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S1. Simulations of spectra in Figure 1. 

 

Figure S1. Experimental (black) and simulated (red) X-band EPR spectra of 5-DSA in 

H2O:EtOH (70:1) recorded at room temperature (a), 5-DSA in CH2Cl2 with a drop of toluene 

recorded at 50 K (b), and of a 5-DSA:C16TMACl:H2O:EtOH mixture (1.12x10
-3

:0.12:231:3.3) 

recorded at room temperature (c). The simulations were performed assuming gx=2.0086, 

gy=2.0068, gz=2.0028, Ax=13.8 MHz, Ay=13.8 MHz, and Az=96.0 MHz, and (a) C = 0.1 ns, (b) 

the solid state, (c) C=1.2 ns. 

 

  



S2. Effect of addition of NaOH to mixture 

 

Figure S2. Comparison of room-temperature CW-EPR spectra of a 5-DSA:C16TMACl:H2O 

mixture (1.12x10
-3

:0.12:231) (black) and a 5-DSA:C16TMACl:NaOH:H2O:EtOH mixture 

(1.12x10
-3

:0.12:1.0:231:3.3) (red). We notice a broadening of the lines in the red spectrum 

typical for a slowing down of the spin-label motion. 

  



S3. Evaluation of EPR spectra during PMOs synthesis 

While the EPR spectra of the label in the solvent could still be satisfactorily simulated using 

a simple isotropic motion model, this is no longer the case for the spectra recorded during the 

PMO synthesis (Figure 2, main text). In fact, as also described for the MCM-41 case
1
, the 

motion needs to be described using a model assuming microscopic order and macroscopic 

disorder (MOMD)
1
. However, it has been often reported that EPR experiments at different 

microwave frequencies are needed in order to be able to determine the motional parameters of 

the spin probes correctly.
3
 Nevertheless, EPR experiments performed at a single microwave 

frequency can be used to evaluate in a qualitative manner the motional behaviour.  It has been 

shown that the order parameter S of the spin probe motion can be directly derived from the 

spectrum
4
 in the following way: 

      
              

               
                                              

With                           and       and      (in MHz) defined in Figure S3. 

 

Figure S3. (a) Definition of the parameters       and     , and (b) the temporal evolution of 

the order parameter S calculated from the experimental spectra  using equation (1). 

 

  



S4. N2 sorption experiments of ethane-bridged PMOs with BTME or BTEE precursors 

 

 

Figure S4. (a) Comparison between the XRD patterns of the as-synthesized ethane-bridged 

PMO materials synthesized with BTME or BTEE, (b) N2-sorption isotherms of the template-

free PMO materials synthesized with BTME and BTEE, and (c) the corresponding pore-

diameter distribution. 

The peak positions in the small-angle XRD of the ethane-bridged PMO materials synthesized 

with BTME and BTEE are detected around 2θ=2.20º and 2θ=2.08º, respectively. The small 

shift of the main diffraction peak towards lower 2θ suggests an enlargement of the pore size. 

This is in agreement with the N2-sorption experiments, which show clearly a larger pore size 

when BTEE is used instead of BTME. 



S5. XRD patterns of ethane-bridged PMOs synthesized with method I and method II 

 

Figure S5. The XRD patterns of the as-synthesized ethane-bridged PMO materials 

synthesized with method I and method II, respectively. 

The XRD patterns confirm the data obtained using low temperature N2-adsorption–desorption 

isotherms (Figure 4, main text).  



S6. Motional behaviour of spin labels adsorbed to PMOs 

 

Figure S6. Room-temperature EPR spectra of 5-DSA and 16-DSA spin probes adsorbed on 

ethane-bridged PMOs synthesized using method II. The spectra are shown such that they 

reflect the real relative intensity of the spectra. The solid arrow marks the slow-motion part 

and the dashed arrow marks the fast motion part. 

From the EPR spectra of 5-DSA and 16-DSA adsorbed on PMO(method II), it can be 

observed that the signal intensity of the two spin labels are approximately the same, which 

means that the same amount of 5-DSA and 16-DSA has been adsorbed onto the PMO 

materials, respectively. However, we can also notice that the intensity of slow-motion part of 

5-DSA is going up and the intensity of the fast motion part of 5-DSA is going down, 

compared with 16-DSA, which means that 5-DSA adsorbed on PMO(method II) have a lower 

mobility than that of  16-DSA. The different motional behaviour of 5-DSA and 16-DSA can 

be explained by the different location of the nitroxyl group within the molecule.  



S6. TGA results for ethane-bridged PMOs 
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Figure S7. Thermogravimetric analysis of the template-free PMO materials synthesized using 

methods I and II 

A thermogravimetrical analysis was performed under air flow for the template-free PMO 

materials synthesized using method I and II. The observed weight loss below 130 °C was due 

to the thermodesorption of physisorbed water or ethanol, and the weight loss between 300-

700°C was assigned to the decomposition of the ethane moieties within the framework. No 

obvious weight loss due to the surfactant was observed, indicating a negligible amount of 

residual surfactants exist after solvent extraction. However, it could be noted that the weight 

loss (below 130 °C) of PMOs synthesized with method I (~33%) was much higher than that 

of the PMOs synthesized with method II(~7%). It means that the PMO(method I) materials 

contain much more surface water than those of PMOs(method II), which is in agreement with 

the FT-IR spectra.  
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