A Novel Sequential Injection Method for Rapid and Simultaneous Determination of ²³⁶U, ²³⁷Np and Plutonium isotopes in Seawater

Jixin Qiao^{a*}, Xiaolin Hou^{a, b}, Peter Steier^c, Robin Golser^c

^a Center of Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde, Denmark

^b Xi'an AMS Center and SKLLQG, Institute of Earth Environment, Chinese Academy of

Science, Xi'an, China

^c VERA Laboratory, Faculty of Physics – Isotope Research and Nuclear Physics, University of

Vienna, Währinger Straße 17, A-1090 Vienna, Austria

^{*}To whom correspondence should be addressed. Tel: 45 46775357. E-mail: jiqi@dtu.dk

This Supporting Information describes the details of experimental operations including sample pre-treatment and chromatographic separations. It also contents one Figure and two Tables.

EXPERIMENTAL

Sample pre-treatment

To optimize the iron hydroxide co-precipitation condition, 200 mL of seawater sample spiked with known amounts of ²⁴²Pu (ca. 10 mBq) and ²³⁷Np (ca. 1 mBq) was used and 0.2-2 mL of conc. HCl was added to acidify the seawater to 0.9-1.9. 0.03-0.2 mL of 0.1 g/mL Fe (in the form of FeCl₃) was added to a Fe concentration of 15-100 mg/L. Unless otherwise stated, the sample was stirred for 20 minutes with nitrogen bubbling after addition of 600 mg of K₂S₂O₅. 6 mol/L NaOH was added to adjust the pH to 10-11 and the supernatant was discarded after centrifuging the sample at 4000 rpm for 10 minutes. The residue was dissolved with 2 mol/L HCl and 110 mg of K₂S₂O₅ was added. Conc. NH₃·H₂O was added to adjust the pH to 8-9 and the sample was centrifuged. After discarding the supernatant, the residue was dissolved with 2 mol/L HCl to 10 mL.

To further optimize the pre-concentration procedure for 10 L filtrated seawater, 10 mL of conc. HCl was added to adjust pH to 2. Known amounts of ²³⁷Np and ²⁴²Pu were spiked. 2-5 mL of 0.1 g/mL Fe solution (corresponding to 20-100 mg/L Fe in 10 L seawater) and 2-20 g of $K_2S_2O_5$ were added. The sample was stirred by N₂ bubbling for 20 minutes, then a two-step coprecipitation or one-step co-precipitation combing acid digestion was applied depending on the experimental conditions (see Table 1). In the two-step co-precipitation, 6 mol/L NaOH was added to adjust the pH to 10-11. The sample was kept still overnight, and then the supernatant was discarded. Conc. HCl was added to dissolve the residue and conc. NH₃·H₂O was added to adjust pH to 8-9. The sample slurry was centrifuged at 4000 rpm for 5 minutes and the supernatant was poured away. The residue was dissolved with conc. HNO_3 and the sample was finally constituted to 3 mol/L HNO_3 for the automated chromatographic separation.

In the one-step co-precipitation, 10% NH₃·H₂O was slowly added to adjust the pH to 8-9 and 40 g of NaCl was then added with vigorously N₂ bubbling. The sample was kept still for 0.5-1 h, and then the supernatant was discarded. The sample slurry was centrifuged at 4000 rpm for 5 minutes and the supernatant was discarded. Afterwards, acid digestion was performed to decompose the organic substances/colloids contained in the precipitate. In detail, the residue was dissolved with 40 ml of *aqua regia* and boiled on a hotplate at 200 °C for 2 h. After cool down, the sample was filtrated with a GA/F filter paper, the filter paper and the beaker were washed with 30 mL of 0.2 mol/L HCl and combined into the filtrate. Conc. NH₃·H₂O was then added to adjust the pH to 8-9 and the sample was centrifuged at 4000 rpm for 10 minute. The residue was dissolved with 3 mL of conc. HCl and the solution was diluted to ca. 200 mL with water. 500 mg of K₂S₂O₅ was added and sample was stirred for 20 minutes. 10% NH₃·H₂O was added to pH 8-9 and the sample was centrifuged at 4000 rpm for 10 minute. The residue was firstly dissolved in 1-2 mL of conc. HCl and then with conc. HNO₃. The sample was finally adjusted to 3 mol/L HNO₃ for the automated chromatographic separation.

Chromatographic separation

Investigation on separation behaviour of radionuclides on UTEVA column

An artificial solution in HCl or HNO₃ media spiked with ca. 0.5 mBq of ²³⁷Np, 5 mBq of ²⁴²Pu, 62 μ Bq (5 ng) of ²³⁸U, 20 μ Bq (5 ng) of ²³²Th and 30 mg of Fe was prepared. A freshly packed 1-mL (0.5 cm i.d. × 5 cm length) UTEVA column was used during the investigation, which was preconditioned with acidic solution identical to the sample loading media prior to the column separation.

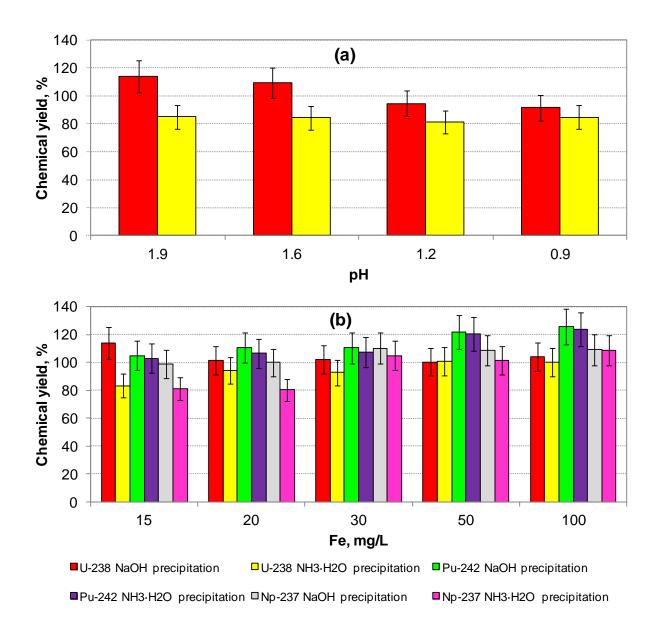
Condition A: 200 mg of ascorbic acid was added to a 5-mL artificial solution in 6 mol/L HCl. The sample was loaded onto the UTEVA column. The column was rinsed with 10 mL of 0.1 mol/L NH₂OH·HCl-6 mol/L HCl and uranium was finally eluted with 10 mL of 0.025 mol/L HCl.

Condition B: 200 mg of ascorbic acid and 100 mg of NaNO₂ were sequentially added to a 5mL artificial solution in 2 mol/L HNO₃. The sample was loaded onto the UTEVA column, which was then rinsed with 10 mL of 2 mol/L HNO₃ and 10 mL of 6 mol/L HCl. Plutonium and neptunium were eluted with 10 mL of 0.1 mol/L NH₂OH·HCl-2 mol/L HCl. Uranium was finally eluted with 10 mL of 0.025 mol/L HCl.

Condition C: 200 mg of ascorbic acid and 100 mg of NaNO₂ were sequentially added to 5-mL of artificial solution in 3 mol/L HNO₃. The sample was loaded onto the UTEVA column. The column was rinsed with 10 mL of 3 mol/L HNO₃ and 10 mL of 6 mol/L HCl. Plutonium and neptunium were eluted with 10 mL of 0.1 mol/L NH₂OH·HCl-2 mol/L HCl. Uranium was finally eluted with 10 mL of 0.025 mol/L HCl.

Condition D: 200 mg of ascorbic acid and 100 mg of NaNO₂ were sequentially added to a 5-mL of artificial solution in 2 mol/L HNO₃. 0.2 g of Al(NO₃)₃ was added to the sample which was then loaded onto the UTEVA column. The column was sequentially rinsed with 20 mL of 2 mol/L HNO₃, 20 mL of 6 mol/L HCl and 20 mL of 6 mol/L HCl-0.05 mol/L H₂C₂O₄. Uranium was eluted with 20 mL of 0.025 mol/L HCl.

All effluents, washes and eluates from the column separation were collected in 5-10 ml fractions, evaporated to dryness, and finally re-constituted in 5 mL of 0.5 mol/L HNO₃ for quantification of 237 Np, 242 Pu, 232 Th and 238 U with ICP-MS.


Investigation on separation performance of TEVA-UTEVA column

To investigate the effect of nitric acid concentration on the separation behaviour of stacked TEVA-UTEVA, 100 mL of 0.2 mol/L HCl was spiked with ca. 20 mBq of ²⁴²Pu, 1.0 Bq (80 µg) of ²³⁸U and 800 mg of Fe. 500 mg of K₂S₂O₅ was added and the sample was stirred for 20 minutes. 6 mol/L NaOH was added to adjust the pH to 9-10 and the sample was centrifuged at 4000 rpm for 10 minutes. The supernatant was discarded and the precipitate was dissolved with conc. HNO₃ to a final concentration of 4 mol/L HNO₃, and 200 mg of NaNO₂ was added. The sample (ca. 20 mL) was evenly divided into four sub-samples by weight, three of which were diluted with de-ionized water to 1, 2 and 3 mol/L HNO₃, respectively. Each sub-sample was loaded manually onto a stacked TEVA-UTEVA column (both were 1 mL volume), which was then rinsed with 100 mL of HNO₃ of identical concentration to the sample loading solution. After splitting the stacked TEVA-UTEVA column, plutonium was eluted from TEVA with 50 mL of 0.1 mol/L NH₂OH·HCl-2 mol/L HCl, while uranium was eluted from UTEVA with 50 mL of 0.025 mol/L HCl. Effluents, washes and eluates were collected in 5-10 mL fractions, evaporated to dryness, and finally reconstituted in 5 mL of 0.5 mol/L HNO₃ for quantification of ²³⁷Np and ²⁴²Pu with ICP-MS.

FIGURE CAPTIONS

Figure S-1. Effect of pH (a) and iron concentration (b) in seawater on the co-precipitation efficiency of uranium, neptunium and plutonium (> 100% chemical yields for U, Pu and Np might be consequences of artifact of matrix effects in the ICP-MS measurement)

Figure S-1.

TABLES

 Table S-1. Sorption and elution behaviour of thorium, uranium, neptunium and plutonium on

 UTEVA resin*

Experimental condition	Sample loading medium	Valence adjustment reagents	Loading, washing and eluting	Chemical yield, %			
			solution	²³² Th	²³⁷ Np	²³⁸ U	²⁴² Pu
A	6 mol/L	200 mg of	5 mL of sample loading solution in	34.5	43.1	0.4	93.2
	HCl	ascorbic acid	6 mol/L HCl	54.5	45.1	0.4	95.2
			10 mL of 0.1 mol/L NH ₂ OH·HCl-6 mol/L HCl	64.7	2.2	0.2	6.8
			10 mL of 0.025 mol/L HCl	0.8	54.7	99.4	0.0
В	2 mol/L	200 mg of	5 mL of sample loading solution in	0.5	42.9	0.0	3.9
	HNO ₃	ascorbic acid +	2 mol/L HNO ₃				
			10 mL of 2 mol/L HNO ₃	3.3	7.5	0.0	0.2
		100 mg of	10 mL of 6 mol/L HCl	90.9	0.0	0.2	0.0
		NaNO ₂	10 mL of 0.1 mol/L NH ₂ OH·HCl-6 mol/L HCl	5.2	0.0	0.1	2.1
			10 mL of 0.025 mol/L HCl	0.1	49.6	99.6	93.8
С	3 mol/L	200 mg of	5 mL of sample loading solution in 3 mol/L HNO ₃	0.5	3.4	0.0	2.3
	HNO_3	ascorbic acid +	10 mL of 3 mol/L HNO ₃	5.8	3.9	0.2	0.1
		100 mg of	10 mL of 6 mol/L HCl	89.9	2.8	0.8	0.0
		NaNO ₂	10 mL of 0.2 mol/L NH ₂ OH·HCl-6 mol/L HCl	0.3	86.2	97.0	97.7
			10 mL of 0.025 mol/L HCl	3.5	3.4	1.9	0.0
D	2 mol/L	200 mg of	5 mL of sample loading solution in	7.9	60.5	0.0	4.3
	HNO ₃	ascorbic acid +	2 mol/L HNO ₃		00.5	0.0	
			$0-10 \text{ mL of } 2 \text{ mol/L HNO}_3$	5.2	26.9	0.0	5.6
		100 mg of	10-20 mL of 2 mol/L HNO_3	6.0	2.7	0.0	1.1
		NaNO ₂ #	0-10 mL of 6 mol/L HCl	50.4	0.2	0.0	0.1
			10-20 mL of 6 mol/L HCl	4.9	11.5	0.1	8.8
			0-10 mL of 0.05 mol/L H ₂ C ₂ O ₄ -6 mol/L HCl	13.1	0.0	0.2	6.8
			10-20 mL of 0.05 mol/L H ₂ C ₂ O ₄ -6 mol/L HCl	6.4	0.1	1.1	16.5
			0-10 mL of 0.025 mol/L HCl	1.9	0.1	95.0	55.2
			10-20 mL of 0.025 mol/L HCl	0.1	0.1	1.2	0.0
			Ashed UTEVA	4.1	0.0	2.4	1.5

*The uncertainties of all values are < 10%.

Before sample loading, 0.2 g of Al(NO₃)₃ was added to increase [NO₃⁻] without changing [H⁺].

Step no.	Operation of syringe pump	Flow rate, mL/min	Valve Position		
			INV ^{&}	SV-1 [#]	SV-2
Ι	1) aspirate 25 mL of deionised water*	12.0	1	1	1
	2) dispense 25 mL of deionised water	6.0	1	8	1
	3) aspirate 1 mL air	6.0	1	1	1
	4) aspirate 15 mL of 3 mol/L HNO ₃	12.0	1	3	1
	5) dispense 5mL of 3 mol/L HNO ₃	6.0	1	7	1
	6) dispense 5 mL of 3 mol/L HNO ₃	6.0	1	9	4
	7) dispense 5 mL of 3 mol/L HNO ₃	6.0	1	8	4
Π	8) aspirate 20 mL of 3 mol/L HNO ₃	12.0	1	3	4
	9) dispense 20 mL of 3 mol/L HNO ₃ to TEVA-UTEVA	3.0	2	8	4
III	10) aspirate the sample solution (ca. 20 mL)	3.6	2	7	4
	11) dispense the sample solution (ca. 20 mL) onto connected	1.2	2	8	4
	TEVA-UTEVA				
IV	12) aspirate 20 mL of 3 mol/L	12.0	2	3	4
	13) dispense 20 mL of 3 mol/L to connected TEVA-UTEVA	1.2	2	8	4
V	14) aspirate 20 mL of 1 mol/L	12.0	2	2	4
	15) dispense 20 mL of 1 mol/L to connected TEVA-UTEVA	1.2	2	8	4
	Repeat step 12-13 for three times				
VI	16) aspirate 20 mL of 1 mol/L HNO ₃	12.0	2	2	4
	17) dispense 20 mL of 1 mol/L HNO_3 to TEVA	2.4	1	9	3
	18) aspirate 20 mL of 6 mol/L HCl	12.0	1	4	3
	19) dispense 20 mL of 6 mol/L HCl to TEVA	2.4	1	9	3
VII	20) aspirate 20 mL of 0.1 mol/L NH2OH·HCl -2 mol/L HCl	12.0	1	6	3
	21) dispense 20 mL of 0.1 mol/L NH ₂ OH·HCl -2 mol/L HCl	1.2	1	9	4
	to TEVA				
	22) aspirate 20 mL of 0.025 mol/L HCl	12.0	1	5	4
	23) dispense 20 mL of 0.025 mol/L HCl	1.2	1	10	4

Table S-2. The programmable operations and positions of valves in the SI analyzer for chromatographic separation of uranium, neptunium and plutonium with TEVA and UTEVA

*Only for operation, the solenoid valve (SV-3) located at the head of the syringe pump is assigned to 'in' position; for all the other operations, SV-3 is always at 'out' position. & position 1: port 1 and 2, port 3 and 4, port 5 and 6, port 7 and 8, and port 9 and 10, are connected respectively; position 1: port 1 and 10, port 2 and 3, port 4 and 5, port 6 and 7, and port 8 and 9 are connected, respectively. #position no. x means that, the central port of the selection valve is connected with the ambient port no. x.