Supplementary Information

Design, Synthesis and Activity of a Series of Arylpyrid-3-ylmethanones as Type I Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors

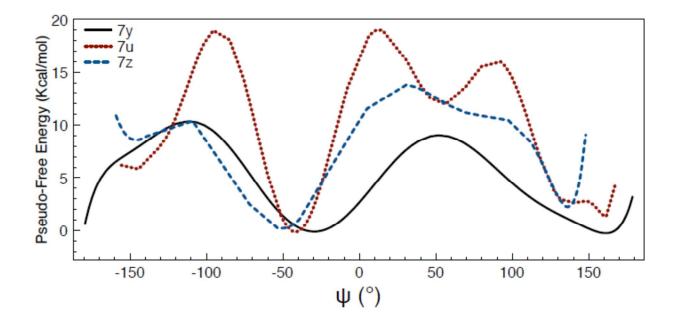
Derk J. Hogenkamp, Thomas A. Ford-Hutchinson, Wen-Yen Li, Edward R. Whittemore, Ryan F. Yoshimura, Minhtam B. Tran, Timothy B. C. Johnstone, Gavin D. Bascom, Hannah Rollins, Lena Lu and Kelvin W. Gee

Table of Contents	Page	
Elemental Analyses	S2	
95% Confidence Intervals for Electrophysiological Data	S4	
Conformational Analyses	S5	
References	S6	

Table of elemental analyses.

		Elem	ental Analyses			
Compound		Found			Calculated	
	С	Н	N	С	Н	N
7a	69.68	5.65	6.79	69.95	5.87	7.09
7aa	68.58	5.12	7.14	69.10	5.27	7.33
7b	71.68	5.36	7.84	71.98	5.47	8.00
7c	73.03	5.92	7.29	73.00	6.13	7.40
7d	70.99	6.54	6.36	70.99	6.43	6.62
7e·1/2MeOH	66.88	4.34	5.64	66.73	4.68	5.66
7f	76.84	6.81	7.18	76.98	7.00	7.48
7g	72.84	5.83	7.34	73.00	6.13	7.40
7h·1/2MeOH	71.68	6.03	7.17	71.55	6.39	7.10
7i	76.45	5.77	6.16	76.34	5.72	6.36
7j	65.38	4.76	7.16	65.46	4.71	7.27
7k	71.75	5.36	7.68	71.58	5.15	7.95
71	63.12	4.27	6.63	63.16	4.34	6.70
7m	76.41	6.41	7.23	76.57	6.69	7.44
7n	76.04	5.39	6.74	76.04	5.44	6.57
70	69.74	5.80	6.89	70.02	5.88	7.10
7p	68.01	4.78	7.88	68.09	4.86	7.94
7q	68.86	5.20	7.63	68.76	5.22	7.64
7 r	69.27	5.68	7.11	69.38	5.56	7.36
7s	69.67	5.58	6.91	69.95	5.87	7.09
7t	64.62	5.30	6.28	64.34	5.16	6.52
7u	73.03	6.11	7.43	73.00	6.13	7.40

7v	69.59	5.40	6.94	69.68	5.59	7.07
7w	69.72	5.39	7.03	69.68	5.59	7.07
7x	69.83	5.34	6.85	69.68	5.59	7.07
7y	76.44	6.55	7.77	76.64	6.71	7.77
7z·MeOH	66.39	5.39	7.03	65.99	5.54	7.00


Electrophysiology

95% Confidence intervals for compounds tested in *Xenopus* oocytes expressing human α 7 nAChR's. ND is not determined and IA is inactive.

	Potency (µM)			Efficacy (% over control)			
Compound	Lower 95% CI	EC ₅₀	Upper 95% CI	Lower 95% CI	Maximum	Upper 95% CI	
7a	0.05	0.14	0.42	415	592	767	
7aa	2.3	4.9	10.4	273	468	662	
7b	1.1	1.9	3.2	454	625	793	
7c	-	ND	-	19	37	55	
7d	-	ND	-	30	55	79	
7e		ND			IA		
7f		ND			IA		
7g	0.04	0.13	0.40	363	586	808	
7h	0.23	0.45	0.90	524	678	831	
7i	-	ND	-	-	IA	_	
7j	-	ND	-	-10	38	85	
7k	0.09	0.22	0.53	230	305	381	
71	-	ND	-	39	55	72	
7m	-	ND	-	8	24	40	
7n	-	ND	-	20	28	37	
7 0	-	ND	-	-19	42	126	
7p	1.4	2.5	4.4	326	496	666	
7q	0.21	0.38	0.67	987	1220	1452	
7 r	0.06	0.16	0.41	520	679	837	
7s	-	ND	-	-5	35	74	
7t	-	ND	-	18	38	58	
7u	-	ND	-	80	130	180	
7v	0.06	0.14	0.33	1003	1300	1598	
7w	0.55	3.00	17.00	34	204	373	
7x	-	ND	-	98	132	165	
7y	0.05	0.21	0.77	197	302	406	
7z	0.48	0.67	0.92	1603	1825	2048	

Adiabatic Potential Energy Calculations. Structural mol2 files were generated using MarvinSketch (Marvin) and all chemical parameters and topology files were generated using SwissParam¹ for use in CHARMM². All structures were solvated in a 20x30x20 Å waterbox and minimized extensively. Constraints were added to mimic hydrogen bonding patterns observed in NMR data. The dihedral angle ψ was defined and constrained to 720 values (per structure) at 0.5° increments and minimized extensively at each point. Finally, the adiabatic potential energy of each point was graphed and fitted to 10th degree polynomials and baselines were subtracted for clarity. The adiabatic potential energy for compounds 7u, 7y and 7z as a function of the dihedral angle (ψ) between the aryl ring of the benzoyl group and the pyridine ring were calculated (see Figure 1). While not a true free energy, this calculation reveals the position of energy barriers in reference to conformational changes while estimating the height and feature of each barrier. The calculation suggests that the three structures do not adopt significantly different dihedral angles with a near equivalent energy minimum at around -50° or 150°. However, the 2-fluorobenzoyl, 7u, does have a higher energy barrier for free rotation. This suggests that 7u may lack activity based on a lack of free rotation around the benzoyl due to the large barrier relative to 7y and 7z.^{3,4}

Figure 1. Calculated adiabatic potential energy for rotation about the dihedral angle (ψ) between the aryl ring of the benzoyl group and the pyridine ring.

References

- Zoete, V.; Cuendet, M. A.; Grosdidier, A.; Michielin, O. SwissParam: a Fast Force Field Generation Tool for Small Organic Molecules. *J. Comput. Chem.* 2011, *32*, 2359-2368.
- (2) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. *J. Comput. Chem.* 1983, *4*, 187-217.
- (3) Bock, E.; Tomchuk, E. Electric Moments and Conformations of ortho-, meta-, and para-Fluorobenzaldehyde. *Can. J. Chem.* **1972**, *50*, 2890-2891.
- (4) Bock, E.; Wasylishen, R.; Gaboury, B. E.; Tomchuk, E. Electric Dipole Moments and Conformations of ortho-, meta-, and para-Fluoroacetophenones and of ortho-, meta-, and para-Trifluoromethylacetophenones. *Can. J. Chem.* **1973**, *51*, 1906-1909.