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2. Relaxed Potential Energy Surface Scan of CH3CN (ACN) and ACN– 

A CH3CN molecule can not directly bind an excess electron in gas phase, as evidenced by 

its negative adiabatic electron affinities (AEA) of -0.42 eV calculated at the 

B3LYP/6-311++G(d,p) level.  However, given the CPCM mode of the liquid acetonitrile 

phase, it can bind an excess electron either using –CH3 Rydberg orbital with AEA of 0.92 eV or 

using –CN π* orbital with AEA of 1.39 eV.  Thus, it can be concluded that: i) solvation effect 

significantly enhance the electron affinity of the CH3CN molecule; ii) bending vibrations and 

stretching vibrations can increase its ability in binding EE, indicating that CH3CN could be a 

potential captor of an excess electron. 
 

 

Figure S1.  The scanned potential energy curves of neutral and anionic CH3CN as a function 

of the C-C-N angle in the gas phase and in liquid acetonitrile (using the CPCM model) 

calculated at the B3LYP/6-311++G(d,p) level of theory. 
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3. Geometry Optimizations of the Negatively Charged ACN Clusters, (ACNn
–) (n=2-30) 

To prepare the ACNn
– clusters with an interior dimer anion, a cavity-shaped solvated 

electron, and a quasi-dimer core state, respectively, we used the following procedure: 

(i) To construct liqACN with a dimer anion, a dimer anion with C2h symmetry was firstly 

optimized at the BLYP/DNP level. The central C-C distance and ∠CCN were optimized to 

be 1.702 Å and 127.7o, respectively. Then, a liqACN system was constructed by adding the 

optimized dimer anion and 120 acetonitrile molecules in a cubic simulation box with a 

density of 0.764 g/cm3. 

To construct liqACN with a cavity-trapped solvated electron, a cavity was firstly 

constructed with the CH groups pointing toward the center.  After geometry optimization 

of 2-6 ACN molecules, the cavity-trapped solvated electrons were formed with different 

cavity shape depending on the number of ACN molecules. Then, a liqACN system was 

constructed by adding the cavity (surrounding by 6 ACN molecules) and 120 ACN 

molecules in a cubic simulation box with a density of 0.764 g/cm3.  

Similarly, to construct liqACN with a quasi-dimer core state, a quasi-dimer was firstly 

optimized. ∠CCN of two molecules was optimized to be 129.4o and 175.6o, respectively, 

and the distance of H atom to central C atom of other molecule was 2.15 Å. Then, a 

liqACN system was constructed by adding the optimized quasi-dimer and 120 ACN 

molecules in a cubic simulation box with a density of 0.764 g/cm3. 

(ii) The liqACN systems were allowed to evolve at 300 K by the classical molecular dynamics 

simulation for 10 ps in the canonical ensemble. COMPASS force field was applied and the 

time step was set to 1.0 fs. For simulations all the spatial positions of atoms constructing a 

dimer anion, a cavity-shaped solvated electron and a quasi-dimer core state in the 

simulation box were fixed. 

(iii) After equilibration, two independent configurations were extracted from the trajectory as 

the initial configuration of the ACNn
– clusters, which contains a dimer anion, a 

cavity-shaped solvated electron or a quasi-dimer core state, respectively, and the nearby 

several other ACN molecules. Then, the ACNn
– clusters, (n=2-30), were optimized at the 

BLYP/DNP level within the unrestricted open-shell scheme using DMol3 package. All the 

spatial positions of atoms were unconstrained. 
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Figure S2.  Optimized geometries of the negatively charged ACN clusters, (ACNn

–) (n=2-30), 

within a dimer anion state at the BLYP/DNP level. The singly occupied molecular orbitals 

(SOMO) are shown with an isosurface value of 0.03.  An excess electron is localized at a 

dimer core in each case. 

 

 

Figure S3.  Optimized geometries of the negatively charged ACN clusters, (ACNn
–) (n=2-30), 

within a cavity-shaped solvated electron at the BLYP/DNP level of theory.  The singly 

occupied molecular orbitals (SOMO) are shown with an isosurface value of 0.03.  An excess 

electron is localized in a cavity in each case, and however, a quasi-dimer core state can form in 

a large cluster (n=30). 
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Figure S4.  Optimized geometries of the negatively charged ACN clusters, (ACNn

–) (n=2-30), 

within a quasi-dimer core state at the BLYP/DNP level of theory.  The singly occupied 

molecular orbitals (SOMO) are shown with an isosurface value of 0.03.  An excess electron is 

localized in a quasi-dimer core in each case, and however, a quasi-dimer core state can newly 

form at the surface of a large cluster (n≥20). 
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4. Optical Absorption Spectra and Vertical Detachment Energy (VDE) of the Optimized 

Negatively Charged ACN Clusters, (ACNn
–) (n=2-30) 

 

 

 

Figure S5.  Optical absorption spectra of the ACNn
– clusters with an interior dimer anion (top 

panel), a cavity-shaped solvated electron (middle panel), and a quasi-dimer core state (bottom 

panel), respectively. 
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Table S1.  Vertical detachment energies (VDE) for the negatively charged ACN clusters, 

(ACNn
–) (n=2-30), optimized at the BLYP/DNP level of theory. Values in the bracket are other 

initial optimized configurations from the classical molecular dynamics trajectory. 

VDEs (eV) 
n 

dimer anion cavity-shaped 
solvated electron 

quasi-dimer core 
state 

2 1.21 1.85 a -0.52 0.10  
3 1.34 (1.52) 2.34 a -0.44 0.52 (0.46) 
4 1.84 (2.00) 2.79 a -0.05 0.67 (0.53) 
5 2.16 (2.30) 3.13 a 0.28 0.60 (0.51) 
6 2.49 (2.55) 3.43 a 0.51 1.06 (0.94) 
7 2.80 (2.74)  0.54 (0.60) 1.17 (1.06) 
8 3.07 (2.85) 3.85 a 0.56 (0.64) 1.22 (1.39) 

10 3.05 (3.06) 4.22 a 0.79 (0.68) 1.60 (1.69) 
13 3.21 (3.38)  0.62 (0.75) 1.83 (1.84) 
15 3.27 (3.33)  0.86 (0.96) 1.95 (1.89) 
20 3.39 (3.44)  0.88 (1.02) 2.08 (2.16) 
30 3.63 (3.60)  1.21 (2.17 b) 2.11 (2.27) 

a The values are from Ref. [Chem. Phys. 2006, 324, 679-688], which were calculated at the 
B3LYP/6-31+G(d,p) level of theory. b The value indicates that an excess electron localizes in a 
quasi-dimer core rather than in a cavity. 
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Table S2.  The calculated energies for the most stable negatively charged ACN clusters, 

(ACNn
–) (n=2-30), optimized at the BLYP/DNP level of theory. 

Calculated Total and Relative Energies (a.u.) 
n 

dimer anion cavity-shaped 
solvated electron c

quasi-dimer core 
state c 

2 -265.4868 -265.5381 a 0.0234  0.0015  
3 -398.2486 -398.3127 a 0.0104  0.0012  
4 -531.0238 -531.0850 a 0.0096  0.0057  
5 -663.7947 -663.8565 a 0.0496  0.0184  
6 -796.5622 -796.6321 a 0.0096  0.0017  
7 -929.3298  0.0145  0.0118  
8 -1062.1015 -1062.1760 a 0.0162  0.0091  

10 -1327.6236 -1327.7213 a 0.0090  0.0034  
13 -1725.9306  0.0203  0.0046  
15 -1991.4628  0.0161  0.0064  
20 -2655.3050  0.0365  0.0059  
30 -3982.9498  0.0203 (0.0161 b) 0.0161  

a The values are from Ref. [Chem. Phys. 324, 679-688, (2006)], which were calculated at the 
B3LYP/6-31+G(d,p) level of theory. b The value indicated an excess electron localizes in a 
quasi-dimer core rather than localizes in a cavity. c For the cavity-shaped solvated electron and 
quasi-dimer core state, the values are the energies relative to the dimer anion for the corresponding 
cluster sizes calculated at the BLYP/DNP level of theory. 

 

 

5. AIMD Simulations of the Neutral and Negatively Charged ACN Molecules 

AIMD simulations were performed for the neutral and negatively charged ACN molecules 

at 300 K. Spin unrestricted calculations were carried out for 3.0 ps in canonical ensemble with 

time step of 1.0 fs. Temperature was controlled by Nosé-Hoover chain of thermostats. The 

generalized gradient corrected functional BLYP and numerical DNP basis set confined within a 

cutoff of 3.7 Å were used in the AIMD simulations. The electrostatic potential was evaluated 

by solving Poisson’s equation with cutoff optimization in a completely numerical approach for 

the charge density. 

The ∠CCN oscillates between 160° and 180° for neutral molecule, and oscillates between 
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110° and 137° for the negatively charged molecule.  The corresponding average values are 

172° and 124°, respectively. 

Furthermore, the oscillation periods are 41-58 fs and 76-106 fs for a neutral and a 

negatively charged molecule, respectively, and the corresponding average periods are ~48.4 fs 

and ~89.7 fs, respectively. 

 

 

Figure S6.  Oscillation of the ∠CCN bending vibration for an ACN molecule with (black line) 

and without (red line) an excess electron. 

 

6. AIMD Simulations of the Negatively Charged ACN Clusters, (ACNn
–) (n=5-30) 

AIMD simulations were performed for the negatively charged ACN clusters, (ACNn
–) (n 

=5, 10, 15, 20, 30), at 300 K using DMol3 package. Spin unrestricted calculations were carried 

out for 1.0 ps in canonical ensemble with a time-step of 1.0 fs.  The spin multiplicity was set 

to doublet and the total charge was set to -1.  Temperature was controlled by Nosé-Hoover 

chain of thermostats.  The generalized gradient corrected functional BLYP and numerical 

DNP basis set confined within a cutoff of 3.7 Å were used in the AIMD simulations. The 

electrostatic potential was evaluated by solving Poisson’s equation with cutoff optimization in 

a completely numerical approach for the charge density. 
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After about 100 fs, the excess electron was localized in a quasi-dimer.  For n≤15, ∠CCN 

decreases to about 135º within 100 fs, and then fluctuates about this value; for n=20, ∠CCN of 

two ACN molecules exhibit that one’s loss is other’s gain; for n=30, ∠CCN fluctuates between 

150º and 173º. 

 

Figure S7.  Time evolution of ∠CCN of the cored ACN molecule (quasi-dimer core state) in 

(ACNn
–) (n=5, 10, 15, 20, 30) after AIMD simulations at 300 K. 

 

 
Figure S8.  Optical absorption spectra of the negatively charged ACN clusters, (ACNn

–) (n =5, 
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10, 20, 30) from the AIMD simulation trajectory at the times of 0, 50, 100, 150, and 200 fs. 

7. Characteristics of the Lowest Unoccupied Molecular Orbitals of the Neutral liqACN 

 
Figure S9.  Several lowest unoccupied molecular orbitals (LUMOs) of two snapshot 

configurations of neutral liqACN, as well as the corresponding singly occupied molecular 

orbital (SOMO) after vertically binding an excess electron. 

 

8. Structural and Dynamic Properties of the Neutral and Negatively Charged liqACN 

We analyzed structural and dynamical properties of the neutral and negatively charged 

liquid acetonitrile. The radial distribution functions (RDFs) of carbon and nitrogen, carbon and 

carbon, and nitrogen and hydrogen are shown in Figure S10. The peaks corresponds to: (i) 

three peaks of Figure S10(a) are the intramolecular central C–N distance (~1.17 Å), 

intramolecular methyl C–N distance (~2.63 Å), and intermolecular C–N distance (~3.53 Å), 

respectively; (ii) two peaks of Figure S10(b) are the intramolecular central C–C distance 

(~1.48 Å), and intermolecular C–C distance (~4.17 Å), respectively; (iii) two peaks of Figure 

S10(c) are the intramolecular central N–H distance (~3.18 Å), and intermolecular N–H 

distance (~4.26 Å), respectively.  The mean-square displacement (MSD) of liquid acetonitrile 

is shown in Figure S11, and the diffusion constant is about 3.0–3.8×10-5 cm2/s.  These results 

agree well with the previous simulations and experiments (J. Phys. Chem. B 2006, 110, 

3614-3623; J. Chem. Soc., Faraday Trans. 1, 1982, 78, 2233-2238), implying that we do a 
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truly equilibrated simulation. 

 

 
Figure S10. The radial distribution functions (RDFs) of carbon and nitrogen (a), carbon and 

carbon (b), and nitrogen and hydrogen (c). 2ps(0e), 1st-5ps(1e), and 2nd-5ps(1e) indicate the 

original 2.0-ps simulation of the neutral system, the original and extended 5.0-ps simulation of 

the negatively charged system, respectively. 5ps(0e) and 10ps(1e) indicate the 5.0 ps 

simulation of the neutral system with a different configuration and the 10 ps simulation of the 

negatively charged system, respectively. 

 
  Time (ps) 
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Figure S11. The mean-square displacement of the liquid acetonitrile. 2ps(0e), 1st-5ps(1e), and 

2nd-5ps(1e) indicate the original 2.0-ps simulation of the neutral system, the original and 

extended 5.0-ps simulation of the negatively charged system, respectively. 5ps(0e) and 10ps(1e) 

indicate the 5.0 ps simulation of the neutral system with a different configuration and the 10 ps 

simulation of the negatively charged system, respectively. 

 

9. Another Breathing Periods and Core-switching Shift Migration at Arbitrary Time 
Intervals from the Trajectory. 

 
7400fs              7450fs             7480fs              7600fs 

 
7700fs               7750fs             7790fs           7830fs         

Figure S12.  SOMO characters of representative snapshots extracted from the extended 

AIMD trajectory. Two breathing periods are shown in time scale of 7400–7480 fs and 

7700–7790 fs, while a core-switching shift migration occurs at 7480–7700 fs. 
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Figure S13.  Oscillation of the ∠CCN bending vibration for two arbitrary ACN molecules 

(A/black curve and B/red curve) that are the cores, in turn, which bind the EE as localized 

states.  The core-switching occurs at 7480-7700 fs that corresponds to the transfer of the EE 

from the A- to the B-cored localized state. 

  

 

Figure S14.  Oscillation behavior of the VDE (a), volume (b), and surface area (c) of the 

SOMO lobes enclosed by the 0.03-isovalued surface for the EE in liqACN in an arbitrary time 

period (8680-8995 fs), and their cooperative relationship with the ∠CCN angle change. 

 

 

10. A Different Initial Configurations of Excess Electron Solvation in liqACN for 
Reproduction of the Observed Phenomena 

To investigate the effect of the initial configuration, we reconstructed the liquid 

acetonitrile and performed the following equilibrations: (i) The system was equilibrated by a 

8.0-ns classical molecular dynamics simulation; (ii) the system was further equilibrated by a 

5.0-ps ab initio molecular dynamics simulation; (iii) one 0-eV excess electron was vertically 
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injected and the system was simulated by ab initio molecular dynamics method for 10.0-ps. 

These simulations lead to the similar conclusions with the previous ones, as shown in Figures 

S15-S17. 

 

 
5500fs              5540fs             5585fs              5700fs 

 
5840fs               5880fs             5930fs            5965fs         

Figure S15.  SOMO characters of representative snapshots extracted from the extended 

AIMD trajectory. Two breathing periods are shown in time scale of 5500-5585 fs and 

5840-5930 fs, while a core-switching shift migration occurs at 5585-5840 fs. 

 
Figure S16.  Oscillation of the ∠CCN bending vibration for two arbitrary ACN molecules 

(A/black curve and B/red curve) that are the cores, in turn, which bind the EE as localized 

states.  The core-switching occurs at 5585-5840 fs that corresponds to the transfer of the EE 

from the A- to the B-cored localized state. 
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Figure S17  Oscillation behavior of the VDE (a), volume (b), and surface area (c) of the 

SOMO lobes enclosed by the 0.03-isovalued surface for the EE in liqACN in an arbitrary time 

period (9320-9610 fs), and their cooperative relationship with the ∠CCN angle change. 

 

11. AIMD-Simulated Results of an Excess Electron in liqACN in a Larger Box (Size 
Effect) 

To investigate the effect of the box size, we simulated a system consisting of 100 ACN 

molecules (cell parameter 20.8Å). We used the same simulation parameters described in the 

manuscript. The dynamics evolution of the excess electron was similar. Upon injection into the 

neutral solution, the excess electron was delocalized on several solvent. At ~130 fs the excess 

electron was localized on a bending solvent molecule ( CCN≈15∠ 3o), forming quasi-dimer 

core state. Then ∠CCN of the cored ACN molecule periodically oscillates between 177o and 

150o, corresponding the diffusely solvated state and localized state (quasi-dimer core state) of 

an excess electron. 
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Figure S18.  Snapshots of the singly occupied molecular orbital (SOMO, isovalue=0.03) and 

time evolution of CCN∠  of the cored ACN molecule from the trajectory. 

 

12. Self-interaction Correction (SIC) for AIMD Simulations of an Excess Electron in 

liqACN 

In order to check the possible self-interaction error (SIE), we repeated our simulations 

using CP2K/Quickstep software package. The BLYP functional combined triple-zeta valence 

and polarization (TZVP) basis set and auxiliary plane waves were used to describe the valence 

states. The energy cutoff of plane waves was 300 Ry. The core states were described by the 

Goedecker-Teter-Hutter pseudopotential. The total ground state energy of the systems was 

minimized by the iterative self-consistent field (SCF) procedure using the orbital 

transformation method with ASPC extrapolation (K=3). The SCF tolerance was set 10-6. 

Simulations were carried out in the canonical (NVT) ensemble using a timestep of 1.0 fs. 

Nosé-Hoover chain thermostats of length 3 were attached to every degree of freedom, with a 

time constant of 100 fs to ensure thermal equilibrium over the entire simulation trajectory. We 

simulated additional trajectories at 300K using the self-interaction correction methods 

(a=b=0.2) within a restricted open shell Kohn-Sham scheme [Phys. Chem. Chem. Phys. 7, 

1363 (2005)]. However, SIE caused little effect on the dynamics and structure of the excess 

electron. On the other hand, results obtained from CP2K software without SIC was similar to 

the results obtained by the DMol3 software. 
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                               (a) 

   
                               (b)  

Figure S19.  Snapshots of the singly occupied molecular orbital (SOMO, isovalue=0.02) and 

time evolution of ∠CCN of the cored ACN molecule from the CP2K trajectories without (a) 

and with (b) SIC. 

 

13. Effects of the Dispersion Interactions and Basis Set on Dynamic Process of an Excess 
Electron in liqACN 

We perform additional AIMD simulation using the Quickstep/CP2K program package, 

and the long-range electron correlations that are responsible for van der Waals forces are 

described by the additional dispersion corrections to the normal XC functionals (J. Comput. 

Chem. 2006, 27, 1787-1799). Energies and forces are evaluated using BLYP 

exchange-correlation functional, with dispersion interactions accounted for using empirical 

pairwise damped London terms. The Goedecker-Teter-Hutter norm-conserving 
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pseudopotentials are employed.  To evaluate the basis set effect, two basis sets have been 

tested: a triple-zeta plus p-type polarization basis set (TZVP), and a molecularly optimized 

basis set which contracts diffuse primitives with tighter valence orbitals (molopt-TZV2P).  In 

agreement with the results obtained at the double numerical plus polarization (DNP) basis set 

that is comparable to the 6-31G** basis set, the dynamic process of an excess electron is still 

dominated by the quasi-dimer core state in the solvated state in liquid acetonitrile.  

Furthermore, the dispersion interaction has little effect on the structures and dynamics of an 

excess electron. 

  
                               (a) 

  
                               (b) 
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                               (c) 

Figure S20.  Snapshots of the singly occupied molecular orbital (SOMO, isovalue=0.03) and 

time evolution of CCN∠  of the cored ACN molecule AIMD-simulated using three methods: (a) 

BLYP/DNP, (b) BLYP/TZVP, and (c) BLYP/molopt-TZV2P.  The latter two basis sets are 

performed by the CP2K software. 

 

 

14. AIMD Simulations of an Excess Electron in liqACN from the Starting Point of a 
Dimer Core State 

To investigate the stability of the dimer core states, a liqACN system containing a dimer 

core state is constructed by the following procedures: i) a dimer anion is optimized; ii) a cubic 

simulation box of density 0.764 g/cm3 is constructed by adding the optimized dimer anion and 

other 62 ACN molecules; iii) the position of the dimer anion is constrained and the system is 

equilibrated by the classical molecular dynamics simulations; iv) after equilibrating the system 

for 100-ps, one electron is vertically added into the system and the system is AIMD simulated 

for 3.0 ps; v) the atom position of the cavity is unconstrained and the system is further AIMD 

simulated. 

Upon attachment to neutral liqACN, the excess electron was initially localized on the 

dimer core with VDE of ~2.3 eV.  The lifetime of the dimer core state constructed artificially 

was ~1150 fs. Then, the excess electron is localized on one core at ~1200fs, forming the 

quasi-dimer core state.  Subsequently, the breathing behavior occurs. 
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Figure S21.  Snapshots from the AIMD trajectory at times 0, 500, 1150, 1200, 1250, and 

1300 fs after well equilibrating the dimer anion in the liqACN. The isovalue of the singly 

occupied molecular orbital (SOMO) is 0.03.  The dimer molecules are shown in cyan stick 

style, and other molecules are shown in line style.  

 

15. AIMD Simulations of an Excess Electron in liqACN from the Starting Point of a 

Cavity-Shaped Solvated Electron State 

To investigate the stability of the cavity-shaped state, a liqACN system containing a 

cavity-shaped electron was constructed by the following procedures: i) a cavity consisted of 5 

ACN molecules is optimized; ii) a cubic simulation box of density 0.764 g/cm3 is constructed 

by adding the optimized cavity and other 59 ACN molecules; iii) the cavity structure is 

constrained and the system is equilibrated using the classical molecular dynamics simulations; 

iv) after equilibrating the system for 100-ps, one electron is vertically added into the system 

and the system is AIMD simulated for 3.0 ps; v) the cavity structure is unconstrained and the 

system is further AIMD simulated. 

Upon attachment to neutral liqACN, the excess electron was initially localized in a cavity 

with VDE of ~0.86 eV.  The lifetime of the cavity-shaped state constructed artificially was 

~30 fs. After that, a diffuse state forms and maintains until the quasi-dimer core state occurs at 

~100 fs.  Subsequently, the breathing behavior occurs. 
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Figure S22.  Snapshots from the AIMD trajectory at times 0, 20, 40, 100, 140, and 180 fs 

after well equilibrating the cavity-trapped solvated electron in liquid liqACN. The isovalue of 

the singly occupied molecular orbital (SOMO) is 0.03. The cavity molecules are shown in cyan 

stick style, and other molecules are shown in line style.  

 

16. Optical Absorption Spectra and Density of State of Various Observed States in 
liqACN 

 

 

Figure S23. The calculated optical absorption spectra of various observed states of an excess 

electron in liqACN along the AIMD simulation trajectory.  The peaks of the adsorption 

spectra are at about 0.8 eV for the observed states including the diffusely solvated electron 

state, quasi-dimer state, quasi-monomer state, dual core state, and cavity-shaped solvated 
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electron state.  These states correspond to the solvated electron state observed experimentally 

but with different structures.  For the solvated dimer anion, the calculated absorption peak is 

at about 2.1 eV, in agreement with its experimental observation.  In addition, the dashed line 

denotes a summed curve of the solvated electron state and the solvated dimer anion.  Clearly, 

the distributions of these absorption spectra are very similar to the experimentally observed 

ones in Ref. 42.  Note that the solvated dimer anion is a prepared one, not an observed 

snapshot configuration in the AIMD simulation.  

 

 

  
Figure S24.  The calculated optical absorption spectra (left panel) and density of state (right 

panel) of the quasi-dimer core state of an excess electron in liqACN at different times along 

the AIMD simulation trajectory.  

 
 


