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1. 
67

Zn NMR spectral fitting and peak assignments     

 

Satisfactorily modelling of the 
67

Zn NMR spectrum (Figure 4) in terms of the five possible Zn coordination 

environments present in the Zn(CN)4-n(NC)n species (Figure 2) requires some knowledge of the respective CQ 

values, which cannot be conveniently derived from the highly overlapping set of peaks in Figure 4. We have used 

theoretical calculations to predict CQ values for the different Zn environments. Hybrid-DFT calculations on model 

clusters and GIPAW calculations using periodic boundary conditions (see below) predict a sharp increase in the Zn 

CQ values in the Zn(CN)4-n(NC)n species where n = 1, 2 and 3 in pseudo-tetrahedral geometries (Table 1). Whilst 

these values cannot be independently measured from the experiments, the calculated CQ values clearly indicate that 

the Zn(CN)4-n(NC)n species where n = 1, 2 and 3, will yield quadrupole-broadened peaks in NMR experiments 

even at very high applied magnetic fields.  

We have used the calculated CQ values as first estimates to fit the overall composite lineshape, aware that the 

actual CQs of the individual species (especially the mixed species) will be only loosely constrained by the 

experimental fit. Quantum chemical calculations indicate that the CQs associated with the symmetrical Zn(CN)4 

and Zn(NC)4 sites are indeed small and will give rise to narrow NMR peaks at high field. That they are not 

identically zero, as might be expected from a strictly tetrahedral site, may be attributed to longer-range effects 

originating from cyanide orientational disorder. Zinc sites with mixed carbon and nitrogen coordination are 

characterized by much larger CQ values (>10 MHz), yielding broad NMR peaks. Theoretical quadrupole coupling 

constants for Zn(CN)3(NC), Zn(CN)2(NC)2 and Zn(CN)(NC)3 are comparable in magnitude and the difference in 

chemical shielding is small relative to the peak widths, resulting in severe signal overlap for these three chemically 

inequivalent Zn species. The experimental spectrum bears this out, exhibiting few clear features with which to 

differentiate the mixed-bonding species, but clearly supporting a structural model involving a multiplicity of zinc 

tetrahedral environments.  

Figure 4 shows a best-fit simulation to the experimental spectrum based on computed NMR parameters for each 

species, where CQs of 10.5 to 11.5 MHz were obtained for the Zn(CN)3(NC), Zn(CN)2(NC)2 and Zn(CN)(NC)3 
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species  and CQ of 1.2 MHz for the Zn(CN)4 and Zn(NC)4 species. These values are roughly in accord with the 

calculated values (Table 1), especially considering the documented tendency of CASTEP to overestimate 
67

Zn CQs 

by 10-15%.
1
 Naturally, the fit is not very sensitive to the relative intensities from the three mixed overlapping 

species, but provides a reliable ratio of 6 : 94 between the combined intensities of the two ordered species (i.e., 

Zn(CN)4 and Zn(NC)4) and the overall intensities contained in the envelope of the mixed species. The species 

Zn(CN)(NC)3 and Zn(CN)3(NC) have essentially axial symmetry along a pseudo-C3v axis, which is reflected in the 

quadrupolar asymmetry parameters of nearly zero. However, Zn(CN)2(NC)2 possesses lower symmetry and a much 

larger value of η, yielding a very different lineshape. Despite the overlap of these three peaks, the Zn(CN)2(NC)2 

signal can be distinguished from the other two by the low-frequency intensity around -1000 ppm. This feature 

provides additional evidence for the fitted relative intensity of the resonance associated with Zn(CN)2(NC)2. 

Hence, even though the Zn(CN)3(NC) and Zn(CN)(NC)3 signals are indistinguishable in this spectrum, the 

Zn(CN)4, Zn(CN)2(NC)2 and Zn(NC)4 signals can be reliably modelled to obtain reasonably accurate peak 

intensities.  

Assignment of Zn(CN)4 and Zn(NC)4 sites: Lacking a suitable reference compound, the calculated magnetic 

shieldings were not converted into 
67

Zn chemical shifts for direct comparison with experiment. However, the 

difference between the two precisely measured chemical shifts (Zn(CN)4 and Zn(NC)4) is 100 ppm (96 ppm, as 

measured from the MAS spectra, see below). The calculations reproduce this difference reasonably well (143 

ppm), with the all-C-bound species, Zn(CN)4, at higher frequency (i.e., lower shielding). Moreover, the differences 

between shielding parameters for Zn(CN)4-n(NC)n and Zn(CN)4-(n+1)(NC)(n+1) predicted by GIPAW (Table 1) are in 

good agreement with those used in fitting the experimental spectrum, despite the large uncertainties in the 

experimental values for those of the Zn(CN)4-n(NC)n species, where n = 1, 2 and 3.  The shielding differences are 

48, 42, 33, 21 ppm (GIPAW calc) compared with 25, 20, 30, 25 (expt). 

 

2. Design of Model Clusters for Quantum Chemical Calculations  
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Hybrid-DFT calculations implemented in Gaussian03
2
 used the Becke-3-parameter-Lee-Yang-Parr (B3LYP)

3-6
 

functional and three different basis sets 6-311++G(d,p)
7-9

 (C, N and Zn), aug-cc-pVTZ
10

 (Zn only) and aug-cc-

pQTZ
11

 (Zn only) to reach basis set convergence.
 
Calculations were supported on a SUN X4440 server with 16 

cores and 64 GB RAM.  

GIPAW calculations were performed using the CASTEP
12

 software (Materials Studio 4.4 environment) on an 

HP xw4400 workstation with a single Intel Dual-Core 2.67 GHz processor and 8 GB DDR RAM. GIPAW-DFT 

calculations were carried out using periodic boundary conditions on tetrahedral arrays of Zn(CN)2 with all possible 

local cyanide ordering possibilities. GIPAW calculations were performed using the Perdew-Burke-Ernzerhof 

(PBE) functional, implementing the generalized gradient approximation (GGA) approach for the exchange-

correlation energy.
13,14

 Calculations of EFGs
15

 and magnetic shielding
16,17

 were performed using either coarse or 

fine accuracy basis set levels, as specified, and a maximum plane-wave energy between 294 and 400 eV. The 

Monkhorst-Pack grid had a maximum density of up to 4 × 4 × 4 k-points.  

 

Hybrid-DFT.  Clusters of [Zn5(CN)4]
6+

 were constructed by alternating carbon and nitrogen ligation to a central 

zinc to produce all five possible local zinc environments, ranging from Zn(NC)4 (four Zn−N bonds) to Zn(CN)4 

(four Zn−C bonds) (Figure 2). Each cyanide was bonded to two Zn atoms to mimic the bridging cyanide 

configurations found in Zn(CN)2 and the initial structures were geometry-optimized with no symmetry constraints. 

Reported quadrupolar couplings, CQ, are for the central Zn atom (Table 1).  

 

GIPAW. Input files were constructed with starting geometries based on the diffraction data with a modification 

of the unit cell symmetry (i.e., cubic to triclinic) to accommodate head-to-tail cyanide disorder, where necessary. 

Five configurations were generated in order to produce the five different combinations of Zn−C and Zn−N bonding 

arrangements (Figure 2). In addition to single unit cells, four different supercells (2 × 2 × 2 unit cells), each 

containing 80 atoms, were designed to estimate longer-range geometrical and bonding effects on the zinc 

quadrupolar coupling constants. For these, the supercell symmetry was primitive and the cyanide orientations were 

chosen at random to provide roughly equal numbers of each type of Zn species. Both the single unit cell and 
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supercell models were subjected to an energy minimization procedure to optimize the geometry. The lattice 

parameter was fixed at 5.92929 Å, typical of several published Zn(CN)2 crystal structures (Table S.3). Average CQ 

values from the supercell calculations agree very well with the experimental values used in the best-fit spectral 

simulation (Table S.1). 

The energy-minimized GIPAW calculations on supercells modelling head-to-tail cyanide disorder in Zn(CN)2 

provide support for the experimental conclusion from the neutron studies in this paper that the average Zn−N bond 

length is shorter than the average Zn−C one. A selection of 63 Zn−C and 66 Zn−N bond distances from the 

supercell calculations, chosen quasi-randomly to include ample representation from all five Zn(CN)4-n(NC)n 

species, yielded an average Zn−N bond length of 1.967±0.015 Å and an average Zn−C bond of 1.987±0.014 Å.   

 

Table S.1. GIPAW calculations of 
67

Zn CQ values in supercell (2 × 2 × 2) models of Zn(CN)2 with quasi-random 

cyanide orientations.  The average CQ values are reported for N examples of each type of Zn site in the geometry-

optimized supercell calculations.  

Zn fragment N Average CQ / MHz 

Zn(CN)4 10 2.9 ± 1.3 

Zn(CN)3(NC) 13 11.3 ± 2.0 

Zn(CN)2(NC)2 16 11.8 ± 1.4 

Zn(CN)(NC)3 17 10.8 ± 1.4 

Zn(NC)4 8 2.7 ± 1.3 

 

 

 

3. Calculation of 
67

Zn NMR excitation efficiencies in Zn(CN)2  

 

In principle, the excitation efficiency for 
67

Zn might be expected to have some dependence on CQ and hence vary 

for the different Zn species in Zn(CN)2. This would have the result that the measured signal intensities would not 

accurately represent the actual site populations in the sample. Since there is a large difference between the CQ 

values for the Zn(CN)4-n(NC)n species, we have calculated the relative excitation efficiencies for the five Zn 
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species in Figure 2. The numerical calculation of excitation efficiencies is straightforward using programs such as 

SIMPSON,
18

 but usually requires a fairly precise knowledge of the CQ values, especially when CQs are small. In 

the present case, the excitation efficiencies of the large-CQ species (10-12 MHz) are found to be insensitive to 

deviations of ±1 MHz or larger, whereas the efficiencies of small-CQ species (i.e., < 1 MHz) are much more 

sensitive to their magnitudes. Therefore, every effort has been made to constrain the CQ values for a suitable 

assessment of excitation efficiencies by SIMPSON. The resulting correction factors alter the directly measured 

intensities by less than 5% (relative), well within the measurement uncertainty and therefore the original values are 

retained for the purpose of this discussion.  

The calculation of excitation efficiencies for quadrupolar nuclei requires a reasonably accurate assessment of CQ 

values. The increasing reliability of high-level theoretical calculations makes it tempting to simply accept these 

values as correct in the absence of precise experimental quantities. However, the presence of longer-range effects 

in a disordered structure influence the EFG, even for the Zn(CN)4 and Zn(NC)4 species. Hence, the accuracy of the 

parameters predicted from the cluster models will be compromised by truncation errors, whereas the periodic 

calculations will be biased by the non-physical imposition of repeating unit cells. Despite these caveats, the 

agreement between the two computational approaches is remarkable (Table 1). Where it breaks down is for the 

Zn(CN)4 and Zn(NC)4 species, with the GIPAW single-cell calculations predicting perfectly cubic Zn 

environments (i.e., no electric field gradient), an artifact of the order artifically imposed by periodic boundary 

conditions. To evaluate qualitatively the extent of longer-range effects on the CQs of the symmetrical sites, we ran 

a series of GIPAW calculations on four 2 × 2 × 2 supercells (i.e., 16 Zn atoms) with selected cyanide ligands 

inverted to mimic the disorder present in Zn(CN)2. This introduces distortions in the local symmetry and geometry 

at Zn such that CQ values for the Zn(CN)4 and Zn(NC)4 species increase significantly, confirming that the longer-

range structural effects associated with disorder have a non-negligible influence on the NMR parameters by virtue 

of electronic and geometrical distortions. These data are summarized in Table S.1, where it can be seen that the 

average CQs increase significantly with respect to the single unit-cell calculations (e.g., from zero to > 2 MHz). 

Considering the limitations inherent in this modelling approach and the large range of calculated values, these 
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cannot be accepted as reliable numerical predictions but serve to confirm the importance of long-range structural 

effects on reducing the symmetry at Zn and increasing the CQs.  

 

Figure S.1. 
67

Zn rotor-synchronized Hahn-echo MAS NMR spectrum of Zn(CN)2 recorded at 11.7 T (4 mm probe; 

spinning rate: 14 kHz; recycle delay: 0.5 s; number of transients: 512k) and 21.1 T (7 mm probe; spinning rate: 3.5 

kHz; recycle delay: 5 s; number of transients: 12800). Under these conditions, only the narrow signals arising from 

Zn(CN)4 and Zn(NC)4 are observed. 

 

We compared the experimentally determined 
67

Zn magic-angle spinning (MAS) NMR linewidths of the 

symmetrical species, Zn(CN)4 and Zn(NC)4, at two fields, 11.7 and 21.1 T, to assess the extent of second-order 

quadrupolar broadening (Figure S.1). To our surprise, the linewidths are almost identical at 11.7 and 21.1 T, 

implying that the peaks are not uniformly dominated by second-order quadrupolar broadening. The peak at 184 

(181) ppm is 540±20 (590±50) Hz, and the peak at 281 (276) ppm is 460±20 (500±40) Hz for the 21.1 (11.7) T 

data set. If second-order quadrupolar broadening were solely responsible for the observed peak widths, the low-

field data would place an upper bound on the CQ of 1.2 MHz. However, the lack of peak narrowing at higher field 

implies that other broadening effects are involved. One source of broadening is the combined effect of indirect 

spin-spin coupling and residual dipolar coupling to the directly bonded 
14

N nuclei.
19,20

 Whilst the effect of such 

coupling normally introduces asymmetric peak shapes, the structural disorder in the present case obscures any 
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obvious asymmetry. Based on comparisons of reduced coupling constants in tetrahedral metal cyanides,
21,22  

1
J(

67
Zn,

14
N) is estimated to be 20-30 Hz, which would account for broadening of up to 250 Hz for the Zn(NC)4 

site. Indeed, the lower-frequency peaks in spectra at both fields are slightly broader than the higher-frequency 

peaks, leading to support for the assignment of the former to Zn(NC)4, since no such residual dipolar coupling 

would be present for Zn(CN)4. This assignment is supported by GIPAW calculations, where the N−bound Zn 

shieldings are greater than those of C−bound Zn (Table 1), leading to progressively lower chemical shifts with 

successive replacement of C by N ligation. The fact that there is such a subtle difference between the two peak 

widths at a given field implies that other broadening effects are prominent. Because of the structural disorder in 

this system, longer-range environmental effects will cause distributions in both CQ and chemical shift. Since 

second-order quadrupolar broadening will be significantly reduced at high field while the chemical shift 

distribution will be accentuated, the observed peak width at 21.1 T is likely dominated by the latter. Under the 

assumption that second-order quadrupolar broadening dominates the 11.7 T MAS peak widths whereas chemical 

shift distribution dominates the 21.1 T MAS peak widths, we estimate the average CQ of the symmetrical sites to 

be 1.2 ± 0.25 MHz. Close inspection of the 
67

Zn NMR spectrum of Figure 4 reveals the hint of some signal 

intensity around +1300 and -1200 ppm, which would correspond to the “horns” of the inner satellite transitions for 

an axially symmetric (η = 0) Zn site with CQ = 1.05 MHz. Although their low intensity precludes positive 

identification, their positions would support our CQ estimates. Other approaches to evaluating CQs include 

observing the spinning sideband intensities as a measure of the full extent of the satellite transition manifold and 

measuring the nutation behavior of the individual peaks. However, the inherently low sensitivity of 
67

Zn makes 

both approaches impracticable.   

Nutation simulations were carried out using SIMPSON 3.1.0
18

 on an Apple MacBook Pro (2.3 GHz Intel Core 

i5) using conditions identical to those employed experimentally. Only single-quantum coherences were retained 

after the initial pulse and detection was carried out on the central transition. Simulations were averaged over 28656 

orientations using the zcw scheme to ensure suitable averaging for the even the largest CQ sites. Pulse bandwidth 

and/or offset effects were accounted for by ensuring that simulations retained the experimental peak positions with 

respect to the transmitter. Additional simulations were performed with detection of all coherences for two sites (at 
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the extremes of the CQ range) to verify that satellite transitions make no significant contribution to the observed 

signal under the experimental conditions. 

With the CQ values determined above, SIMPSON calculations of our solid-echo non-spinning 
67

Zn NMR 

experiments yield the correction factors listed in Table S.2 with which to convert integrated peak intensities into 

zinc site populations. Fortuitously, the correction factors prove to be very similar and have no significant effect on 

the measured values.  

 

Table S.2. Intensity correction factors calculated by SIMPSON
18

 using our best estimates of the 

average CQ values. 

  δiso / ppm CQ /MHz  Iexpt / % Correction Factor
* 

Corrected 

Populations / %
‡
 

Zn(CN)4 275 1.2 ± 0.2 0.0 3.5 0.720 (0.755, 0.712) 3.35 

Zn(NC)( CN)3 250 11.0 ± 1.0 0.0 15 0.708 (0.716, 0.696) 14.59 

Zn(NC)2(CN)2 220 11.5 ± 1.0 0.85 64 0.678 (0.697, 0.653) 65.0 

Zn(NC)3(CN) 200 10.5 ± 1.0 0.0 15 0.703 (0.713, 0.688) 14.69 

Zn(NC)4 175 1.2 ± 0.2 0.0 2.5 0.727 (0.762, 0.720) 2.37 
*
Corrections factors and their maximum and minimum values (in parentheses) are calculated from the best 

estimated CQ values and their standard deviations, respectively. 
‡
The corrected populations are obtained by 

dividing the experimental intensities, Iexpt, by the corresponding correction factors and normalizing to 100%.  
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4. Variation of Lattice Parameter and C≡N Bond Length with Temperature 

 

 

Figure S.2. The temperature-

dependence of the lattice parameter, 

a, of Zn(CN)2. The symbols 

correspond to those given in Table 

S.3. The upper line is a quadratic fit 

to the results of Chapman et al.,
23

  

whilst the lower line is a quadratic 

fit to the current results together 

with those of Goodwin and 

Kepert.
24

 For other references, see 

Table S.3. 
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Figure S.3. The temperature-

dependence of the C≡N bond length 

in Zn(CN)2. The symbols and 

references correspond to those 

given in Table S.3. 
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Table S.3. The temperature-dependence of the lattice parameter and bond lengths in Zn(CN)2.  

Source Symbol in 

Figure S.3 

Method Temperature 

/ K 

a / Å rC≡N /Å rZn–C/N /Å  

Zhdanov
25

  XRD 295 5.9 1.022 2.044 

Hoskins and Robson
26

 ◯ single crystal XRD 295 5.9002(9) 1.150(5) Zn–N = 2.037(5)  Zn–C = 1.923(6)  

Kitazawa et al.
27

  ✩ single crystal XRD 295 5.9086(7) 1.181 1.968 

Williams et al. 
28

   ND Rietveld 14 5.9227(1) 1.190 1.970 

   305 5.8917(1) 1.178 1.962 

Reckeweg and Simon
29

 □ single crystal XRD 295 5.9132(7) 1.144 1.988 

Goodwin and Kepert
24

  △ single crystal XRD 25 5.9328(3) 1.164 1.987 

   300 5.9079(1) 1.150 1.989 

Chapman et al.
23

  ▼ XRD PDF  107.3  1.336 
a 

2.0149(8) 

   297.1  1.399
 a
 2.0187(10) 

Chapman et al.
23

  ▲ XRD PDF  107.3  1.272 
b 

2.0149(8) 

   297.1  1.305
 b
 2.0187(10) 

Chapman et al.
23

    ▽ XRD Rietveld 107.6 5.97342(1) 1.197(4) 1.988(3) 

   297.4 5.95290(2) 1.197(5) 1.979(3) 

This work ⊕ ND Rietveld 11.4 5.9463(6) 1.1881(7) 1.9808(4)  

   295 5.908(3) 1.173(2) 1.972(1)  

 ● ND PDF 11.4 - 1.1510(2) 1.9914(5)  

   295 - 1.1502(3) 1.9955(6)  

       

       

 

In a number of papers, the authors report the lattice parameter at a number of temperatures. In these cases, only the two values  

at temperatures closest to those used in this work are quoted. 

The rC≡N values of Chapman et al.
23

 denoted a and b, are derived values corresponding to the kinky and skipping-rope models, respectively
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5. Neutron Diffraction Measurements on Zn(CN)2 
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Figure S.4. Powder neutron diffraction profile fit for Bank 3 data (GEM diffractometer) of Zn(CN)2 at 11.4 K in space group mPn3 . Experimental data are 

shown as crosses and the fit is shown as a black line. The difference between the experimental data and fit is shown at the bottom of the graph and the 

calculated peak positions are shown as vertical lines at the top of the graph. The asterisk indicates the position of a peak which would be observed if the 

structure were ordered i.e., in space group mP 34 . 
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Figure S.5. Powder neutron diffraction profile fit for Bank 5 data (GEM diffractometer) of Zn(CN)2 at 11.4 K in space group mPn3 . Experimental data are 

shown as crosses and the fit is shown as a black line. The difference between the experimental data and fit is shown at the bottom of the graph and the 

calculated peak positions are shown as vertical lines at the top of the graph. The asterisk indicates the position of a peak which would be observed if the 

structure were ordered i.e., in space group mP 34 . 
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Table S.4. Crystallographic Details and Rietveld Parameters for Zn(CN)2 at 11.4 and 295 K. 

 11.4 K 295 K 

Space group mPn3  mP 34  mPn3  mP 34  

Z 2 2 2 2 

Detector Bank 3 

 t-o-f range / ms 
3.005 – 13.000 3.005 – 13.000 3.064 – 13.000 3.064 – 13.000 

Detector Bank 5  

t-o-f range / ms 
3.300 – 17.000 3.300 – 17.000 3.135 – 17.000 3.135 – 17.000 

Ndata, Nobs for  

Banks (3 +5) 

3235, 260 

 

3235, 260 3268, 268 

 

3268, 268 

refinement type  isotropic anisotropic  isotropic
§
   isotropic anisotropic isotropic

§
   

a / Å  5.9463(6)  5.9464(6) 5.9463(7)   5.908(3) 5.908(3) 5.907(3)   

V / Å
3 

210.25(7) 210.26(7) 210.25(8)   206.2(3) 206.25(7) 206.3(3)   

ρcalc  / g cm
-3

  1.855 1.855 1.855   1.891 1.891 1.891   

Npar
‡ 

28  29 31   28 29 31   

Rp , wRp  

Banks (3 +5) / % 
4.25, 5.48 4.26, 5.40 4.84, 6.08   5.44, 8.83 5.27, 8.29 5.89, 9.73   

fractional 

coordinates 
Table S.5 Table S.6 Table S.7   Table S.8 Table S.9 Table S.10  

 

§ 
refinements of the anisotropic displacement parameters using space group P 3m produce physically 

meaningless values  

‡
 The 28 parameters included in isotropic refinements using space group Pn m are: lattice parameter a; Uiso for 

Zn; x and Uiso for C/N;  

and for Bank 3 data: scale factor, 6 background parameters, 5 profile parameters (σ1, σ2, γ1, zero and 

absorption); and for Bank 5 data: scale factor, 6 background parameters, 5 profile parameters (σ1, σ2, γ1, zero 

and absorption).    

The 31 parameters included in isotropic refinements using space group P 3m are: the a lattice parameter; Uiso 

for Zn(1) and for Zn(2); x and Uiso for C and N; for Bank 3 data: scale factor, 6 background parameters, 5 

profile parameters (σ1, σ2, γ1, zero and absorption); and for Bank 5 data: scale factor, 6 background parameters, 

5 profile parameters (σ1, σ2, γ1, zero and absorption).    
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Table S.5. Fractional atomic coordinates and displacement parameters for Zn(CN)2 ( mPn3 ) at 11.4 K 

(isotropic refinement). 

 Site x y z Occ Uiso / Å
2
 

Zn 2a 0 0 0 1 0.0097(3) 

C/N 8e 0.19232(4) 0.19232(4) 0.19232(4) 0.5/0.5 0.0115(1) 

 

 

 

Table S.6. Fractional atomic coordinates and displacement parameters for Zn(CN)2 ( mPn3 ) at 11.4 K 

(anisotropic refinement). 

 Site x y z Occ Uii / Å
2
 Uij / Å

2
 

Zn 2a 0 0 0 1 0.0095(3) 0  

C/N 8e 0.19238(4) 0.19238(4) 0.19238(4) 0.5/0.5 0.0117(1) -0.0014(1) 

 

 

Table S.7. Fractional atomic coordinates and displacement parameters for Zn(CN)2 ( mP 34 ) at 11.4  K 

(isotropic refinement). 

  Site x y z Occ  Uiso/ Å
2
 

Zn(1) 1a 0 0 0 1 0.008(1) 

Zn(2) 1b 1/2 1/2 1/2 1 0.012(2) 

C 4e 0.1915(3) 0.1915(3) 0.1915(3) 1 0.0037(4) 

N 4e 0.3068(2) 0.3068(2) 0.3068(2) 1 0.0186(5) 
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Table S.8. Fractional atomic coordinates and displacement parameters for Zn(CN)2 ( mPn3 ) at 295 K 

(isotropic refinement). 

  Site x y z Occ  Uiso / Å
2
 

Zn 2a 0 0 0 1 0.036(1) 

C/N 8e 0.19267(9) 0.19267(9) 0.19267(9) 0.5/0.5 0.0436(6) 

 

 

 

Table S.9. Fractional atomic coordinates and displacement parameters for Zn(CN)2 ( mPn3 ) at 295 K 

(anisotropic refinement). 

 Site x y z Occ  Uii / Å
2
 Uij / Å

2
 

Zn 2a 0 0 0 1 0.036(1) 0 

C/N 8e 0.19289(8) 0.19289(8) 0.19289(8) 0.5/0.5 0.0463(6) -0.0114(5) 

 

 

 

Table S.10. Fractional atomic coordinates and displacement parameters for Zn(CN)2 ( mP 34 ) at 295 K 

(isotropic refinement). 

  Site x y z Occ  Uiso/ Å
2
 

Zn(1) 1a 0 0 0 1 0.019(6) 

Zn(2) 1b 1/2 1/2 1/2 1 0.058(6) 

C 4e 0.1887(4) 0.1887(4) 0.1887(4) 1 0.0245(8) 

N 4e 0.3030(5) 0.3030(5) 0.3030(5) 1 0.077(2) 
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Figure S.6. The anisotropic displacement ellipsoids (90% probability) at 11.4 K (left) and at 295 K (right) 

calculated from data in Tables S.6 and S.9 (space group mPn3 ). 
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Table S.11. Interatomic distances in the average structure of Zn(CN)2 at 11.4 K, derived from the 

results of Rietveld analysis of the neutron diffraction data from Table S.6 (using the notation shown 

in Figures 6 and S.7 for the intra- and inter-network distances, respectively). 

 Interatomic 

distance, rp–q /Å 

Atom pair, p–q  Coordination 

number, np–q  

Intra-network or inter-network 

r1  1.187 C≡N 1 intra 

r2  1.981 Zn–C/N 4 intra 

r3  3.168 Zn···C/N 4 intra 

r4  3.236 (C/N)···(C/N) 3 intra 

r5  4.260 (C/N)···(C/N) 6 intra 

r6  4.260 (C/N)···(C/N) 6 inter 

r7  4.315 (C/N)···(C/N) 6 inter 

r8  4.862 Zn···C/N 12 inter 

r9  5.068 Zn···C/N 12 inter 

r10  5.150 Zn···Zn 4 intra 

r11  5.150 Zn···Zn 4 inter 

r12  5.174 (C/N)···(C/N) 3 intra 

r13  5.350 (C/N)···(C/N) 3 inter 

Note: The shortest internetwork distance in Zn(CN)2 occurs at 4.260 Å. 

 

 

 

Figure S.7. Structure of Zn(CN)2, showing (left) interatomic distances between atoms in the two networks. 

(Intranetwork distances are shown in Figure 6) and (right) the two interpenetrating networks (red and blue). 
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Table S.12. Displacement tensors and Eigenvalues calculated from the Anisotropic displacement parameters 

given in Tables S.6 and S.9 (space group, mPn3 ).  

 11.4 K 295 K 

Displacement tensor for C/N, Uij/ Å
2
  























0117.00014.00014.0

0014.00117.00014.0

0014.00014.00117.0

 























0463.00114.00114.0

0114.00463.00114.0

0114.00114.00463.0

 

Principal components (Eigenvalues of 

the displacement tensor, Uij)  for C/N / 

Å
2
   
















0094.0

013.0

013.0

 

















024.0

058.0

058.0

 

Mean square displacement of C/N 

perpendicular to the Zn···Zn axis, 

U┴ / Å
2
  

0.013 0.058 

Mean square displacement of C/N 

parallel to the Zn···Zn axis , U║ / Å
2
  

0.0094 0.024 

Mean displacement of C/N 

perpendicular to the Zn···Zn axis, 

u┴ / Å  

0.114 0.241 

Mean displacement of C/N parallel to 

the Zn···Zn axis , u║ / Å  

0.097 0.152 

Displacement tensor for Zn, Uij/ Å
2
  

















0095.000

00095.00

000095.0

 

















036.000

0036.00

00036.0

 

Principal components (Eigenvalues of 

the displacement tensor, Uij)  for Zn / 

Å
2
   
















0095.0

0095.0

0095.0

 

















036.0

036.0

036.0

 

Mean square displacement of Zn 

perpendicular to the Zn···Zn axis, 

U┴ / Å
2
  

0.0095 0.036 

Mean square displacement of Zn 

parallel to the Zn···Zn axis , U║ / Å
2
  

0.0095 0.036 

Mean displacement of Zn perpendicular 

to the Zn···Zn axis, u┴ / Å  

0.0975 0.190 

Mean displacement of C/N parallel to 

the Zn···Zn axis , u║ / Å  

0.0975 0.190 
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7. Calculation of the Lower and Upper Limits on Bond Lengths Derived from the Results of Rietveld 

Analysis of Neutron Diffraction Data 

Using the treatment of Busing and Levy,
38 

it is possible to place limits on the mean instantaneous bond 

length, rp−q, between two atoms p and q using information obtained from the Rietveld analysis of the Bragg 

diffraction data (Table 3). Note, the symbols used in the original work by Busing and Levy have been changed 

in the equations presented below to be consistent with those used elsewhere in this work. Busing and Levy
38

 

showed that the mean instantaneous bond length, rp−q, lies between two limits as follows 

  (Equation S.1) 

 

Up┴  and Uq┴ are the relative vector displacement of the  atoms p and q  in the plane normal to the line between 

the mean atomic positions. These values are obtained as eigenvalues of the anisotropic displacement parameters 

(Table S.12). The lower and upper limits for the mean instantaneous bond length between two atoms p and q, 

rp−q, correspond to parallel (↑↑) and antiparallel (↑↓) motions of the two atoms, respectively.  

 

8. X-ray Diffraction Measurement on Zn(CN)2 



 

where  are defined as follows: 

 (Equation S.2) 
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2
QF

 QF 2
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Table S.13. Structural Parameters (Interatomic Distance, rp−q, RMS Variation in Interatomic Distance, 

½
2

qpu  , and Coordination Number, np−q
45

) for Zn(CN)2 Obtained from Fitting the Neutron Correlation 

Functions, T
N
(r), at 11.4 and 295 K.   

Temperature / K     Atom pair
§
 rp−q / Å  

½
2

qpu   / Å  np−q 

11.4  

C≡N  (r1) 1.1510(3) 0.0277(5) 0.941(5) 

Zn−C/N  (r2) 1.9914(5) 0.0555(6) 4.07(3) 

Zn···C/N (r3) 3.150(2) 0.055(1) 4* 

(C/N)···(C/N)  (r4) 3.239(1) 0.109(2) 3* 

295  

C≡N  (r1) 1.1502(3) 0.0294(5) 0.966(5) 

Zn−C/N  (r2) 1.9955(6) 0.0672(7) 3.99(3) 

Zn···C/N (r3) 3.144(3) 0.070(2) 4* 

(C/N)···(C/N)  (r4) 3.255(3) 0.147(3) 3* 
§
Lines between a pair of atoms indicate bonds, whilst dots indicate a non-bonded distance. The labels (rn) refer 

to correlations shown in Figure 6. 

*Number fixed at the ideal crystallographic value.  

 

Table S.14. Structural parameters (interatomic distance, rp−q, RMS variation in interatomic distance, 
½

2

qpu  , 

and coordination number, np−q
45

) for Zn(CN)2, obtained from fitting the X-ray correlation function, T
X
(r), at 295 

K. (Statistical errors from the fits are indicated by the values in brackets). 

Atom pair
§
 rp−q / Å  

½
2

qpu   / 

Å  
np−q  

Zn−C/N  (r2) 1.990(2) 0.072(3) 3.76(5) 

Zn···C/N (r3) 3.144
†
 0.070

†
 3.01(4) 

(C/N)···(C/N)  (r4) 3.255
†
 0.147

†
 2.26(3) 

§
Lines between a pair of atoms indicate bonds, whilst dots indicate a non-bonded distance.  

†
Value fixed from fitting the 295 K T

N
(r) data. 
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Figure S.8. The interference function, Qi(Q), for Zn(CN)2 measured by a) neutron diffraction at 11.4 K 

(vertically offset by 15 units), b) neutron diffraction at 295 K, and c) X-ray diffraction at 295 K. 
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Figure S.9. The differential neutron correlation function, D
N
(r), of Zn(CN)2 at 11.4 (top, blue) and 295 K (top, 

red), and the differential X-ray correlation function, D
X
(r), of Zn(CN)2 at 295 K (bottom, black). 
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10. Fitting Procedure for T
N
(r) Incorporating Different Zn–C and Zn–N Bond Lengths 

In order to investigate the possibility of a difference in Zn–C and Zn–N bond lengths, a computer program 

was written for fitting the neutron correlation function, T
N
(r), in the region from 1.0 to 3.55 Å. The aim of the 

fitting is to produce a set of interatomic distances which are physically consistent. Figure S.10 shows a Zn–

C≡N–Zn linkage, which gives rise to six independent interatomic distances if there is a bond length difference. 

There is also a further contribution to T
N
(r) in the same distance range due to tetrahedral (C/N)···(C/N) 

distances. However, there are only three peaks in T
N
(r) in the relevant region, and only the third peak shows 

visible asymmetry. Thus it is not achievable to determine six different distances from a fitting procedure, and 

hence simplifying assumptions were made that the four atoms in a linkage are coplanar, and that the two atoms 

in a cyanide group are displaced the same distance, , from the Zn···Zn axis. For this model, all of the 

interatomic distances can be calculated from four independent parameters, which we chose to be r1, , rZn-C and 

rZn···Zn. For a given set of these parameters, the lengths of the projections of the Zn–C and Zn–N bonds onto the 

Zn···Zn axis may be calculated as 

 

 ½22

C-ZnC  rp  
C1Zn···ZnN prrp   (Equation S.3) 

Then the dependent interatomic distances may be calculated as follows 

 

2

N

22

N-Zn pr    

 

  22

CZn···Zn

2

Zn···C  prr

 

 

  22

C1

2

Zn···N  prr    (Equation S.4) 

where rZn···C and rZn···N are unbonded interatomic distances. The (C/N)···(C/N) contribution to the third peak in 

T
N
(r), arising from the edges of the Zn(C/N)4 tetrahedra, was modeled using a single independent distance, r4 

(~3.24 Å). If the tetrahedra were all identical then the length of the edge of the tetrahedra would be dependent 

on the Zn–C or (Zn–N) bond length (i.e., r4=(8/3)r2), but since five different Zn(CN)4-n(NC)n tetrahedra are 

present, this is not appropriate, and hence r4 was taken as an independent parameter. 



                                                                                                                                                       S29 

 

In the fitting, the distance rZn···Zn was fixed at the value a3/2, determined from Rietveld refinement, because 

the method of Busing and Levy
38

 (Table 3) shows that this is a good measure of the average Zn···Zn separation. 

There are then four independent distances in the fitting, r1, , rZn-C and r4, which is the maximum number which 

can reliably be extracted from two symmetric peaks and one asymmetric peak. In the fitting, the same value 

was used for the RMS variation in the Zn–C and Zn–N bond lengths; similarly, the same value was used for the 

RMS variation in the Zn···C and Zn···N distances. The coordination numbers corresponding to the various 

contributions to the peaks at distances r2, r3 and r4 were all scaled by the same factor to take into account 

experimental error in coordination number. 

The correlation function measured at 11.4 K was fitted first, and a successful fit could not be achieved unless 

 was fixed at zero; otherwise the fit diverged. A value of zero for  corresponds to a linear Zn–C≡N–Zn 

linkage, and this is reasonable because at low temperature only atomic vibrations with longer wavelength are 

significantly populated, in which case there is little deviation from linearity of an individual linkage. For a 

linear linkage, the equations relating the interatomic distances (Equations S.3 and S.4) simplify to 

 

rZn···C=rZn···Zn–rZn-C  rZn···N=r1+rZn-C (Equation S.5) 

The results from the fit to T
N
(r) at 11.4 K (Figure S.11) are given in Table S.15, and the bond length 

difference determined in this way is reasonable, as discussed in the main text. A satisfactory fit to T
N
(r) at 

295 K in which the bond length difference (i.e., the independent parameter rZn-C) could not be obtained, due to 

the greatly increased width of the peak at distance r4 (Table 3). Consequently the fit to the 295 K data given in 

Table S.15 was performed with the Zn–C bond length fixed at the value obtained from the fit to the 11.4 K 

data; this is a reasonable constraint since there is strong evidence that bond lengths change very little with 

temperature.  
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Figure S.10. Definition of distances used in bond length difference fits with Zn, C and N atoms shown as 

gray, black and blue spheres respectively. The atoms are coplanar and the C and N atoms are assumed to 

be displaced the same distance from the Zn···Zn axis. 

Table S.15. Structural parameters (interatomic distance, ri−j, RMS variation in interatomic distance, 
½

2
jiu  , 

and coordination number, ni−j
45

) for Zn(CN)2, obtained from bond length difference fits to the neutron 

correlation function, T
N
(r), at 11.4 and 295 K. (Statistical errors from the fits are indicated by the values in 

brackets.) 

Temperature / K 
Cyanide displacement,  

  / Å 
    Atom pair

§
 ri−j / Å  

½
2

jiu   / Å  ni−j  

11.4  0.0* 

C≡N  (r1) 1.1512(3) 0.0277(6) 0.941(5) 

Zn–N 

Zn–C   
(r2) 

1.969(2) 
†
 

2.030(2) 
0.044(2) 1.971(8) 

Zn···C 

Zn···N 
(r3) 

3.120(2) 
†
 

3.181(2) 
†
 

0.045(2) 1.971(8) 
†
 

(C/N)···(C/N)  (r4) 3.235(1) 0.111(1) 2.96(1) 
†
 

295  0.266(4)  

C≡N  (r1) 1.1501(3) 0.0295(5) 0.966(5) 

Zn–N 

Zn–C   
(r2) 

1.972 
†
 

2.030* 
0.062(1) 2.04(1) 

Zn···C 

Zn···N 
(r3) 

3.116 
†
 

3.173 
†
 

0.068(1) 2.04(1) 
†
 

(C/N)···(C/N)  (r4) 3.246(2) 0.148(2) 3.06(1) 
†
 

§
Lines between a pair of atoms indicate bonds, whilst dots indicate a non-bonded distance.  

†dependent parameter; *value fixed during refinement. 

 



                                                                                                                                                       S31 

 

 

Figure S.11. Peak fits to T
N
(r) at 11.4 K (vertically offset) and 295 K, to determine the 

difference in Zn–N and Zn–C bond lengths. The individual components of the fit are shown 

by dashed lines, and the residual is shown by a displaced continuous line. 
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11. The Effect of Transverse Atomic Motion on the Zn–N and Zn–C Bond Lengths at 11.4 and 295 K 

 

 

 

 

Figure S.12. Skipping-rope mode at 11.4 K. Zn, C and N atoms are shown as gray, black and blue spheres 

respectively. The atoms are coplanar and the C and N atoms are assumed to be displaced the same distance 

from the Zn···Zn axis. 

 

It is assumed that Zn···Zn = 5.150 Å (from Rietveld refinement at 11.4 K, Table 3), C N bond length, r1 = 

1.151Å (from total neutron correlation function, Table 3), Δ = u┴ =  0.114 Å (from Rietveld refinement, Table 

S.12), pN = 1.969 Å and pC = 2.030 Å (from total neutron correlation function, Table S.15). 

Therefore, from Pythagoras, rZn–N = 1.972 Å and rZn–C = 2.033 Å 
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Figure S.13. Skipping-rope mode at 295 K. The atoms are coplanar and the C and N atoms are assumed to be 

displaced the same distance from the Zn···Zn axis. Key as for Figure S.12. 

 

It is assumed that Zn···Zn = 5.116 Å (from Rietveld refinement at 295 K, Table 3), C N bond length, r1 = 

1.150Å (from total neutron correlation function, Table 3), rZn–N = rZn–C = 1.9955Å (from total neutron 

correlation function, Table 3). Hence, pN =  pC = 1.983 Å. 

Therefore, from Pythagoras Δ = 0.223 Å   
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Figure S.14. Kinky mode at 295 K. The atoms are coplanar and the C and N atoms are assumed to be displaced 

the same distance from the Zn···Zn axis. Key as for Figure S.12. 

 

It is assumed that Zn···Zn = 5.116 Å (from Rietveld refinement at 295 K, Table 3), Δ = u┴ =  0.241 Å (from 

Rietveld refinement, Table S.12), rZn–N = rZn–C = 1.9955Å (from total neutron correlation function, Table 3). 

Hence, pN =  pC = 1.981 Å. 

 Therefore, from Pythagoras, C N bond length, r1 = 1.251Å  i.e., unfeasibly long 
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In mixed-metal cyanides with M−C N−M’ linkages in which one of the metals is zinc, the C N groups are 

ordered with zinc bonded to the nitrogen end of the cyanide ligand (Table S.16). The crystal structures listed in 

Table S.16 give an average Zn–N bond length of 1.966(12) Å in Zn(N≡C−M’−)4 coordination. Bonds from zinc 

to the carbon end of the cyanide ligand are only found in Zn(CN)2 and in compounds containing isolated 

tetrahedral [Zn(CN)4]
2–

 complex anions. Four such crystal structures have been reported in which Zn is bonded 

to carbon in Zn–C≡N links.
46-49

 Of these, only one, K2Zn(CN)4,
50

 is a well-determined structure at atmospheric 

pressure (i.e., with C≡N bond lengths close to the accepted value of 1.15 Å). In K2Zn(CN)4, the C≡N and Zn–C 

bond lengths are 1.155(9) and 2.018(7) Å, respectively. 

 

Table S.16. The C≡N and Zn–N bond lengths in crystalline mixed-metal cyanides in which zinc is in tetrahedral 

coordination and bonded to the nitrogen end of the cyanide ligand. 

 C≡N bond lengths / Å Mean Zn–N bond length / Å 

(N(CH3)4)Zn(Cu(CN)4) (low-temperature phase) 
51

 1.134, 1.155 1.956 

Zn3(Co(CN)6)2 
52

 1.148, 1.154 1.969 

Zn3(Fe(CN)6)2 
52

 1.154, 1.161 1.984 

Rb2Zn3(Fe(CN)6)2.xH2O 
52

 1.141, 1.144 1.980 

(NH4)2Zn3(Fe(CN)6)2.xH2O 
52

 1.146, 1.150 1.965 

(H3O)2Zn3(Re6Se8(CN)6)2·20H2O 
53

      1.149, 1.163 1.964 

Cs2Zn3(Fe(CN)6)2(H2O)6 
54

  1.146, 1.148 1.964 

K2Zn3(Fe(CN)6)2.xH2O 
55

 1.153 1.948 

Average: 1.150(7) 1.966(12)   

 

 

Difference between the mean bond lengths, Zn–C and Zn–N, is 2.018(7) – 1.966(12) = 0.052 Å. 
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14. Infrared and Raman Spectra of Zn(CN)2 

 

Figure S.15. IR spectrum of Zn(CN)2 (range 3550 – 750 cm
-1

).  C≡N occurs at 2216 cm
-1

.  

 

Figure S.16. Raman spectrum of Zn(CN)2.  C≡N and  Zn-C/N  occur at 2216 and 335 cm
-1

 respectively. 
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