Combination of a New Chiroptical Probe and Theoretical Calculations for Chirality Detection of Primary Amines

Shunsuke Kuwahara,^{*} Masaya Nakamura, Akira Yamaguchi, Mari Ikeda, and Yoichi Habata

Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

1.	Materials and methods	2
2.	Synthesis of chiroptical probe 1	2–4
3.	Coupling reaction of chiroptical probe 1 with chiral amines	4–6
4.	¹ H and ¹³ C NMR spectra of 1, 11–13, (S)-2a–8a, (R)-2a	7–19
5.	CD and UV Spectra of aliphatic amines (S)-2a-6a	20
6.	CD and UV Spectra of aromatic amines (S)-7a and 8a	20
7.	CD and UV Spectra of (S)-2a and (R)-2a	21
8.	CD and UV Spectra of (S)-2a with varying solvents	21
9.	CD spectral data of (S) -2a– (S) -8a	22
10.	Theoretical calculations of (S) - 2b – (S) - 4b and (S) - 6b – (S) - 8b	
	at B3LYP/6-31G* level	22–29
11.	Theoretical calculations of (S) -2b– (S) -4b and (S) -6b– (S) -8b	
	at HF/6-31G* level	29–35
12.	CD and UV Spectra of (S)-2a and (R)-2a with varying %ee value	36
13.	X-ray Structure Determination of (S)-2a, (S)-3a and (S)-6a	36-39
14.	References	40

Materials and methods

All reagents and solvents were commercially available and used without further purification. IR spectra were obtained as KBr disks on a JASCO FT/IR-410 spectrophotometer. ¹H-NMR spectra were recorded on Jeol ECP400 (400 MHz) spectrometers. ¹³C NMR spectra were obtained on Jeol ECP400 (100 MHz) spectrometers. All NMR spectroscopic data of CDCl₃ solutions are reported in ppm (δ) downfield from TMS. UV and CD spectra were recorded on JASCO V-650 and JASCO J-820 spectrometers, respectively. CD spectra were recorded with the following measurement parameters: scan speed, 20 nm/min; resolution, 0.2 nm; bandwidth, 1.0 nm; response, 4.0 s; 4–10 accumulations. Silica gel 60 F254 precoated plates on glass from Merck Ltd. were used for thin layer chromatography (TLC).

Synthesis of chiroptical probe 1

Ethyl 2-iodine-4-(4-Methoxyphenyl)benzonate (11)

Ethyl 4-(4-Methoxyphenyl)benzonate $(10)^1$ was synthesized by Suzuki-Miyaura coupling from ester 9. Iodination of 10 was carried out according to the literature procedure.² To a THF solution of $(TMP)_2Mg$ (0.29 M, 22 mmol) was added 10 (0.95 g, 3.7 mmol) in dry THF (10 mL) dropwise at 0 °C under N₂ atmosphere and the mixture was stirred at room temperature for 3.5 h. After being cooled to -78 °C, a THF (10 mL) solution of I₂ (5.6 g, 22 mmol) was added and stirring was continued for 1 h at room temperature. The mixture was then poured into cooled 1 N HCl, washed with saturated Na₂SO₃, and extracted with CHCl₃. The organic layer was dried over Na₂SO₄ and evaporated to dryness. The crude product was purified by column chromatography on silica gel (CHCl₃ as eluent) to yield ester **11** (0.66 g, 46%) as pale red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 1.8 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.57 (dd, $J_1 = 8.8$ Hz, $J_2 = 1.8$ Hz, 1H), 7.52 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.1$ Hz, 2H), 6.98 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.1$ Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 3.87 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 160.1, 145.2, 139.5, 132.7, 131.3, 130.7, 128.4, 125.9, 114.5, 61.6, 55.4, 14.3; m/z (matrix: DTT/TG = 1/1) = 383 ([M+1]⁺, 100%). Because of instability of ester **11**, elemental analysis was not carried out.

Ethyl (2-Ethyl 4-(4-Methoxyphenyl)benzonate)-4-(4-Methoxyphenyl)benzonate (12)

A solution of ester **11** (0.304 g, 0.794 mmol) in dry DMF (1 mL) was added activated Cu (1.28 g, 6.6 mmol) and the mixture was stirred at 135 °C for 2 days. After cooling to room temperature, the mixture was filtered through a pad of Celite, and then AcOEt was added. After washing with 1 N HCl and brine, the organic layer was dried over Na₂SO₄ and evaporated to dryness. The crude product was purified by column chromatography on silica gel (hexane/EtOAc, v/v 20:1 to 4:1 as eluent) to yield diester **12** (0.14 g, 68%)) as white needles: mp 131.0-131.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.1 Hz, 2H), 7.63 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.9$ Hz, 2H), 7.59 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.2$ Hz, 4H), 7.45 (d, J = 1.9 Hz, 2H), 6.98 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.2$ Hz, 4H), 4.06 (m, 4H), 3.85 (s, 6H), 0.98 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 159.8, 144.1, 143.6, 132.2, 130.6, 128.4, 128.3, 128.0, 125.0, 114.3, 60.5, 55.4, 13.7; IR (KBr) v_{max} 3034, 2981, 2937, 2835, 1719, 1599, 1519, 1484, 1280, 1251, 1089, 1044, 893, 828 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 511 ([M+1]⁺, 25%); Anal. Calcd for C₃₂H₃₀O₆: C, 75.28; H, 5.92. Found: C, 75.09; H, 5.87.

(4,4"'-Dimethoxy-1,1':3',1"':3",1"'-quaterphenyl-4',6"-diyl)dimethanol (13)

To a mixture of LiAlH₄ (0.0314 g, 0.826 mmol) and dry THF (1.0 mL) cooled at 0 °C was added dropwise a solution of diester **12** (0.115 g, 0.226 mmol) in dry THF (2.0 mL), and the reaction mixture was stirred at room temperature for 1.5 h. The reaction mixture was quenched with a minimum amount of water, and the organic layer was filtered. The organic layer was dried over Na₂SO₄ and evaporated to dryness to yield diol **13** (0.14 g, 68%)) as white needles: mp 154.0-155.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J_1 = 7.7 Hz, J_2 = 1.6 Hz, 2H), 7.58–7.55 (m, 6H), 7.43 (d, J = 1.6 Hz, 4H), 6.97 (d, J = 8.8 Hz, 2H), 4.47 (m, 4H), 3.85 (s, 6H), 2.57 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 140.5, 140.2, 137.1, 132.8, 130.2, 128.2, 126.3, 114.3, 62.7, 55.4; IR (KBr) v_{max} 3360, 3034, 2999, 2923, 2837, 1609, 1519, 1487, 1248, 1035, 890, 817 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 392 ([M-2OH]⁺, 20%); Anal. Calcd for C₂₈H₂₆O₄: C, 78.85; H, 6.14. Found: C, 78.58; H, 6.10.

4',6''-Bis(bromomethyl)-4,4'''-dimethoxy-1,1':3',1'':3'',1'''-quaterphenyl (1)

PBr₃ (0.1 mL, 1 mmol) was added to a solution of diol **13** (0.085 g, 0.20 mmol) in dry THF (1.2 mL) at 0°C, and the reaction mixture was stirred at room temperature for 1 h. The reaction mixture was quenched with a minimum amount of water, and then AcOEt was added. After washing with 5% aq. NaHCO₃ and brine, the organic layer was dried over Na₂SO₄ and evaporated to dryness. The crude product was recrystallized from hexane/EtOAc to yield dibromide **1** (0.097 g, 88%) as white needles: mp 164.0-165.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.58(m, 8H), 7.55 (s, 2H), 6.98 (d, *J* = 8.8 Hz, 4H), 4.38 (m, 4H), 3.85 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 140.8, 139.9, 134.1, 131.2, 128.3, 128.2, 126.8, 114.3, 55.4, 32.2; IR (KBr) v_{max} 3057, 3019, 2963, 2935, 2834, 1606, 1517, 1481, 1249, 1177, 1030, 903, 821, 591 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 550 ([M-2]⁺, 10%), 552 ([M]⁺, 20%), 554 ([M+2]⁺, 10%); Anal. Calcd for C₂₈H₂₄Br₂O₂: C, 60.89; H, 4.38. Found: C, 60.97; H, 4.41.

Coupling reaction of chiroptical probe 1 with chiral amines

6-[(2S)-3,3-dimethylbutan-2-yl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5*H*-dibenzo[*c*,*e*]azepine ((S)-2a)

A mixture of dibromide **1** (12 mg, 0.022 mmol), (*S*)-3,3-dimethylbutan-2-amine (3.00 µL, 0.037 mmol) and K₂CO₃ (8.7 mg, 0.063 mmol) in CH₃CN (0.3 mL) was refluxed for 2 h. After cooling to room temperature, the mixture was filtered through a pad of Celite, and then evaporated to dryness. The crude product was purified by column chromatography on silica gel (EtOAc as eluent) to yield amine (*S*)-**2a** (10.3 mg, 95%) as colorless prisms: mp 155.5 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 1.8 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 4H), 7.55 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.8 Hz, 2H), 7.41 (d, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 4H), 3.86 (s, 6H), 3.68 (d, *J* = 12.5 Hz, 2H), 3.57 (d, 12.5 Hz, 2H), 2.63 (q, *J* = 7.0 Hz, 1H), 1.14 (d, *J* = 7.0 Hz, 3H), 0.99 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.4, 140.1, 135.7, 133.6, 130.3, 128.2, 126.2, 125.8, 114.3, 68.7, 55.4, 54.5, 36.8, 27.1, 11.6; IR (KBr) v_{max} 3038, 2995, 2954, 2834, 1608, 1518, 1488, 1284, 1266, 1244, 1046, 892, 821 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 492 ([M+1]⁺, 60%); Anal. Calcd for C₃₄H₃₇NO₂: C, 83.06; H, 7.59; N, 2.85.

6-[(2*R*)-3,3-dimethylbutan-2-yl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5*H*-dibenzo[*c*,*e*]azepine ((*R*)-2a)

Colorless prisms: mp 155.5 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 1.8 Hz, 2H), 7.60 (d, J = 8.8 Hz, 4H), 7.55 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.8$ Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 4H), 3.86 (s, 6H), 3.68 (d, J = 12.5 Hz, 2H), 3.57 (d, 12.5 Hz, 2H), 2.63 (q, J = 7.0 Hz, 1H), 1.14 (d, J = 7.0 Hz, 3H), 0.99 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.4, 140.1, 135.7, 133.6, 130.3, 128.2, 126.2, 125.8, 114.3, 68.7, 55.4, 54.4, 36.8, 27.1, 11.6; IR (KBr) v_{max} 3022, 2997, 2952, 2833, 1607, 1518, 1489, 1294, 1270, 1037, 889, 821 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 492 ([M+1]⁺, 20%); Anal. Calcd for C₃₄H₃₇NO₂•1/10AcOEt: C, 82.56; H, 7.61; N, 2.80. Found: C, 82.38; H, 7.54; N, 2.85.

6-[(1*S*)-1-cyclohexylethyl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5*H*-dibenzo[*c*,*e*]azepine ((*S*)-3a)

Colorless prisms: mp 157.5 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 1.8 Hz, 2H), 7.60 (d, J = 8.8 Hz, 4H), 7.55 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.8$ Hz, 2H), 7.42 (d, J = 7.7 Hz, 2H), 6.99 (d, J = 8.8 Hz, 4H), 3.85 (s, 6H), 3.61 (d, J = 12.5 Hz, 2H), 3.53 (d, 12.5 Hz, 2H), 2.55 (quin, J = 6.7 Hz, 1H), 1.98-1.59 (m, 5H), 1.29-0.97 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.5, 140.2, 135.1, 133.5, 130.3, 128.2, 126.1, 125.8, 114.3, 64.0, 55.4, 52.1, 41.6, 31.2, 29.0, 26.9, 26.8, 26.6, 13.8; IR (KBr) v_{max} 3022, 2997, 2952, 2833, 1607, 1518, 1489, 1294, 1270, 1037, 889, 821 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 519 ([M+2]⁺, 65%); Anal. Calcd for C₃₆H₃₉NO₂: C, 83.52; H, 7.59; N, 2.71. Found: C, 83.34; H, 7.29; N, 2.72.

2,10-bis(4-methoxyphenyl)-6-[(2S)-3-methylbutan-2-yl]-6,7-dihydro-5*H*-dibenzo[*c*,*e*]azepine ((S)-4a)

Colorless prisms: mp 147.9 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 1.8 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 4H), 7.55 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.8 Hz ,2H), 7.42 (d, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 4H), 3.86 (s, 6H), 3.63 (d, *J* = 12.5 Hz, 2H), 3.52 (d, *J* = 12.5 Hz, 2H), 2.49 (quin, *J* = 6.5 Hz, 1H), 2.01 (sext, *J* = 6.6 Hz, 1H), 1.11 (d, *J* = 6.5 Hz, 3H), 1.01 (d, *J* = 6.5 Hz, 3H), 0.95 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.5, 140.2, 135.0, 133.5, 130.3, 128.2, 126.0, 125.8, 114.3, 64.2, 55.4, 52.1, 30.8, 21.0, 17.8, 13.2; IR (KBr) v_{max} 3024, 2961, 2897, 2840, 1606, 1519, 1488, 1289, 1250, 1034, 882, 819 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 478 ([M+1]⁺, 80%); Anal. Calcd for C₃₃H₃₅NO₂•1/10AcOEt: C, 82.47; H, 7.42; N, 2.88. Found: C, 82.40; H, 7.17; N, 2.96.

6-[(2S)-hexan-2-yl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5H-dibenzo[c,e]azepine ((S)-5a)

Colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 1.9 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 4H), 7.56 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.9 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 4H), 3.86 (s, 6H), 3.62 (m, 4H), 2.82 (m, 1H), 1.69-1.37 (m, 6H), 1.15 (d, *J* = 6.5 Hz, 3H), 0.96-0.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.3, 140.3, 134.7, 133.4, 130.4, 128.2, 128.1, 125.8, 114.3, 58.9, 55.4, 51.8, 34.9, 28.9, 23.0, 17.7, 14.2; IR (KBr) v_{max} 3033, 2953, 2929, 2854, 2834, 1608, 1517, 1488, 1287, 1246, 1032, 888, 818 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 492 ([M+1]⁺, 40%); Anal. Calcd for C₃₄H₃₇NO₂: C, 83.06; H, 7.59; N, 2.85. Found: C, 83.21; H, 7.24; N, 2.75.

6-[(2S)-butan-2-yl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5H-dibenzo[c,e]azepine ((S)-6a)

Colorless prisms: mp 152.6 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 1.9 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 4H), 7.56 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.9 Hz, 2H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 4H), 3.86 (s, 6H), 3.63 (d, *J* = 12.5 Hz, 2H), 3.58 (d, *J* = 12.5 Hz, 2H), 2.73 (m, 1H), 1.77 (m, 1H), 1.52 (m, 1H), 1.20 (d, *J* = 6.5 Hz, 3H), 0.98 (t, *J* = 7.4 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.5, 140.4, 140.4, 133.4,130.4, 128.2, 126.0, 125.8, 114.3, 60.1, 55.4, 51.8, 22.7, 17.3, 10.9; IR (KBr) v_{max} 3025, 2962, 2936, 2838, 1608, 1518, 1489, 1290, 1248, 1025, 886, 820 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 465 ([M+1]⁺, 95%); C₃₂H₃₃NO₂•1/10AcOEt: C, 82.37; H, 7.21; N, 2.97. Found: C, 82.27; H, 7.05; N, 2.98.

2,10-bis(4-methoxyphenyl)-6-[(1S)-1-phenylethyl]-6,7-dihydro-5H-dibenzo[c,e]azepine ((S)-7a)

White solid: mp 126.0 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 1.8 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 4H), 7.55 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.8 Hz, 2H), 7.41 (d, *J* = 7.8 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 4H), 3.86 (s, 6H), 3.68 (d, *J* = 12.5 Hz, 2H), 3.57 (d, 12.5 Hz, 2H), 2.63 (q, *J* = 7.0 Hz, 1H), 1.14 (d, *J* = 7.0 Hz, 3H), 0.99 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 146.2, 141.7, 140.5, 133.8, 133.4, 130.3, 128.6, 128.2, 127.6, 127.0, 125.9, 125.9, 114.3, 62.6, 55.4, 52.9, 22.7; IR (KBr) v_{max} 3024, 2965, 2930, 2832, 1607, 1517, 1488, 1282, 1247, 1032, 888, 818 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 512 ([M+1]⁺, 30%); Anal. Calcd for C₃₆H₃₃NO₂: C, 84.51; H, 6.50; N, 2.74. Found: C, 84.61; H, 6.30; N, 2.62.

2,10-bis(4-methoxyphenyl)-6-[(1S)-1-(naphthalen-2-yl)ethyl]-6,7-dihydro-5H-dibenzo[c,e]azepin e ((S)-8a)

White Solid: mp 103.9 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.86 (m, 4H), 7.74 (d, J = 1.8 Hz, 2H), 7.70 (d, J = 8.3 Hz, 1H), 7.61 (d, J = 8.8 Hz, 4H), 7.57 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.8$ Hz, 2H), 7.52-7.45 (m, 2H), 7.37 (d, J = 7.8 Hz, 2H), 7.00 (d, J = 8.8 Hz, 4H), 3.86-3.82 (m, 7H), 3.65 (d, J = 12.5 Hz, 2H), 3.42 (d, 12.5 Hz, 2H), 1.57 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 143.7, 141.7, 140.5, 133.8, 133.7, 133.6, 133.4, 132.9, 130.3, 128.5, 128.2, 127.8, 127.7, 126.0, 126.0, 125.9, 125.9, 114.3, 62.7, 55.4, 52.9, 22.7; IR (KBr) ν_{max} 3020, 2961, 2931, 2831, 1607, 1515, 1487, 1285, 1246, 1029, 888, 818, 746 cm⁻¹; *m/z* (matrix: DTT/TG = 1/1) = 563 ([M+2]⁺, 15%); Anal. Calcd for C₄₀H₃₅NO₂: C, 85.53; H, 6.28; N, 2.49. Found: C, 85.32; H, 6.49; N, 2.41.

Figure S1. ¹H NMR Spectrum (400 MHz, CDCl₃) of 11.

Figure S2. ¹³C NMR Spectrum (100 MHz, CDCl₃) of 11.

Figure S3. ¹H NMR Spectrum (400 MHz, CDCl₃) of 12.

Figure S4. ¹³C NMR Spectrum (100 MHz, CDCl₃) of **12**.

Figure S5. ¹H NMR Spectrum (400 MHz, CDCl₃) of 13.

Figure S6. ¹³C NMR Spectrum (100 MHz, CDCl₃) of 13.

Figure S7 ¹H NMR Spectrum (400 MHz, CDCl₃) of 1.

Figure S8. ¹³C NMR Spectrum (100 MHz, CDCl₃) of 1.

Figure S9. ¹H NMR Spectrum (400 MHz, $CDCl_3$) of (*S*)-2a.

Figure S10. ¹³C NMR Spectrum (100 MHz, $CDCl_3$) of (S)-2a.

Figure S11. ¹H NMR Spectrum (400 MHz, $CDCl_3$) of (*R*)-2a.

Figure S12. ¹³C NMR Spectrum (100 MHz, $CDCl_3$) of (*R*)-2a.

Figure S13. ¹H NMR Spectrum (400 MHz, $CDCl_3$) of (*S*)-3a.

Figure S14. ¹³C NMR Spectrum (100 MHz, $CDCl_3$) of (S)-3a.

Figure S15. ¹H NMR Spectrum (400 MHz, $CDCl_3$) of (S)-4a.

Figure S16. ¹³C NMR Spectrum (100 MHz, $CDCl_3$) of (S)-4a.

Figure S17. ¹H NMR Spectrum (400 MHz, CDCl₃) of (S)-5a.

Figure S18. ¹³C NMR Spectrum (100 MHz, CDCl₃) of (*S*)-**5**a.

Figure S19. ¹H NMR Spectrum (400 MHz, CDCl₃) of (*S*)-6a.

Figure S20. ¹³C NMR Spectrum (100 MHz, CDCl₃) of (*S*)-6a.

Figure S21. ¹H NMR Spectrum (400 MHz, $CDCl_3$) of (S)-7a.

Figure S22. ¹³C NMR Spectrum (100 MHz, CDCl₃) of (*S*)-7a.

Figure S23. ¹H NMR Spectrum (400 MHz, CDCl₃) of (*R*)-7a.

Figure S24. ¹³C NMR Spectrum (100 MHz, $CDCl_3$) of (*R*)-7a.

Figure S25. ¹H NMR Spectrum (400 MHz, CDCl₃) of (*S*)-8a.

Figure S26. ¹³C NMR Spectrum (100 MHz, CDCl₃) of (*S*)-7a.

Figure S27. CD and UV Spectra of aliphatic amines (S)-2a–6a (2 x 10⁻⁴ M in hexane, 293 K).

Figure S28. CD and UV Spectra of aromatic amines (S)-7a and (S)-8a $(2 \times 10^{-4} \text{ M in hexane, } 293 \text{ K}).$

Figure S29. CD and UV Spectra of (*S*)-**2a** and (*R*)-**2a** (2 x 10⁻⁴ M in hexane, 293 K).

Figure S30. CD and UV Spectra of (S)-2a with varying solvents (2×10^{-4} M, 293 K).

Entry	Compound	$\Delta \epsilon_1^{[b]} (\lambda [nm])$	$\Delta \epsilon_2^{[b]} \left(\lambda \left[nm \right] \right)$	CD amplitude $(A_{CD} \text{ value})^{[c]}$
1	(<i>S</i>)-2a	-9.2 (278.8)	+8.5 (256.2)	-17.7
2	(S) -3a	-3.5 (279.4)	+4.0 (257.2)	-7.5
3	(S)- 4a	-2.4 (281.4)	+3.5 (255.0)	-5.9
4	(S) -5a	-0.3 (283.6)	+1.6 (255.2)	-1.9
5	(S)-6a	-0.6 (282.6)	+1.2 (260.2)	-1.8
6	(S)-7 a	+9.8 (286.8)	-10.6 (261.2)	+20.4
7	(S)- 8a	+7.2 (287.4)	-15.0 (258.4)	+22.2

Table S1. CD spectral data of (S)-2a–(S)-8a^[a].

[a] All CD data were measured in hexane, 2×10^{-4} M concentration using 1 mm CD cell at 293 K. [b] $\Delta \varepsilon_1$ and $\Delta \varepsilon_2$ are intensities of first and second Cotton effects. [c] A_{CD} value: $A_{CD} = \Delta \varepsilon_1 - \Delta \varepsilon_2$, where $\Delta \varepsilon_1$ and $\Delta \varepsilon_2$ are intensities of first and second Cotton effects, respectively.

Theoretical calculations

To obtain the population between M and P conformers, preliminary conformational searches were run on the structure of (S)-2b–(S)-4b and (S)-6b–(S)-8b using MMFF. All local minimum conformers were then optimized with DFT using B3LYP/6-31G* model. The lower energy conformers with relative energies ranging from 0.0 to 3.0 kcal/mol were selected. By the Bolzmann distribution based on the energy difference of the conformers at 293 K, the population of the M and P conformers were determined. Calculations using HF/6-31G* also gave similar results.

Figure S31. Methoxy-omitted model of 1-amine conjugates for theoretical calculations.

Theoretical calculations at B3LYP/6-31G* level

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#M3	-42.75	0.00	1.00	42.9
2	#M1	-42.20	0.17	0.75	32.3
3	#P1	43.53	0.32	0.58	24.8

 Table S2. Calculated conformers of (S)-2b at B3LYP/6-31G* level.

Figure S32. Three major conformers of (*S*)-**2b** at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#M1	-42.32	0.00	1.00	46.8
2	#P1	42.86	0.14	0.79	36.9
3	#P3	42.24	1.63	0.06	2.9
4	#M7	-42.17	1.66	0.06	2.7
5	#M5	-42.65	1.69	0.05	2.6
6	#M20	-42.63	1.93	0.04	1.7
7	#P5	43.25	1.97	0.03	1.6
8	#M3	-42.78	2.11	0.03	1.2
9	#P20	42.95	2.17	0.02	1.1
10	#P7	43.57	2.21	0.02	1.0
11	#P9	44.15	2.61	0.01	0.5
12	#M15	-44.15	2.85	0.01	0.4
13	#M13	-43.13	2.86	0.01	0.3
14	#M9	-42.33	2.89	0.01	0.3

Table S3. Calculated conformers of (*S*)-**3b** at B3LYP/6-31G* level.

Figure S33. Six major conformers of (*S*)-**3b** at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#M1	-42.99	0.00	1.00	50.3
2	#P1	41.67	0.20	0.71	35.5
3	#P3	42.18	1.34	0.10	5.1
4	#M3	-42.63	1.44	0.08	4.2
5	#M5	-43.14	1.70	0.05	2.7
6	#P5	42.55	2.10	0.03	1.4
7	#M7	-42.17	2.70	0.01	0.5
8	#P7	44.46	2.78	0.01	0.4

Table S4. Calculated conformers of (*S*)-4b at B3LYP/6-31G* level.

Figure S34. Six major conformers of (*S*)-**4b** at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#M1	-42.56	0.00	1.00	35.5
2	#P1	43.48	0.18	0.74	26.2
3	#P5	41.94	0.79	0.26	9.1
4	#M5	-43.25	0.91	0.21	7.4
5	#P7	42.96	1.03	0.17	6.1
6	#M7	-41.95	1.12	0.15	5.2
7	#M3	-43.35	1.32	0.10	3.7
8	#P3	43.56	1.36	0.10	3.4
9	#P9	42.47	1.88	0.04	1.4
10	#P11	42.76	2.12	0.03	0.9
11	#M9	-41.92	2.28	0.02	0.7
12	#M11	-43.63	2.58	0.01	0.4

Table S5. Calculated conformers of (*S*)-**6b** at B3LYP/6-31G* level.

Figure S35. Six major conformers of (*S*)-**6b** at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#P1	42.27	0.00	1.00	66.7
2	#M1	-42.94	0.49	0.43	28.5
3	#M5	-42.64	1.91	0.04	2.5
4	#P3	42.66	1.96	0.03	2.3

Table S6. Calculated conformers of (*S*)-**7b** at B3LYP/6-31G* level.

Figure S36. Four major conformers of (*S*)-**6b** at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#P1	43.06	0.00	1.00	39.5
2	#P3	41.89	0.06	0.90	35.7
3	#M3	-41.45	0.78	0.26	10.3
4	#M1	-43.24	0.86	0.23	9.0
5	#M7	-42.87	1.43	0.09	3.4
6	#P5	43.86	1.70	0.05	2.1

Table S7. Calculated conformers of (*S*)-**8b** at B3LYP/6-31G* level.

Figure S37. Six major conformers of (*S*)-6b at B3LYP/6-31G* level.

Entry	Compound	Calcurated ratio (<i>M/P</i>)	Excess of M confomer, $\%^{[a]}$	Observed CD amplitude $(A_{CD} \text{ value})^{[b]}$
1	(S)- 2b	75.2:24.8	50.4	-17.7 ((<i>S</i>)-2a)
2	(S)- 3b	56.0:44.0	12.0	-7.5 ((<i>S</i>)- 3 a)
3	(S)- 4b	57.6:42.4	15.2	-5.9 ((<i>S</i>)-4a)
4	(S)-6b	52.8:47.2	5.6	- 1.8 ((<i>S</i>) -6a)
5	(<i>S</i>)-7b	31.0:69.0	-38.0	+20.4 ((<i>S</i>)-7a)
6	(S)- 8b	22.7:77.3	-54.6	+22.2 ((S)-8a)

Table S8. Comparison of the excess of *M* conformer and observed CD amplitude at B3LYP/6-31G* level.

[a] Excess of *M* conformer (%) = $([M]-[P])/([M]+[P]) \times 100$, where [*M*] and [*P*] are the amounts of *M* and *P* conformers calculated by B3LYP/6-31G*. [b] A_{CD} value: $A_{CD} = \Delta \varepsilon_1 - \Delta \varepsilon_2$, where $\Delta \varepsilon_1$ and $\Delta \varepsilon_2$ are intensities of first and second Cotton effects, respectively.

Theoretical calculations at HF/6-31G* level

Table S9. Calculated conformers of (*S*)-**2b** at HF/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#M1	-44.26	0.00	1.00	67.8
2	#P1	45.25	0.43	0.47	32.2

Figure S38. Two major conformers of (S)-2b at HF/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#M1	-44.47	0.00	1.00	54.8
2	#P1	44.69	0.22	0.69	37.6
3	#M7	-44.34	1.86	0.04	2.2
4	#P3	44.78	2.15	0.02	1.4
5	#P20	45.23	2.16	0.02	1.3
6	#M18	-44.46	2.40	0.02	0.9
7	#P5	44.61	2.61	0.01	0.6
8	#M5	-44.14	2.66	0.01	0.6
9	#P9	45.27	2.96	0.01	0.3
10	#M9	-44.27	2.98	0.01	0.3

Table S10. Calculated conformers of (*S*)-**3b** at HF/6-31G* level.

Figure S39. Six major conformers of (*S*)-**3b** at HF/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#M1	-44.48	0.00	1.00	54.9
2	#P1	44.70	0.23	0.68	37.2
3	#M5	-44.37	1.76	0.05	2.7
4	#P3	44.80	1.94	0.04	2.0
5	#P5	45.24	2.08	0.03	1.5
6	#M3	-44.16	2.40	0.02	0.9
7	#M7	-44.29	2.80	0.01	0.4
8	#P7	45.21	2.92	0.01	0.4

Table S11. Calculated conformers of (*S*)-4b at HF/6-31G* level.

Figure S40. Six major conformers of (*S*)-4b at HF/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#M1	-44.48	0.00	1.00	40.9
2	#P1	44.69	0.17	0.75	30.8
3	#M5	-44.45	0.97	0.19	7.7
4	#P5	44.52	1.04	0.17	6.9
5	#P7	44.57	1.21	0.13	5.1
6	#M7	-44.54	1.31	0.11	4.3
7	#P3	44.42	1.96	0.03	1.4
8	#M3	-44.36	1.99	0.03	1.3
9	#P11	44.95	2.36	0.02	0.7
10	#P9	44.70	2.50	0.01	0.6
11	#M11	-44.68	2.91	0.01	0.3

Table S12. Calculated conformers of (*S*)-**6b** at HF/6-31G* level.

Figure S41. Six major conformers of (*S*)-**6b** at HF/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#P1	44.59	0.00	1.00	78.6
2	#M1	-44.58	0.92	0.21	16.3
3	#M5	-44.69	1.93	0.04	2.8
4	#P3	44.72	2.07	0.03	2.2

Table S13. Calculated conformers of (*S*)-7b at HF/6-31G* level.

Figure S42. Four major conformers of (*S*)-7b at HF/6-31G* level.

Entry	Conformer	Dihedral angle ^[a]	ΔE , kcal/mol	$K^{[b]}$	Population, %
1	#P1	44.70	0.00	1.00	41.8
2	#P3	44.52	0.10	0.84	35.1
3	#M3	-44.64	0.83	0.24	10.0
4	#M1	-44.55	1.22	0.12	5.2
5	#M7	-44.65	1.34	0.10	4.2
6	#P5	44.60	1.40	0.09	3.8

Table S14. Calculated conformers of (*S*)-**8b** at HF/6-31G* level.

Figure S43. Six major conformers of (*S*)-**8b** at HF/6-31G* level.

Entry	Compound	Calcurated ratio (<i>M</i> / <i>P</i>)	Excess of M confomer, $\%^{[a]}$	Observed CD amplitude $(A_{CD} \text{ value})^{[b]}$
1	(<i>S</i>)-2b	67.8:32.2	35.6	-17.7 ((<i>S</i>)-2a)
2	(<i>S</i>)- 3 b	58.8:41.2	17.6	-7.5 ((S)- 3a)
3	(<i>S</i>)-4b	58.9:41.1	17.8	-5.9 ((<i>S</i>)-4a)
4	(<i>S</i>)-6b	54.5:45.5	9.0	-1.8 ((S)-6a)
5	(<i>S</i>)-7b	19.1:80.9	-61.8	+20.4 ((<i>S</i>)-7 a)
6	(S)- 8b	19.3:80.7	-61.4	+22.2 ((S)-8a)

Table S15. Comparison of the excess of *M* conformer and observed CD amplitude at HF/6-31G* level.

[a] Excess of *M* conformer (%) = $([M]-[P])/([M]+[P]) \times 100$, where [*M*] and [*P*] are the amounts of *M* and *P* conformers calculated by HF/6-31G^{*}. [b] A_{CD} value: $A_{CD} = \Delta \varepsilon_1 - \Delta \varepsilon_2$, where $\Delta \varepsilon_1$ and $\Delta \varepsilon_2$ are intensities of first and second Cotton effects, respectively.

Figure S44. The relationship between the A_{CD} values and excess of M conformer. Excess of M conformer (%) = ([M]-[P])/([M]+[P])x100, where [M] and [P] are the amounts of M and P conformers calculated by HF/6-31G*, respectively.

Figure S45. CD and UV Spectra of (S)-2a and (R)-2a with varying %ee value $(2 \times 10^{-4} \text{ M in hexane}, 293 \text{ K}).$

X-ray Structure Determination

Crystals of (*S*)-**2a**, (*S*)-**3a**, and (*S*)-**6a** was mounted on the top of a glass fiber, and the data collection was carried out on a Bruker SMART diffractometer equipped with a CCD area detector at 100–120 K. The data were corrected for Lorentz and polarization effects, and absorption corrections were applied with the *SADABS* probram.³ The structure was solved by direct methods and subsequent difference Fourier syntheses using the program *SHELXTL*.⁴ All non-H atoms were refined anisotropically, and H atoms were placed in calculated positions and thereafter refined with $U_{iso}(H) = 1.2U_{eq}(C)$.

 Table S16. Crystal data and structure refinement for (S)-2a

Empirical formula	C34 H37 N O2			
Formula weight	491.65			
Temperature	120 K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	<i>P</i> 2(1)2(1)2(1)			
Unit cell dimensions	a = 6.2995(3) Å	$\alpha = 90^{\circ}$.		
	b = 20.1090(11) Å	$\beta = 90^{\circ}$.		
	c = 21.2319(12) Å	$\gamma = 90^{\circ}$.		
Volume	2689.6(2) Å ³			
Ζ	4			
Density (calculated)	1.214 Mg/m ³			
Absorption coefficient	0.074 mm ⁻¹			
<i>F</i> (000)	1056			
Crystal size	0.38 x 0.23 x 0.14 mm ³			
Theta range for data collection	1.92 to 28.30°.			
Index ranges	-8<=h<=8, -26<=k<=26, -28<=l<=24			
Reflections collected	20137			
Independent reflections	6678 [<i>R</i> (int) = 0.0275]			
Completeness to theta = 28.30°	99.9 %			
Absorption correction	Empirical			
Max. and min. transmission	0.9901 and 0.9726			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	6678 / 0 / 482			
Goodness-of-fit on F^2	1.035			
Final R indices [I>2sigma(I)]	$R_1 = 0.0442, wR_2 = 0.1016$			
R indices (all data)	$R_1 = 0.0489, wR_2 = 0.1043$			
Absolute structure parameter	0.4(11)			
Largest diff. peak and hole	0.294 and -0.164 e.Å ⁻³			

 Table S17. Crystal data and structure refinement for (S)-3a

Empirical formula	C36 H39 N O2	
Formula weight	517.68	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 2(1)	
Unit cell dimensions	a = 5.8922(2) Å	$\alpha = 90^{\circ}$.
	b = 22.0263(9) Å	$\beta = 96.6290(10)^{\circ}.$
	c = 11.1024(4) Å	$\gamma = 90^{\circ}$.
Volume	1431.27(9) Å ³	
Ζ	2	
Density (calculated)	1.201 Mg/m ³	
Absorption coefficient	0.073 mm ⁻¹	
<i>F</i> (000)	556	
Crystal size	0.24 x 0.17 x 0.13 mm ³	
Theta range for data collection	1.85 to 30.98°.	
Index ranges	-8<=h<=8, -16<=k<=31, -	14<=1<=15
Reflections collected	10826	
Independent reflections	5823 [<i>R</i> (int) = 0.0198]	
Completeness to theta = 30.98°	99.9 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9905 and 0.9826	
Refinement method	Full-matrix least-squares or	$1 F^2$
Data / restraints / parameters	5823 / 1 / 508	
Goodness-of-fit on F^2	1.034	
Final R indices [I>2sigma(I)]	$R_1 = 0.0386, wR_2 = 0.0934$	
R indices (all data)	$R_1 = 0.0457, wR_2 = 0.0981$	
Absolute structure parameter	1.3(11)	
Largest diff. peak and hole	0.292 and -0.201 e.Å ⁻³	

 Table S18. Crystal data and structure refinement for (S)-6a

Empirical formula	C32 H33 N O2		
Formula weight	463.59		
Temperature	100 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2(1)		
Unit cell dimensions	a = 8.5443(7) Å	$\alpha = 90^{\circ}$.	
	b = 25.924(2) Å	$\beta = 96.6650(10)^{\circ}.$	
	c = 11.1528(9) Å	$\gamma = 90^{\circ}$.	
Volume	2453.7(3) Å ³		
Ζ	4		
Density (calculated)	1.255 Mg/m ³		
Absorption coefficient	0.077 mm ⁻¹		
<i>F</i> (000)	992		
Crystal size	0.24 x 0.13 x 0.06 mm ³		
Theta range for data collection	1.84 to 26.45°.		
Index ranges	-10<=h<=7, -32<=k<=32, -13<=l<=13		
Reflections collected	14632		
Independent reflections	ependent reflections $9414 [R(int) = 0.0358]$		
Completeness to theta = 26.45°	99.8 %		
Absorption correction	Empirical		
Max. and min. transmission	0.9952 and 0.9819		
Refinement method	Full-matrix least-squares or	n F ²	
Data / restraints / parameters	9414 / 1 / 639		
Goodness-of-fit on F^2	1.019		
Final R indices [I>2sigma(I)]	$R_1 = 0.0519, wR_2 = 0.0993$		
R indices (all data)	$R_1 = 0.0773, wR_2 = 0.1118$		
Absolute structure parameter	1.0(14)		
Largest diff. peak and hole	0.220 and -0.211 e.Å ⁻³		

References

(1) Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262.

(2) Ooi, T.; Uematsu, Y.; Kameda, M.; Maruoka, K. Tetrahedron 2006, 62, 11425.

(3) Sheldrick, G. M. *Program for absorption correction of area detector frames*; Bruker AXS, Inc.: Madison, WI, 1996.

(4) SHELXTL, version 5.1; Bruker AXS, Inc.: Madison, WI, 1997.