂ (6 mol%, 12.5 mg), PivOH (1.0 equiv, 25.5 mg) and DCE (2 mL) were charged into a pressure tube under argon. The reaction mixture was stirred at 80 °C for 1.5 h. After cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/DCE to afford the mixed product. KIE value ($k_{\rm H}/k_{\rm D} = 4.0$) was determined on the basis of ¹H NMR analysis.

2. ¹⁸O Labeled Experiment

PBN (0.24 mmol, 42.5 mg), diphenylacetylene (0.2 mmol, 35.6 mg), [Cp*Rh(MeCN)₃](SbF₆)₂ (6 mol%, 10.0 mg), PivOH (1.0 equiv, 20.4 mg), water-¹⁸O (6 equiv, 24.0 mg) and DCE (2 mL) were charged into a pressure tube under argon. The reaction mixture was stirred at 80 °C for 12 h. After cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/DCE to afford the mixture products of 2,3-Diphenyl-1*H*-inden-1-one (**3aa**) and ¹⁸O-labeled 2,3-Diphenyl-1*H*-inden-1-one (**3aa-¹⁸O**) (**3aa/3aa-¹⁸O** = 22/100). HRMS: $[M + H]^+$ calculated for C₂₁H₁₅¹⁸O: 285.11599, found 285.11615.

IV. References

(1) Chan, K. S.; Yeung, M. L.; Chan, W.-k.; Wang, R.-J.; Mak, T. C. W. J. Org. Chem. **1995**, 60, 1741.

(2) Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.;

Markworth, C. J.; Grieco, P. A. Org. Lett. 2002, 4, 3199.

(3) Li, B.-J.; Wang, H.-Y.; Zhu, Q.-L.; Shi, Z.-J. Angew. Chem. Int. Ed. 2012, 51, 3948.

(4) Pletnev, A. A.; Tian, Q.; Larock, R. C. J. Org. Chem. 2002, 67, 9276.

(5) Vicente, J.; Abad, J.-A.; López-Peláez, B.; Martínez-Viviente, E. Organometallics 2001, 21, 58.

(6) Miura, T.; Murakami, M. Org. Lett. 2005, 7, 3339.

V. NMR Spectra

