SUPPORTING INFORMATION

ReigoselectiveArylation of Thiazole Derivatives at 5-Position via

Pd Catalysis under a Ligand-Free Condition

Xiang-Wei Liu¹, Jiang-Ling Shi², Jia-Xuan Yan¹, Jiang-Bo Wei¹, Kun Peng³, Le Dai³, Chen-Guang Li³, Bi-Qin Wang² and Zhang-Jie Shi¹*

¹Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871 and State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China² College of Chemistry and Material Chemistry, Sichuan Normal University, Sichuan 610066, China and³ DSM nutritional products, DSM nutrition center, DSM (China) limited, No. 476 Li Bing Road, Zhangjiang Hi-tech Park, Pudong new area, Shanghai, 201203, China. zshi@pku.edu.cn

Table of Contents

1.	General Information	S3
2.	Experimental	S4
3.	Reference	S12
4.	¹ H and ¹³ C NMR spectral scopies obtained in this study	

1. General Information:

Unless otherwise noted, all reactions were run under N_2 atmosphere. Prior to starting experiments, the hot plate was turned on, and the oil bath was allowed to equilibrate to the desired temperature over 30 minutes. All starting materials were commercially available and were used as received. All reagents were handled in air. ¹H and ¹³C NMR spectra were recorded on Bruker AV (400 MHz or 500 MHz and 125 MHz or 100 MHz, respectively) instrument internally referenced to SiMe₄ or chloroform signals. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet and m =multiplet. High resolution mass spectra (HRMS-ESI) were recorded at the Center for Mass Spectrometry, Peking University.

2. Experimental:

Table S1: Screening of reaction conditions

entry	[Pd] (mol%)	base (equiv)	solvent (mL)	A/B ratio	temp (°C)	yield (%) ^b	
Chary						3aa	4aa
1	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	80	3
2	Pd(OAc) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	54	5
3	Pd(OTFA) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	43	7
4	PdCl ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	10	2
5	[Pd(allyl)Cl] ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	31	3
6	Pd[(CH ₃ CN) ₄](BF ₄) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	30	11
7	Pd[(CH ₃ CN) ₄](OTs) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	27	7
8	Pd(CH ₃ CN ₂ Cl ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	24	4
9	Pd(OPiv) ₂ (10)	Na ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	57	3
10	Pd(OPiv) ₂ (10)	K ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	75	5
11	Pd(OPiv) ₂ (10)	Rb ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	67	3
12	Pd(OPiv) ₂ (10)	K ₃ PO ₃ (1.0)	DMF (2.0)	2/1	140	65	4
13	Pd(OPiv) ₂ (10)	CsOAc (1.0)	DMF (2.0)	2/1	140	65	4
14	Pd(OPiv) ₂ (10)	CsF (1.0)	DMF (2.0)	2/1	140	38	2
15	Pd(OPiv) ₂ (10)	CsOPiv (1.0)	DMF (2.0)	2/1	140	66	3
16	Pd(OPiv) ₂ (10)	NaOPiv (1.0)	DMF (2.0)	2/1	140	53	4
17	Pd(OPiv) ₂ (10)	KOPiv (1.0)	DMF (2.0)	2/1	140	56	2
18	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (0)	DMF (2.0)	2/1	140	5	1
19	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (0.5)	DMF (2.0)	2/1	140	64	3
20	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.5)	DMF (2.0)	2/1	140	58	2
21	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (2.0)	DMF (2.0)	2/1	140	53	2
22	Pd(OAc) ₂ (10) + PivOH (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	42	2
23	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMAc (2.0)	2/1	140	64	2
24	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	NMP (2.0)	2/1	140	44	3
25	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	<i>o</i> -Xylene (2.0)	2/1	140	67	4
26	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	Mesitylene (2.0)	2/1	140	53	5
27	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	ⁿ Bu ₂ O (2.0)	2/1	140	44	4
28	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	CH ₃ NO ₂ (2.0)	2/1	140	NR	NR
29	Pd(OPiv) ₂ (0)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	NR	NR
30	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	1.5/1	140	61	3
31	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	1/1	140	52	4
32	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	1/1.5	140	60	7
33	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	1/2	140	55	6
34	Pd(OPiv) ₂ (5)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	(49) ^c	
35	Pd(OPiv) ₂ (2)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	(35) ^c	
36	Pd(OPiv) ₂ (1)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	(13) ^c	
37	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (1.0)	2/1	140	77	3
38	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (3.0)	2/1	140	77	3
39 ^d	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	72	2
40 ^e	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	140	69	3
41	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	120	81	2
42	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	100	84 (75) ^c	3
43	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	80	53	1
44	Pd(OPiv) ₂ (10)	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	60	3	
45	Pd ₂ (dba) ₃	Cs ₂ CO ₃ (1.0)	DMF (2.0)	2/1	100	3	

 a All the reactions were carried out in 0.2 mmol scale in 2 mL of solvent. b NMR yields with methylene bromide as an internal standard.

^c Isolated yield in the parenthesis.

^d The reacton was performed for 12 h. ^e The reacton was performed for 6 h.

General Procedure for Regioselective 5-Arylation of 4-Methylthiazole/Thiazole

To a flame-dried 25 mL Schlenk tube, were added $Pd(OPiv)_2$ (6.2 mg, 0.02 mmol), Cs_2CO_3 (65.2 mg, 0.2 mmol), aryl halide (0.2 mmol), thiazole derivative (0.4 mmol), and DMF (2 mL). The tube was capped, the system was excavated and backfilled with N_2 for three times, and then was stirred at 100 °C on a preheated parallel reactor for 24 h. The reaction mixture was cooled to room temperature and diluted with EtOAc, filtered through a short pad of Celite, washed with EtOAc, and concentrated in vacuo. The resulting residue was purified by column chromatography using hexanes:EtOAc (20:1 to 10:1, depending on different substrates) as the eluent.

4-methyl-5-phenylthiazole (**3aa**)^[1]: ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.48 – 7.39 (m, 4H), 7.39 – 7.32 (m, 1H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 148.5, 132.0, 131.9, 129.3, 128.7, 127.9, 16.1.

Me 4-methyl-5-(p-tolyl)thiazole (**3ba**)^[2]: ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 2.53 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 148.2, 137.9, 132.0, 129.4, 129.2, 129.0, 21.2, 16.1.

MeO 5-(4-methoxyphenyl)-4-methylthiazole (**3ca**)^[2]: ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.36 (d, J = 8.7 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 3.85 (s, 3H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 149.7, 148.0, 131.7, 130.6, 124.2, 114.2, 55.4, 16.0.

^{Cl} 5-(4-chlorophenyl)-4-methylthiazole (**3da**)^[2]: ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.45 – 7.34 (m, 4H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 148.9, 134.0, 130.7, 130.5, 130.5, 129.0, 16.0.

NC 4-(4-methylthiazol-5-yl)benzonitrile (**3ea**)^[3]: ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.3 Hz, 2H), 2.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 150.1, 136.9, 132.5, 130.1, 129.7, 118.4, 111.5, 16.3.

^{Pr} 5-(4-isopropylphenyl)-4-methylthiazole (**3fa**): ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 2.95 (hept, *J* = 6.9 Hz, 1H), 2.54 (s, 3H), 1.28 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 148.8, 148.2, 132.0, 129.4, 129.3, 126.8, 33.9, 23.9, 16.1. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₆NS⁺: 218.0998 found 218.09925.

5-(2-fluorophenyl)-4-methylthiazole (3ga): ¹H NMR (400 MHz, CDCl₃)

δ 8.78 (s, 1H), 7.40 - 7.36 (m, 2H), 7.24 - 7.13 (m, 2H), 2.44 (d, *J* = 1.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8 (d, *J* = 2.8 Hz), 151.7, 151.0, 132.2 (d, *J* = 2.5 Hz), 130.3 (d, *J* = 8.1 Hz), 124.5, 124.2 (d, *J* = 3.7 Hz), 119.6 (d, *J* = 15.2 Hz), 116.1 (d, *J* = 22.0 Hz), 16.0 (d, *J* = 2.8 Hz). HRMS: m/z: [M + H]⁺ calculated for C₁₀H₉FNS⁺: 194.0434 found 194.04353.

Me 1,4-bis(4-methylthiazol-5-yl)benzene (**3ha**): ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 2H), 7.52 (s, 4H), 2.59 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 148.9, 131.6, 131.2, 129.5, 16.2. HRMS: m/z: [M + H]⁺ calculated for C₁₄H₁₃N₂S₂⁺: 273.0515 found 273.05111.

 O_2N 4-methyl-5-(4-nitrophenyl)thiazole (**3ia**): ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.30 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 150.4, 147.1, 138.8, 129.8, 129.7, 124.0, 16.4. HRMS: m/z: [M + H]⁺ calculated for C₁₀H₉N₂O₂S⁺: 221.0379 found 221.03795.

1-(4-(4-methylthiazol-5-yl)phenyl)ethanone (**3ja**)^[3a, b]: ¹H NMR

(400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 2.64 (s, 3H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 151.1, 149.6, 136.9, 136.2, 130.9, 129.3, 128.8, 26.6, 16.4.

F₃C 4-methyl-5-(4-(trifluoromethyl)phenyl)thiazole (**3ka**): ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 149.6, 135.7, 130.4, 129.9 (d, *J* = 32.5 Hz), 129.5, 124.0 (d, *J* = 270.5 Hz), 125.7 (d, *J* = 3.7 Hz), 16.2. HRMS: m/z: [M + H]⁺ calculated for C₁₁H₉F₃NS⁺: 244.0402 found 244.03971.

⁷Bu 5-(4-(tert-butyl)phenyl)-4-methylthiazole (**3la**): ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.45 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 2.55 (s, 3H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.02 (s), 150.0, 148.3, 131.9, 129.0, 129.0, 125.7, 34.7, 31.3, 16.1. HRMS: m/z: [M + H]⁺ calculated for C₁₄H₁₈NS⁺: 232.1154 found 232.11549.

F₃CO 4-methyl-5-(4-(trifluoromethoxy)phenyl)thiazole (**3ma**): ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 149.1, 148.8 (q, J = 1.7 Hz), 130.7, 130.7, 130.4, 121.2, 120.5(q, J = 256.1 Hz), 16.0. HRMS: m/z: [M + H]⁺ calculated for C₁₁H₉F₃NOS⁺: 260.0351 found 260.03469.

F 5-(4-fluorophenyl)-4-methylthiazole (**3na**): ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.41 (dd, *J* = 8.7, 5.3 Hz, 2H), 7.12 (t, *J* = 8.6 Hz, 2H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J* = 246.8 Hz), 150.3, 148.7, 131.1 (d, *J* = 8.1 Hz), 130.8, 128.0 (d, *J* = 3.4 Hz), 115.8 (d, *J* = 21.6 Hz), 15.9.

methyl 4-(4-methylthiazol-5-yl)benzoate (**30a**)^[4]: ¹H NMR (400

MHz, CDCl₃) δ 8.73 (s, 1H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.3 Hz, 2H), 3.95 (s, 3H), 2.57 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 166.6, 151.0, 149.5, 136.7, 130.9, 130.0, 129.4, 129.1, 52.2, 16.3.

4-methyl-5-(thiophen-2-yl)thiazole (**3pa**): ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.36 (dd, J = 5.1, 0.8 Hz, 1H), 7.17 – 7.13 (m, 1H), 7.09 (dd, J = 5.1, 3.7 Hz, 1H), 2.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 149.1, 133.2, 127.6, 127.2, 126.2, 125.5, 16.5. HRMS: m/z: [M + H]⁺ calculated for C₈H₈NS₂⁺: 182.0093 found 182.00956.

4-methyl-5-(m-tolyl)thiazole (**3qa**): ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.31 (t, *J* = 7.9 Hz, 1H), 7.25 (s, 1H), 7.24 (d, *J* = 7.1 Hz, 1H), 7.17 (d, *J* = 7.4 Hz, 1H), 2.54 (s, 3H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 150.1, 148.4, 138.4, 132.0, 131.9, 130.0, 128.7, 128.6, 126.4, 21.4, 16.1. HRMS: m/z: [M + H]⁺ calculated for C₁₁H₁₂NS⁺: 190.0685 found 190.06863.

4-methyl-5-(o-tolyl)thiazole (**3ra**): ¹H NMR (400 MHz, CDCl₃) δ 8.74

(s, 1H), 7.34 - 7.27 (m, 2H), 7.26 - 7.19 (m, 2H), 2.28 (s, 3H), 2.19 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 151.0, 149.8, 137.9, 131.3, 130.9, 130.3, 130.3, 128.8, 125.8, 20.1, 15.4. HRMS: m/z: [M + H]⁺ calculated for C₁₁H₁₂NS⁺: 190.0685 found 190.06866.

Meⁱ 5-(3,5-dimethylphenyl)-4-methylthiazole (**3sa**): ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.06 (s, 2H), 7.00 (s, 1H), 2.53 (s, 3H), 2.36 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 150.0, 148.3, 138.3, 132.2, 131.78, 129.6, 127.1, 21.3, 16.1. HRMS: m/z: $[M + H]^+$ calculated for C₁₂H₁₄NS⁺: 204.0841 found 204.08421.

4-methyl-5-(3-(trifluoromethyl)phenyl)thiazole (**3ta**): ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.70 (s, 1H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.59 – 7.53 (m, 1H), 2.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 149.5, 132.9, 132.5 (q, *J* = 1.0 Hz), 131.3 (q, *J* = 32.4 Hz), 130.3, 129.3, 126.0 (q, *J* = 3.8 Hz), 124.6 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 270.8 Hz), 16.0. HRMS: m/z: [M + H]⁺ calculated for C₁₁H₉F₃NS⁺: 244.0402 found 244.03981.

5-(3-methoxyphenyl)-4-methylthiazole (**3ua**)^[2]: ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 7.7 Hz, 1H), 6.98 (t, *J* = 2.0 Hz, 1H), 6.90 (dd, *J* = 8.3, 2.4 Hz, 1H), 3.84 (s, 3H), 2.55 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 150.3, 148.6, 133.3, 131.8, 129.7, 121.8, 115.1, 113.4, 55.3, 16.2.

5-(3-fluorophenyl)-4-methylthiazole (**3va**): ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 7.39 (td, *J* = 8.0, 6.1 Hz, 1H), 7.22 (d, *J* = 7.7 Hz, 1H), 7.16 (dt, *J* = 9.7, 1.9 Hz, 1H), 7.06 (td, *J* = 8.4, 2.3 Hz, 1H), 2.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, *J* = 245.6 Hz), 150.7, 149.1, 134.1 (d, *J* = 8.3 Hz), 130.6 (d, *J* = 2.4 Hz), 130.3 (d, *J* = 8.6 Hz), 125.1 (d, *J* = 3.0 Hz), 116.2 (d, *J* = 22.3 Hz), 114.9 (d, *J* = 20.9 Hz), 16.1. HRMS: m/z: [M + H]⁺ calculated for C₁₀H₉FNS⁺: 194.0434 found 194.04355.

4-methyl-5-(naphthalen-1-yl)thiazole (**3wa**): ¹H NMR (400 MHz,

CDCl₃) δ 8.84 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.56 – 7.44 (m, 4H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 150.9, 133.7, 132.5, 129.14, 129.2, 129.1, 128.9, 128.5, 126.7, 126.2, 125.6, 125.2, 15.7. HRMS: m/z: [M + H]⁺ calculated for C₁₄H₁₂NS⁺: 226.0685 found 226.06864.

NO₂ 4-methyl-5-(2-nitrophenyl)thiazole (**3xa**): ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.00 (dd, J = 8.1, 1.2 Hz, 1H), 7.66 (td, J = 7.5, 1.3 Hz, 1H), 7.59 (td, J = 7.8, 1.5 Hz, 1H), 7.46 (dd, J = 7.6, 1.4 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 151.1, 150.0, 133.7, 132.6, 129.8, 126.4, 125.6, 124.6, 15.4. HRMS: m/z: [M + H]⁺ calculated for C₁₀H₉N₂O₂S⁺: 221.0379 found 221.03798.

MeO Me methyl 3-methyl-4-(4-methylthiazol-5-yl)benzoate (**3ya**): ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 7.98 (s, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.32 (d,

J = 7.9 Hz, 1H), 3.94 (s, 3H), 2.29 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 151.5, 150.1, 138.2, 135.9, 131.4, 131.4, 130.4, 129.2, 126.9, 52.2, 20.1, 15.5. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₄NO₂S⁺: 248.0740 found 248.07413.

5-phenylthiazole (**3ab**)^[5]: ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.08 (s, 1H), 7.59 (dd, J = 5.2, 3.4 Hz, 2H), 7.42 (dd, J = 10.1, 4.7 Hz, 2H), 7.38 – 7.31 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 139.4, 139.0, 131.1, 129.1, 128.5, 127.0.

MeO 5-(4-methoxyphenyl)thiazole $(3cb)^{[5c]}$: ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.97 (s, 1H), 7.50 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 151.2, 139.2, 138.1, 128.3, 123.7, 114. 6, 55.4.

F 5-(4-fluorophenyl)thiazole (**3nb**)^[6]: ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.01 (s, 1H), 7.59 – 7.50 (m, 2H), 7.16 – 7.06 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, J = 247.3 Hz), 152.1, 139.0, 138.3, 128.8 (d, J = 8.2 Hz), 127.3 (d, J = 3.5 Hz), 116.2 (d, J = 21.8 Hz),

Me 5-(*o*-tolyl)thiazole (**3rb**)^[7]: ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 7.85 (s, 1H), 7.37 (d, J = 7.4 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.27 – 7.20 (m, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 141.7, 136.6, 130.8, 130.8, 130.3, 128.7, 126.1, 21.0.

^{//} 2,5-diphenylthiazole (7)^[8]: ¹H NMR (400 MHz, CDCl₃) δ 8.02

(s, 1H), 7.99 - 7.96 (m, 2H), 7.63 - 7.61 (m, 2H), 7.46 - 7.33 (m, 6H).

3. Reference:

1. (a) Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.; Bailey, M. D.; Bilodeau, F., *J. Am. Chem. Soc.* **2006**, *128*, 11350; (b) Bilodeau, F.; Brochu, M.-C.; Guimond, N.; Thesen, K. H.; Forgione, P., *J. Org. Chem.* **2010**, *75*, 1550.

2. Li égault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K., J. Org. Chem. 2009, 74, 1826.

3. (a) Roger, J.; Požgan, F.; Doucet, H., *J. Org. Chem.* **2009**, *74*, 1179; (b) Dong, J. J.; Roger, J.; Verrier, C.; Martin, T.; Le Goff, R.; Hoarau, C.; Doucet, H., *Green Chemistry* **2010**, *12*, 2053; (c) Bensaid, S.; Laidaoui, N.; El Abed, D.; Kacimi, S.; Doucet, H., *Tetrahedron Lett.* **2011**, *52*, 1383.

4. Matsushita, Y.-i.; Sakamoto, K.; Murakami, T.; Matsui, T., Synth. Commun. 1994, 24, 3307.

5. (a) Shibahara, F.; Yamaguchi, E.; Murai, T., *J. Org. Chem.* **2011**, *76*, 2680; (b) Parisien, M.; Valette, D.; Fagnou, K., *J. Org. Chem.* **2005**, *70*, 7578; (c) Primas, N.; Bouillon, A.; Lancelot, J.-C.; El-Kashef, H.; Rault, S., *Tetrahedron* **2009**, *65*, 5739.

6. Zambon, A.; Borsato, G.; Brussolo, S.; Frascella, P.; Lucchini, V., Tetrahedron Lett. 2008, 49, 66.

7. Sheldrake, P. W.; Matteucci, M.; McDonald, E., Synlett 2006, 460.

8. Turner, G. L.; Morris, J. A.; Greaney, M. F., Angew. Chem. Int. Ed. 2007, 46, 7996.

4. ¹H and ¹³C NMR spectral scopies obtained in this study.

Spectra of 3aa

Spectra of 3ba

Spectra of 3ca

S15

Spectra of 3da

Spectra of 3fa

Spectra of 3ga

S27

Spectra of **3pa**

S28

Spectra of 3qa

Spectra of 3ra

Spectra of 3sa

S31

Spectra of 3ta

Spectra of **3ua**

S33

Spectra of **3va**

Spectra of 3wa

Spectra of 3xa

S37

Spectra of **3rb**

Spectra of 7

