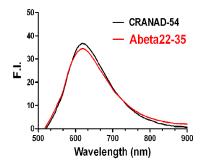
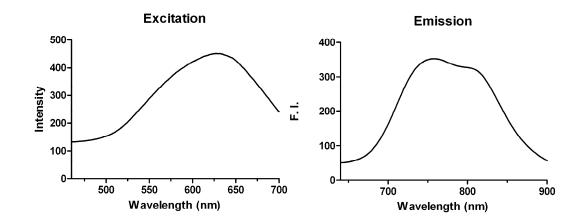
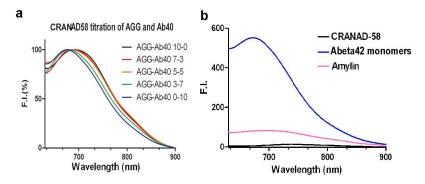
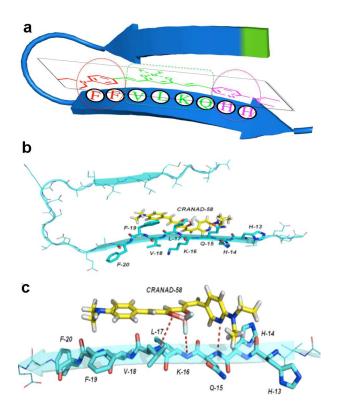

Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced crosslinking of amyloid beta species in Alzheimer's disease

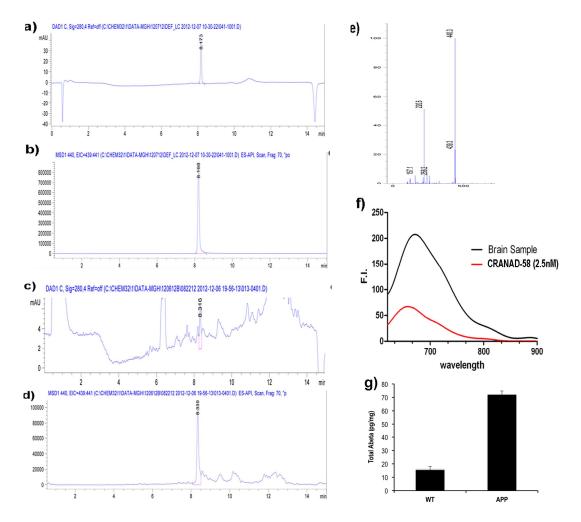

Xueli Zhang^{1,2,3}, Yanli Tian^{1,4}, Zeng Li⁵, Xiaoyu Tian⁶, Hongbin Sun^{2,3}, Hong Liu⁵, Anna Moore^{1*}, and Chongzhao Ran^{1*}

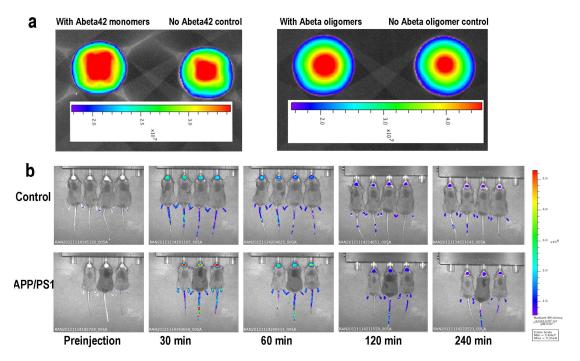
Supplemental Information

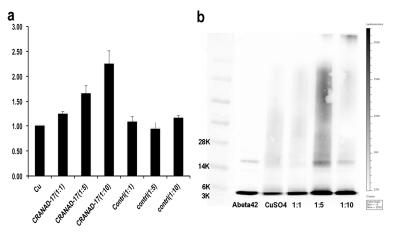

SI Figure legends

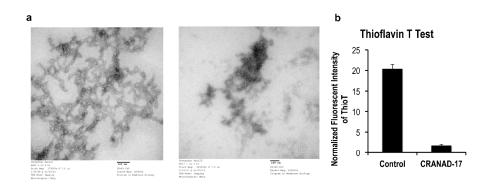

SI Fig.1 TEM (negative staining with PTA) of Aβ40 aggregates (a), Aβ40 monomers (b), Aβ42 monomers (c), Aβ42 oligomers (d), Amylin (e), and Aβ16-20 (f), scale bar: 100nm. (g-i) Size exclusion chromatography (SEC) of standard protein (g), Aβ40 monomers (h) and Aβ42 monomers (i). (j) SDS-PAGE gel of Aβ40 and Aβ42 monomers.

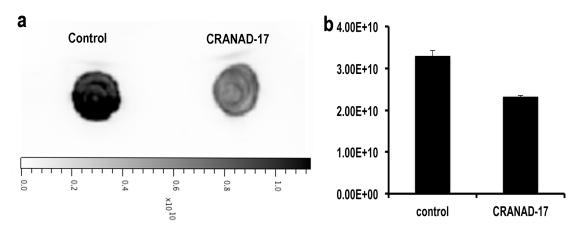

SI Fig.2 Fluorescence emission spectra of CRANAD-54 alone (black), and with A β 22-35 (red).


SI Fig.3 The excitation and emission spectra of CRANAD-58 (2.5µM in PBS, pH 7.4).


SI Fig.4 (a) Fluorescence spectra of CRANAD-58 titration with A β monomers and aggregates. (b) Fluorescence emission spectra of CRANAD-58 alone (black), with amylin (pink) and A β 42 monomers (blue).


SI Fig.5 (a) The proposed interaction model of CRANAD-58 with $A\beta 40/42$, in which the three interacting pockets are highlighted with circles or rectangle. (b) Docking results of CRANAD-58 with A β s, and (c) a zoomed in image of (b).


SI Fig.6 LC-MS and fluorescence spectra measurements of brain extracts (in 80% acetonitrile) 60 min after CRANAD-58 injection. (a) LC spectrum of CRANAD-58 (UV = 280nm); (b) LC-MS of ion extraction with m/z = 439-411 (M.W. of CRANAD-58: 440.3). (c) LC spectrum of CRANAD-58 from the brain extracts (UV = 280nm); (d) LC-MS of ion extraction with m/z = 439-411; the peak corresponds to the M.W. of CRANAD-58. (e) MS spectra of CRANAD-58. (f) Fluorescence spectra of standard CRANAD-58 (red line, in 80% acetonitrile), and brain extractions (black). (g) ELISA of A β levels in brain homogenates of APP/PS1 mice and control mice.


SI Fig.7 (a) Brain phantom imaging with $A\beta$ monomers (left) and oligomers (right). (b) Images of all mice used for in vivo imaging.

SI Fig.8 Quantitative analysis of monomeric bands in Fig.8c. (b) Western blot of A β 42 (without copper, lane 1), treated with CuSO₄ (lane 2), and CuSO₄ + CRANAD-17 (lanes 3-5) (A β 42/CRANAD-17 = 1:1, 1:5, and 1:10).

SI Fig.9 (a) TEM imaging of Aβ42 treated with CuSO₄ (left), and with CuSO₄+CRANAD-17 (right). (b) Fluorescence intensity of Thioflavin T obtained from Aβ42 solutions treated with CuSO₄ and CuSO₄+CRANAD-17.

SI Fig.10 (a) Dot-blotting of A β 42 treated with CuSO₄ (left) and with CuSO₄+CRANAD-17 (right) using A β antibody 2H4, which has better recognizing capability for A β fibrils. (b) Quantitative analysis of (a) (n =2).