Combination of a New Chiroptical Probe and Theoretical Calculations for Chirality Detection of Primary Amines

Shunsuke Kuwahara, , Masaya Nakamura, Akira Yamaguchi, Mari Ikeda, and Yoichi Habata Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

1. Materials and methods 2
2. Synthesis of chiroptical probe $\mathbf{1}$ 2-4
3. Coupling reaction of chiroptical probe 1 with chiral amines 4-6
4. $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}, \mathbf{1 1}-\mathbf{1 3},(S)-\mathbf{2 a}-\mathbf{8 a},(R) \mathbf{- 2 a}$ 7-19
5. $\quad \mathrm{CD}$ and UV Spectra of aliphatic amines $(S) \mathbf{- 2 a - 6 a}$ 20
6. $\quad \mathrm{CD}$ and UV Spectra of aromatic amines (S)-7a and 8a 20
7. $\quad C D$ and UV Spectra of (S) - $\mathbf{2 a}$ and $(R) \mathbf{- 2 a}$ 21
8. $\quad \mathrm{CD}$ and UV Spectra of (S)-2a with varying solvents 21
9. $\quad \mathrm{CD}$ spectral data of $(S) \mathbf{- 2 a}-(S) \mathbf{- 8 a}$ 22
10. Theoretical calculations of $(S) \mathbf{- 2 b}-(S)-\mathbf{4 b}$ and $(S) \mathbf{- 6 b}-(S)-\mathbf{8 b}$ at B3LYP/6-31G* level 22-29
11. Theoretical calculations of $(S) \mathbf{- 2 b}-(S)-\mathbf{4 b}$ and $(S) \mathbf{- 6 b}-(S) \mathbf{- 8 b}$ at HF/6-31G* level 29-35
12. $\quad \mathrm{CD}$ and UV Spectra of (S)-2a and (R)-2a with varying \%ee value 36
13. X-ray Structure Determination of $(S) \mathbf{- 2 a},(S)$-3a and (S)-6a 36-39
14. References 40

Materials and methods

All reagents and solvents were commercially available and used without further purification. IR spectra were obtained as KBr disks on a JASCO FT/IR-410 spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on Jeol ECP400 (400 MHz) spectrometers. ${ }^{13}$ C NMR spectra were obtained on Jeol ECP400 $(100 \mathrm{MHz})$ spectrometers. All NMR spectroscopic data of CDCl_{3} solutions are reported in ppm (δ) downfield from TMS. UV and CD spectra were recorded on JASCO V-650 and JASCO J-820 spectrometers, respectively. CD spectra were recorded with the following measurement parameters: scan speed, $20 \mathrm{~nm} / \mathrm{min}$; resolution, 0.2 nm ; bandwidth, 1.0 nm ; response, $4.0 \mathrm{~s} ; 4-10$ accumulations.

Silica gel 60 F254 precoated plates on glass from Merck Ltd. were used for thin layer chromatography (TLC).

Synthesis of chiroptical probe 1

Ethyl 2-iodine-4-(4-Methoxyphenyl)benzonate (11)

Ethyl 4-(4-Methoxyphenyl)benzonate (10) ${ }^{1}$ was synthesized by Suzuki-Miyaura coupling from ester 9. Iodination of $\mathbf{1 0}$ was carried out according to the literature procedure. ${ }^{2}$ To a THF solution of $(\mathrm{TMP})_{2} \mathrm{Mg}(0.29 \mathrm{M}, 22 \mathrm{mmol})$ was added $10(0.95 \mathrm{~g}, 3.7 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere and the mixture was stirred at room temperature for 3.5 h . After being cooled to $-78{ }^{\circ} \mathrm{C}$, a THF $(10 \mathrm{~mL})$ solution of $\mathrm{I}_{2}(5.6 \mathrm{~g}, 22 \mathrm{mmol})$ was added and stirring was continued for 1 h at room temperature. The mixture was then poured into cooled 1 N HCl , washed with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$, and extracted with CHCl_{3}. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The
crude product was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}\right.$ as eluent) to yield ester $\mathbf{1 1}$ $(0.66 \mathrm{~g}, 46 \%)$ as pale red oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.98\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.8 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,160.1,145.2,139.5,132.7,131.3,130.7,128.4,125.9,114.5,61.6,55.4,14.3 ;$ $m / z($ matrix: DTT/TG $=1 / 1)=383\left([\mathrm{M}+1]^{+}, 100 \%\right)$. Because of instability of ester 11, elemental analysis was not carried out.

Ethyl (2-Ethyl 4-(4-Methoxyphenyl)benzonate)-4-(4-Methoxyphenyl)benzonate (12)

A solution of ester $\mathbf{1 1}(0.304 \mathrm{~g}, 0.794 \mathrm{mmol})$ in dry DMF (1 mL) was added activated $\mathrm{Cu}(1.28 \mathrm{~g}, 6.6$ mmol) and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 2 days. After cooling to room temperature, the mixture was filtered through a pad of Celite, and then AcOEt was added. After washing with 1 N HCl and brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by column chromatography on silica gel (hexane/EtOAc, v/v 20:1 to 4:1 as eluent) to yield diester $12(0.14 \mathrm{~g}, 68 \%)$) as white needles: mp $131.0-131.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.59\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.45(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 4 \mathrm{H}\right), 4.06(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.1, 159.8, 144.1, 143.6, 132.2, 130.6, 128.4, 128.3, 128.0, $125.0,114.3,60.5,55.4,13.7$; IR (KBr) $v_{\text {max }} 3034,2981,2937,2835,1719,1599,1519,1484,1280$, 1251, 1089, 1044, 893, $828 \mathrm{~cm}^{-1} ; m / z$ (matrix: DTT/TG $=1 / 1$) $=511\left([\mathrm{M}+1]^{+}, 25 \%\right)$; Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{6}$: C, 75.28; H, 5.92. Found: C, 75.09; H, 5.87.

(4,4"'-Dimethoxy-1,1':3',1':3',1"'-quaterphenyl-4',6"-diyl)dimethanol (13)

To a mixture of $\mathrm{LiAlH}_{4}(0.0314 \mathrm{~g}, 0.826 \mathrm{mmol})$ and dry THF $(1.0 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$ was added dropwise a solution of diester $\mathbf{1 2}(0.115 \mathrm{~g}, 0.226 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$, and the reaction mixture was stirred at room temperature for 1.5 h . The reaction mixture was quenched with a minimum amount of water, and the organic layer was filtered. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to yield diol $\mathbf{1 3}(0.14 \mathrm{~g}, 68 \%)$) as white needles: $\mathrm{mp} 154.0-155.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.58-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $4 \mathrm{H}), 6.97$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 2.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.4,140.5,140.2,137.1,132.8,130.2,128.2,126.3,114.3,62.7,55.4$; IR (KBr) $v_{\text {max }} 3360,3034$, 2999, 2923, 2837, 1609, 1519, 1487, 1248, 1035, 890, $817 \mathrm{~cm}^{-1} ; m / z($ matrix: DTT/TG $=1 / 1$) $=392$ ([M-2OH] ${ }^{+}, 20 \%$); Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4}: \mathrm{C}, 78.85 ; \mathrm{H}, 6.14$. Found: C, $78.58 ; \mathrm{H}, 6.10$.

[^0]$\operatorname{PBr}_{3}(0.1 \mathrm{~mL}, 1 \mathrm{mmol})$ was added to a solution of diol $13(0.085 \mathrm{~g}, 0.20 \mathrm{mmol})$ in dry THF $(1.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with a minimum amount of water, and then AcOEt was added. After washing with 5% aq. NaHCO_{3} and brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was recrystallized from hexane/EtOAc to yield dibromide $1(0.097 \mathrm{~g}, 88 \%)$ as white needles: mp 164.0-165.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.55(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $4 \mathrm{H}), 4.38(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,140.8,139.9,134.1,131.2$, $128.3,128.2,126.8,114.3,55.4,32.2$; IR (KBr) $v_{\max } 3057,3019,2963,2935,2834,1606,1517,1481$, 1249, 1177, 1030, 903, 821, $591 \mathrm{~cm}^{-1} ; m / z($ matrix: $\mathrm{DTT} / \mathrm{TG}=1 / 1)=550\left([\mathrm{M}-2]^{+}, 10 \%\right), 552\left([\mathrm{M}]^{+}\right.$, $20 \%), 554\left([\mathrm{M}+2]^{+}, 10 \%\right)$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{O}_{2}: \mathrm{C}, 60.89 ; \mathrm{H}, 4.38$. Found: C, 60.97; H, 4.41.

Coupling reaction of chiroptical probe 1 with chiral amines

6-[(2S)-3,3-dimethylbutan-2-yl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5H-dibenzo[c,e]azepine

 ((S)-2a)A mixture of dibromide $1(12 \mathrm{mg}, 0.022 \mathrm{mmol}),(S)$-3,3-dimethylbutan-2-amine ($3.00 \mu \mathrm{~L}, 0.037$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.7 \mathrm{mg}, 0.063 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{~mL})$ was refluxed for 2 h . After cooling to room temperature, the mixture was filtered through a pad of Celite, and then evaporated to dryness. The crude product was purified by column chromatography on silica gel (EtOAc as eluent) to yield amine (S)-2a (10.3 mg, 95\%) as colorless prisms: mp $155.5^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.55\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, 12.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2$, $141.4,140.1,135.7,133.6,130.3,128.2,126.2,125.8,114.3,68.7,55.4,54.5,36.8,27.1,11.6$; IR $(\mathrm{KBr}) v_{\max } 3038,2995,2954,2834,1608,1518,1488,1284,1266,1244,1046,892,821 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (matrix: $\mathrm{DTT} / \mathrm{TG}=1 / 1)=492\left([\mathrm{M}+1]^{+}, 60 \%\right)$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{NO}_{2}: \mathrm{C}, 83.06 ; \mathrm{H}, 7.59 ; \mathrm{N}, 2.85$.

Found: C, 83.00; H, 7.33; N, 2.77.

6-[(2R)-3,3-dimethylbutan-2-yl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5H-dibenzo[c,e] azepine ($(R)-2 a)$

Colorless prisms: mp $155.5{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.55\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $4 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, 12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,141.4,140.1,135.7,133.6,130.3$, $128.2,126.2,125.8,114.3,68.7,55.4,54.4,36.8,27.1,11.6$; IR (KBr) $v_{\max } 3022,2997,2952,2833$, 1607, 1518, 1489, 1294, 1270, 1037, $889,821 \mathrm{~cm}^{-1} ; m / z($ matrix: $\mathrm{DTT} / \mathrm{TG}=1 / 1)=492\left([\mathrm{M}+1]^{+}\right.$, 20%); Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{NO}_{2} \cdot 1 / 10 \mathrm{AcOEt}$: C, $82.56 ; \mathrm{H}, 7.61 ; \mathrm{N}, 2.80$. Found: C, $82.38 ; \mathrm{H}, 7.54 ; \mathrm{N}$, 2.85 .

6-[(1S)-1-cyclohexylethyl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5H-dibenzo[c,e]azepine

 ((S)-3a)Colorless prisms: mp $157.5{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.55\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $4 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~d}, 12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$ (quin, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.98-1.59 (m, 5H), 1.29-0.97 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.2, 141.5, 140.2, 135.1, $133.5,130.3,128.2,126.1,125.8,114.3,64.0,55.4,52.1,41.6,31.2,29.0,26.9,26.8,26.6,13.8$; IR $(\mathrm{KBr}) v_{\max } 3022,2997,2952,2833,1607,1518,1489,1294,1270,1037,889,821 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (matrix: $\mathrm{DTT} / \mathrm{TG}=1 / 1)=519\left([\mathrm{M}+2]^{+}, 65 \%\right)$; Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{NO}_{2}: \mathrm{C}, 83.52 ; \mathrm{H}, 7.59 ; \mathrm{N}, 2.71$. Found: C, 83.34; H, 7.29; N, 2.72.

2,10-bis(4-methoxyphenyl)-6-[(2S)-3-methylbutan-2-yl]-6,7-dihydro-5H-dibenzo[c,e]azepine ((S)-4a)

Colorless prisms: mp $147.9^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.55\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $4 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49($ quin, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01(\operatorname{sext}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.2,141.5,140.2,135.0,133.5,130.3,128.2,126.0,125.8,114.3$, $64.2,55.4,52.1,30.8,21.0,17.8,13.2$; IR (KBr) $v_{\max } 3024,2961,2897,2840,1606,1519,1488,1289$, 1250, 1034, $882,819 \mathrm{~cm}^{-1} ; m / z$ (matrix: $\left.\mathrm{DTT} / \mathrm{TG}=1 / 1\right)=478\left([\mathrm{M}+1]^{+}, 80 \%\right)$; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{2} \cdot 1 / 10 \mathrm{AcOEt}: \mathrm{C}, 82.47 ; \mathrm{H}, 7.42 ; \mathrm{N}, 2.88$. Found: C, $82.40 ; \mathrm{H}, 7.17 ; \mathrm{N}, 2.96$.

6-[(2S)-hexan-2-yl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5H-dibenzo[c,e]azepine ((S)-5a)

Colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.56$ (dd, $\left.J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.62$ $(\mathrm{m}, 4 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,141.3,140.3,134.7,133.4,130.4,128.2,128.1,125.8,114.3,58.9,55.4,51.8$, 34.9, 28.9, 23.0, 17.7, 14.2; IR (KBr) $v_{\max } 3033,2953,2929,2854,2834,1608,1517,1488,1287$, 1246, 1032, $888,818 \mathrm{~cm}^{-1} ; m / z$ (matrix: $\left.\mathrm{DTT} / \mathrm{TG}=1 / 1\right)=492\left([\mathrm{M}+1]^{+}, 40 \%\right)$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{NO}_{2}$: C, 83.06; H, 7.59; N, 2.85. Found: C, 83.21; H, 7.24; N, 2.75.

6-[(2S)-butan-2-yl]-2,10-bis(4-methoxyphenyl)-6,7-dihydro-5H-dibenzo[c,e]azepine ((S)-6a)

Colorless prisms: mp $152.6^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $4 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.52(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2$, 141.5, 140.4, 140.4, 133.4.130.4, 128.2, 126.0, 125.8, 114.3, 60.1, 55.4, 51.8, 22.7, 17.3, 10.9; IR $(\mathrm{KBr}) \mathrm{v}_{\max } 3025,2962,2936,2838,1608,1518,1489,1290,1248,1025,886,820 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (matrix: DTT/TG $=1 / 1)=465\left([M+1]^{+}, 95 \%\right) ; \mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{2} \cdot 1 / 10 \mathrm{AcOEt}: \mathrm{C}, 82.37 ; \mathrm{H}, 7.21 ; \mathrm{N}, 2.97$. Found: C, 82.27; H, 7.05; N, 2.98.

2,10-bis(4-methoxyphenyl)-6-[(1S)-1-phenylethyl]-6,7-dihydro-5H-dibenzo[c,e] azepine ((S)-7a)

White solid: mp $126.0^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.55\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$, $3.86(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, 12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,146.2,141.7,140.5,133.8,133.4,130.3$, 128.6, 128.2, 127.6, 127.0, 125.9, 125.9, 114.3, 62.6, 55.4, 52.9, 22.7; IR (KBr) $v_{\max } 3024,2965,2930$, 2832, 1607, 1517, 1488, 1282, 1247, 1032, 888, $818 \mathrm{~cm}^{-1} ; m / z$ (matrix: DTT/TG $\left.=1 / 1\right)=512\left([\mathrm{M}+1]^{+}\right.$, 30%); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{NO}_{2}$: C, $84.51 ; \mathrm{H}, 6.50$; N, 2.74. Found: C, $84.61 ; \mathrm{H}, 6.30 ; \mathrm{N}, 2.62$.

2,10-bis(4-methoxyphenyl)-6-[(1S)-1-(naphthalen-2-yl)ethyl]-6,7-dihydro-5H-dibenzo[c,e]azepin e ((S)-8a)

White Solid: mp $103.9^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.57\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 7 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.42(\mathrm{~d}, 12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3$, $143.7,141.7,140.5,133.8,133.7,133.6,133.4,132.9,130.3,128.5,128.2,127.8,127.7,126.0,126.0$, $125.9,125.9,114.3,62.7,55.4,52.9,22.7$; IR (KBr) $v_{\max } 3020,2961,2931,2831,1607,1515,1487$, 1285, 1246, 1029, 888, 818, $746 \mathrm{~cm}^{-1} ; m / z$ (matrix: DTT/TG $=1 / 1$) $=563\left([\mathrm{M}+2]^{+}, 15 \%\right)$; Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{NO}_{2}$: C, 85.53; H, 6.28; N, 2.49. Found: C, $85.32 ; \mathrm{H}, 6.49 ; \mathrm{N}, 2.41$.

$$
\begin{aligned}
& 11
\end{aligned}
$$

Figure S1. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 1}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 1}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2}$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 3}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 3}$.

Figure $\mathbf{S} 7{ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(S) \mathbf{- 2 a}$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (S)-2a.

Figure S11. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (R)-2a.

Figure S12. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (R)-2a.

Figure S13. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(S) \mathbf{- 3 a}$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR Spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-3a.

Figure S15. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-4a.

Figure S16. ${ }^{13} \mathrm{C}$ NMR Spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-4a.

Figure S17. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-5a.

Figure S18. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (S)-5a.

Figure S19. ${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S) - $\mathbf{6 a}$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (S)-6a.

Figure S21. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (S)-7a.

Figure S22. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (S)-7a.

Figure S23. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (R)-7a.

Figure S24. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (R)-7a.

Figure S25. ${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(S) \mathbf{- 8 a}$.

Figure S26. ${ }^{13} \mathrm{C}$ NMR Spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (S)-7a.

Figure S27. CD and UV Spectra of aliphatic amines (S)-2a-6a ($2 \times 10^{-4} \mathrm{M}$ in hexane, 293 K).

Figure S28. CD and UV Spectra of aromatic amines (S)-7a and (S)-8a ($2 \times 10^{-4} \mathrm{M}$ in hexane, 293 K).

Figure S29. CD and UV Spectra of (S)-2a and (R)-2a ($2 \times 10^{-4} \mathrm{M}$ in hexane, 293 K).

Figure S30. CD and UV Spectra of (S)-2a with varying solvents ($2 \times 10^{-4} \mathrm{M}, 293 \mathrm{~K}$).

Table S1. CD spectral data of $(S)-\mathbf{2 a}-(S)-\mathbf{8} \mathbf{a}^{[\mathrm{ax} .}$

Entry	Compound	$\Delta \varepsilon_{1}{ }^{[\mathrm{b}]}(\lambda[\mathrm{nm}])$	$\Delta \varepsilon_{2}{ }^{[\mathrm{b}]}(\lambda[\mathrm{nm}])$	CD amplitude $\left(A_{\mathrm{CD}} \text { value }\right)^{[\mathrm{cc}]}$
1	$(S)-\mathbf{- 2 a}$	$-9.2(278.8)$	$+8.5(256.2)$	-17.7
2	$(S)-\mathbf{3 a}$	$-3.5(279.4)$	$+4.0(257.2)$	-7.5
3	$(S)-\mathbf{- 4}$	$-2.4(281.4)$	$+3.5(255.0)$	-5.9
4	$(S)-5 \mathbf{a}$	$-0.3(283.6)$	$+1.6(255.2)$	-1.9
5	$(S)-\mathbf{6 a}$	$-0.6(282.6)$	$+1.2(260.2)$	-1.8
6	$(S)-\mathbf{7 a}$	$+9.8(286.8)$	$-10.6(261.2)$	+20.4
7	$(S)-\mathbf{8 a}$	$+7.2(287.4)$	$-15.0(258.4)$	+22.2

[a] All CD data were measured in hexane, $2 \times 10^{-4} \mathrm{M}$ concentration using 1 mm CD cell at 293 K . [b] $\Delta \varepsilon_{1}$ and $\Delta \varepsilon_{2}$ are intensities of first and second Cotton effects. [c] A_{CD} value: $A_{\mathrm{CD}}=\Delta \varepsilon_{1}-\Delta \varepsilon_{2}$, where $\Delta \varepsilon_{1}$ and $\Delta \varepsilon_{2}$ are intensities of first and second Cotton effects, respectively.

Theoretical calculations

To obtain the population between M and P conformers, preliminary conformational searches were run on the structure of $(S)-\mathbf{2 b}-(S)-\mathbf{4 b}$ and $(S)-\mathbf{6 b}-(S)-\mathbf{8 b}$ using MMFF. All local minimum conformers were then optimized with DFT using B3LYP/6-31G* model. The lower energy conformers with relative energies ranging from 0.0 to $3.0 \mathrm{kcal} / \mathrm{mol}$ were selected. By the Bolzmann distribution based on the energy difference of the conformers at 293 K , the population of the M and P conformers were determined. Calculations using HF/6-31G* also gave similar results.

(S)-2b	$\mathrm{R}=t-\mathrm{Bu}$
(S)-3b	$\mathrm{R}=$ cyclohexyl
(S)-4b	$\mathrm{R}=i-\mathrm{Pr}$
(S)-5b	$\mathrm{R}=n-\mathrm{Bu}$
(S)-6b	$R=E t$
(S)-7b	$\mathrm{R}=\mathrm{Ph}$
(S)-8b	$\mathrm{R}=2-\mathrm{Naph}$

Figure S31. Methoxy-omitted model of 1-amine conjugates for theoretical calculations.

Theoretical calculations at B3LYP/6-31G* level

Table S2. Calculated conformers of (S)-2b at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ${ }^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, \%
1	\#M3	-42.75	0.00	1.00	42.9
2	\#M1	-42.20	0.17	0.75	32.3
3	\#P1	43.53	0.32	0.58	24.8

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K .

\#M3 (42.9\%)

\#M1 (32.3\%)

\#P1 (24.8\%)

Figure S32. Three major conformers of (S)-2b at B3LYP/6-31G* level.

Table S3. Calculated conformers of (S)-3b at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle $^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, \%
1	\#M1	-42.32	0.00	1.00	46.8
2	\#P1	42.86	0.14	0.79	36.9
3	\#P3	42.24	1.63	0.06	2.9
4	\#M7	-42.17	1.66	0.06	2.7
5	\#M5	-42.65	1.69	0.05	2.6
6	\#M20	-42.63	1.93	0.04	1.7
7	\#P5	43.25	1.97	0.03	1.6
8	\#M3	-42.78	2.11	0.03	1.2
9	\#P20	42.95	2.17	0.02	1.1
10	\#P7	43.57	2.21	0.02	1.0
11	\#P9	44.15	2.61	0.01	0.5
12	\#M15	-44.15	2.85	0.01	0.4
13	\#M13	-43.13	2.86	0.01	0.3
14	\#M9	-42.33	2.89	0.01	0.3

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#M1 (46.8\%)

\#M7 (2.7\%)

\#P1 (36.9\%)

\#P3 (2.9\%)

\#M5 (2.6\%)

\#M20 (1.7\%)

Figure S33. Six major conformers of (S)-3b at B3LYP/6-31G* level.

Table S4. Calculated conformers of (S)-4b at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ${ }^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, $\%$
1	\#M1	-42.99	0.00	1.00	50.3
2	\#P1	41.67	0.20	0.71	35.5
3	\#P3	42.18	1.34	0.10	5.1
4	\#M3	-42.63	1.44	0.08	4.2
5	\#M5	-43.14	1.70	0.05	2.7
6	\#P5	42.55	2.10	0.03	1.4
7	\#M7	-42.17	2.70	0.01	0.5
8	\#P7	44.46	2.78	0.01	0.4

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#M1 (50.3\%)

\#M3 (4.2\%)

\#P1 (35.5\%)

\#M5 (2.7\%)

\#P5 (1.4\%)

Figure S34. Six major conformers of (S)-4b at B3LYP/6-31G* level.

Table S5. Calculated conformers of (S)-6b at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle $^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, $\%$
1	\#M1	-42.56	0.00	1.00	35.5
2	\#P1	43.48	0.18	0.74	26.2
3	\#P5	41.94	0.79	0.26	9.1
4	\#M5	-43.25	0.91	0.21	7.4
5	\#P7	42.96	1.03	0.17	6.1
6	\#M7	-41.95	1.12	0.15	5.2
7	\#M3	-43.35	1.32	0.10	3.7
8	\#P3	43.56	1.36	0.10	3.4
9	\#P9	42.47	1.88	0.04	1.4
10	\#P11	42.76	2.12	0.03	0.9
11	\#M9	-41.92	2.28	0.02	0.7
12	\#M11	-43.63	2.58	0.01	0.4

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#P5 (9.1\%)

\#M5 (7.4\%)

\#P7 (6.1\%)

\#M7 (5.2\%)

Figure S35. Six major conformers of (S) - $\mathbf{6 b}$ at B3LYP/6-31G* level.

Table S6. Calculated conformers of $(S)-7 \mathbf{b}$ at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ${ }^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, \%
1	\#P1	42.27	0.00	1.00	66.7
2	\#M1	-42.94	0.49	0.43	28.5
3	\#M5	-42.64	1.91	0.04	2.5
4	\#P3	42.66	1.96	0.03	2.3

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#P1 (66.7\%)

\#M1 (28.5\%)

\#M5 (2.5\%)

\#P3 (2.3\%)

Figure S36. Four major conformers of (S)-6b at B3LYP/6-31G* level.

Table S7. Calculated conformers of (S)-8b at B3LYP/6-31G* level.

Entry	Conformer	Dihedral angle ${ }^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, \%
1	\#P1	43.06	0.00	1.00	39.5
2	\#P3	41.89	0.06	0.90	35.7
3	\#M3	-41.45	0.78	0.26	10.3
4	\#M1	-43.24	0.86	0.23	9.0
5	\#M7	-42.87	1.43	0.09	3.4
6	\#P5	43.86	1.70	0.05	2.1

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#P3 (35.7\%)

\#M1 (9.0\%)

\#M7 (3.4\%)

\#P5 (2.1\%)

Figure S37. Six major conformers of (S)-6b at B3LYP/6-31G* level.

Table S8. Comparison of the excess of M conformer and observed CD amplitude at B3LYP/6-31G* level.

Entry	Compound	Calcurated ratio (M / P)	Excess of M confomer, $\%{ }^{[a]}$	Observed CD amplitude $\left(A_{\mathrm{CD}} \text { value }\right)^{[\mathrm{b}]}$
1	$(S) \mathbf{- 2 b}$	$75.2: 24.8$	50.4	$-17.7((S)-\mathbf{2 a})$
2	$(S)-\mathbf{- 3 b}$	$56.0: 44.0$	12.0	$-7.5((S)-\mathbf{3 a})$
3	$(S)-\mathbf{4 b}$	$57.6: 42.4$	15.2	$-5.9((S)-\mathbf{4 a})$
4	$(S)-\mathbf{- 6 b}$	$52.8: 47.2$	5.6	$-1.8((S)-\mathbf{6 a})$
5	$(S)-\mathbf{- 7 b}$	$31.0: 69.0$	-38.0	$+20.4((S)-\mathbf{7 a})$
6	$(S)-\mathbf{8 b}$	$22.7: 77.3$	-54.6	$+22.2((S)-\mathbf{8 a})$

[a] Excess of M conformer $(\%)=([M]-[P]) /([M]+[P]) \times 100$, where $[M]$ and $[P]$ are the amounts of M and P conformers calculated by B3LYP/6-31G*. [b] A_{CD} value: $A_{\mathrm{CD}}=\Delta \varepsilon_{1}-\Delta \varepsilon_{2}$, where $\Delta \varepsilon_{1}$ and $\Delta \varepsilon_{2}$ are intensities of first and second Cotton effects, respectively.

Theoretical calculations at HF/6-31G* level

Table S9. Calculated conformers of (S)-2b at HF/6-31G* level.

Entry	Conformer	Dihedral angle ${ }^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, \%
1	\#M1	-44.26	0.00	1.00	67.8
2	\#P1	45.25	0.43	0.47	32.2

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#M1 (67.8\%)

\#P1 (32.2\%)

Figure S38. Two major conformers of $(S) \mathbf{- 2 b}$ at $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ level.

Table S10. Calculated conformers of (S)-3b at HF/6-31G* level.

Entry	Conformer	Dihedral angle $^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, $\%$
1	\#M1	-44.47	0.00	1.00	54.8
2	\#P1	44.69	0.22	0.69	37.6
3	\#M7	-44.34	1.86	0.04	2.2
4	\#P3	44.78	2.15	0.02	1.4
5	\#P20	45.23	2.16	0.02	1.3
6	\#M18	-44.46	2.40	0.02	0.9
7	\#P5	44.61	2.61	0.01	0.6
8	\#M5	-44.14	2.66	0.01	0.6
9	\#P9	45.27	2.96	0.01	0.3
10	\#M9	-44.27	2.98	0.01	0.3

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#M1 (54.8\%)

\#P3 (1.4\%)

\#P1 (37.6\%)

\#M7 (2.2\%)

\#P20 (1.3\%)

\#M18 (0.9\%)

Figure S39. Six major conformers of (S)-3b at HF/6-31G* level.

Table S11. Calculated conformers of (S)-4b at HF/6-31G* level.

Entry	Conformer	Dihedral angle $^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, $\%$
1	\#M1	-44.48	0.00	1.00	54.9
2	\#P1	44.70	0.23	0.68	37.2
3	\#M5	-44.37	1.76	0.05	2.7
4	\#P3	44.80	1.94	0.04	2.0
5	\#P5	45.24	2.08	0.03	1.5
6	\#M3	-44.16	2.40	0.02	0.9
7	\#M7	-44.29	2.80	0.01	0.4
8	\#P7	45.21	2.92	0.01	0.4

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#M1 (54.9\%)

\#P3 (2.0\%)

\#P1 (37.2\%)

\#P5 (1.5\%)

\#M5 (2.7\%)

\#M3 (0.9\%)

Figure S40. Six major conformers of (S) - 4b at HF/6-31G* level.

Table S12. Calculated conformers of (S)-6b at HF/6-31G* level.

Entry	Conformer	Dihedral angle $^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, \%
1	\#M1	-44.48	0.00	1.00	40.9
2	\#P1	44.69	0.17	0.75	30.8
3	\#M5	-44.45	0.97	0.19	7.7
4	\#P5	44.52	1.04	0.17	6.9
5	\#P7	44.57	1.21	0.13	5.1
6	\#M7	-44.54	1.31	0.11	4.3
7	\#P3	44.42	1.96	0.03	1.4
8	\#M3	-44.36	1.99	0.03	1.3
9	\#P11	44.95	2.36	0.02	0.7
10	\#P9	44.70	2.50	0.01	0.6
11	\#M11	-44.68	2.91	0.01	0.3

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K.

\#M1 (40.9\%)

\#P5 (6.9\%)

\#P1 (30.8\%)

\#P7 (5.1\%)

\#M5 (7.7\%)

\#M7 (4.3\%)

Figure S41. Six major conformers of (S) - $\mathbf{6 b}$ at HF/6-31G* level.

Table S13. Calculated conformers of (S)-7b at HF/6-31G* level.

Entry	Conformer	Dihedral angle ${ }^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, $\%$
1	\#P1	44.59	0.00	1.00	78.6
2	\#M1	-44.58	0.92	0.21	16.3
3	\#M5	-44.69	1.93	0.04	2.8
4	\#P3	44.72	2.07	0.03	2.2

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K .

\#P1 (78.6\%)

\#M1 (16.3\%)

\#M5 (2.8\%)

\#P3 (2.2\%)

Figure S42. Four major conformers of (S)-7b at HF/6-31G* level.

Table S14. Calculated conformers of (S)-8b at HF/6-31G* level.

Entry	Conformer	Dihedral angle $^{[\mathrm{a}]}$	$\Delta E, \mathrm{kcal} / \mathrm{mol}$	$K^{[\mathrm{b}]}$	Population, $\%$
1	\#P1	44.70	0.00	1.00	41.8
2	\#P3	44.52	0.10	0.84	35.1
3	\#M3	-44.64	0.83	0.24	10.0
4	\#M1	-44.55	1.22	0.12	5.2
5	\#M7	-44.65	1.34	0.10	4.2
6	\#P5	44.60	1.40	0.09	3.8

[a] Dihedral angle of C6-C1-C1'-C6'. [b] Equilibrium constant at 293 K .

\#P1 (41.8\%)

\#P3 (35.1\%)

\#M1 (5.2\%)

\#M7 (4.2\%)

\#P5 (3.8\%)

Figure S43. Six major conformers of $(S) \mathbf{- 8 b}$ at HF/6-31G* level.

Table S15. Comparison of the excess of M conformer and observed CD amplitude at HF/6-31G* level.

Entry	Compound	Calcurated ratio (M / P)	Excess of M confomer, $\%{ }^{[a]}$	Observed CD amplitude $\left(A_{\mathrm{CD}} \text { value }\right)^{[\mathrm{b}]}$
1	$(S) \mathbf{- 2 b}$	$67.8: 32.2$	35.6	$-17.7((S)-\mathbf{- 2 a})$
2	$(S)-\mathbf{- 3 b}$	$58.8: 41.2$	17.6	$-7.5((S) \mathbf{- 3 a})$
3	$(S)-\mathbf{4 b}$	$58.9: 41.1$	17.8	$-5.9((S)-\mathbf{4 a})$
4	$(S)-\mathbf{- 6 b}$	$54.5: 45.5$	9.0	$-1.8((S)-\mathbf{6 a})$
5	$(S)-\mathbf{- 7 b}$	$19.1: 80.9$	-61.8	$+20.4((S)-\mathbf{7 a})$
6	$(S)-\mathbf{8 b}$	$19.3: 80.7$	-61.4	$+22.2((S)-\mathbf{8 a})$

[a] Excess of M conformer $(\%)=([M]-[P]) /([M]+[P]) \times 100$, where $[M]$ and $[P]$ are the amounts of M and P conformers calculated by $\mathrm{HF} / 6-31 \mathrm{G}^{*}$. $[\mathrm{b}] A_{\mathrm{CD}}$ value: $A_{\mathrm{CD}}=\Delta \varepsilon_{1}-\Delta \varepsilon_{2}$, where $\Delta \varepsilon_{1}$ and $\Delta \varepsilon_{2}$ are intensities of first and second Cotton effects, respectively.

Figure S44. The relationship between the A_{CD} values and excess of M conformer. Excess of M conformer $(\%)=([M]-[P]) /([M]+[P]) \times 100$, where $[M]$ and $[P]$ are the amounts of M and P conformers calculated by $\mathrm{HF} / 6-31 \mathrm{G}^{*}$, respectively.

Figure S45. CD and UV Spectra of (S)-2a and (R)-2a with varying \%ee value ($2 \times 10^{-4} \mathrm{M}$ in hexane, 293 K).

X-ray Structure Determination

Crystals of (S)-2a, (S) - 3a, and (S)-6a was mounted on the top of a glass fiber, and the data collection was carried out on a Bruker SMART diffractometer equipped with a CCD area detector at 100-120 K. The data were corrected for Lorentz and polarization effects, and absorption corrections were applied with the SADABS probram. ${ }^{3}$ The structure was solved by direct methods and subsequent difference Fourier syntheses using the program SHELXTL. ${ }^{4}$ All non-H atoms were refined anisotropically, and H atoms were placed in calculated positions and thereafter refined with $U_{\text {iso }}(H)=1.2 U_{\text {eq }}(\mathrm{C})$.

Table S16. Crystal data and structure refinement for (S)-2a

Empirical formula	C34 H37 N O2
Formula weight	491.65
Temperature	120 K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$a=6.2995(3) \AA \quad \alpha=90^{\circ}$.
	$b=20.1090(11) \AA \quad \beta=90^{\circ}$.
	$c=21.2319(12) \AA \quad \gamma=90^{\circ}$.
Volume	2689.6(2) \AA^{3}
Z	4
Density (calculated)	$1.214 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.074 \mathrm{~mm}^{-1}$
$F(000)$	1056
Crystal size	$0.38 \times 0.23 \times 0.14 \mathrm{~mm}^{3}$
Theta range for data collection	1.92 to 28.30°.
Index ranges	$-8<=\mathrm{h}<=8,-26<=\mathrm{k}<=26,-28<=1<=24$
Reflections collected	20137
Independent reflections	$6678[R(\mathrm{int})=0.0275]$
Completeness to theta $=28.30^{\circ}$	99.9\%
Absorption correction	Empirical
Max. and min. transmission	0.9901 and 0.9726
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6678 / 0 / 482
Goodness-of-fit on F^{2}	1.035
Final R indices [$1>2 \operatorname{sigma}(1)$]	$R_{1}=0.0442, w R_{2}=0.1016$
R indices (all data)	$R_{1}=0.0489, w R_{2}=0.1043$
Absolute structure parameter	0.4(11)
Largest diff. peak and hole	0.294 and -0.164 e. \AA^{-3}

Table S17. Crystal data and structure refinement for (S)-3a

Empirical formula	C36 H39 N O2
Formula weight	517.68
Temperature	100 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$a=5.8922(2) \AA \quad \alpha=90^{\circ}$.
	$b=22.0263(9) \AA \quad \beta=96.6290(10)^{\circ}$.
	$c=11.1024(4) \AA \quad \gamma=90^{\circ}$.
Volume	$1431.27(9) \AA^{3}$
Z	2
Density (calculated)	$1.201 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.073 \mathrm{~mm}^{-1}$
$F(000)$	556
Crystal size	$0.24 \times 0.17 \times 0.13 \mathrm{~mm}^{3}$
Theta range for data collection	1.85 to 30.98°.
Index ranges	$-8<=\mathrm{h}<=8,-16<=\mathrm{k}<=31,-14<=1<=15$
Reflections collected	10826
Independent reflections	$5823[R(\mathrm{int})=0.0198]$
Completeness to theta $=30.98^{\circ}$	99.9 \%
Absorption correction	Empirical
Max. and min. transmission	0.9905 and 0.9826
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5823 / 1 / 508
Goodness-of-fit on F^{2}	1.034
Final R indices $[1>2 \operatorname{sigma}(I)]$	$R_{1}=0.0386, w R_{2}=0.0934$
R indices (all data)	$R_{1}=0.0457, w R_{2}=0.0981$
Absolute structure parameter	1.3(11)
Largest diff. peak and hole	0.292 and -0.201 e. \AA^{-3}

Table S18. Crystal data and structure refinement for (S)-6a

Empirical formula	C32 H33 N O2
Formula weight	463.59
Temperature	100 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$a=8.5443(7) \AA \quad \alpha=90^{\circ}$.
	$b=25.924(2) \AA \quad \beta=96.6650(10)^{\circ}$.
	$c=11.1528(9) \AA \quad \gamma=90^{\circ}$.
Volume	2453.7(3) \AA^{3}
Z	4
Density (calculated)	$1.255 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.077 \mathrm{~mm}^{-1}$
$F(000)$	992
Crystal size	$0.24 \times 0.13 \times 0.06 \mathrm{~mm}^{3}$
Theta range for data collection	1.84 to 26.45°.
Index ranges	$-10<=\mathrm{h}<=7,-32<=\mathrm{k}<=32,-13<=1<=13$
Reflections collected	14632
Independent reflections	$9414[R(\mathrm{int})=0.0358]$
Completeness to theta $=26.45^{\circ}$	99.8\%
Absorption correction	Empirical
Max. and min. transmission	0.9952 and 0.9819
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9414 / 1/639
Goodness-of-fit on F^{2}	1.019
Final R indices $[1>2 \operatorname{sigma}(1)]$	$R_{1}=0.0519, w R_{2}=0.0993$
R indices (all data)	$R_{1}=0.0773, w R_{2}=0.1118$
Absolute structure parameter	1.0(14)
Largest diff. peak and hole	0.220 and -0.211 e. $\AA^{\AA}-3$

References

(1) Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262.
(2) Ooi, T.; Uematsu, Y.; Kameda, M.; Maruoka, K. Tetrahedron 2006, 62, 11425.
(3) Sheldrick, G. M. Program for absorption correction of area detector frames; Bruker AXS, Inc.: Madison, WI, 1996.
(4) SHELXTL, version 5.1; Bruker AXS, Inc.: Madison, WI, 1997.

[^0]: 4',6'-Bis(bromomethyl)-4,4"'-dimethoxy-1,1':3',1":3',1"'-quaterphenyl (1)

