Soft Templated Room Temperature Fabrication of Nanoscale Lanthanum Phosphate: Synthesis, Photoluminescence and Energy Transfer Behaviour

Sayantani Chall, Soumya Sundar Mati, Soumyadipta Rakshit, and Subhash Chandra Bhattacharya*

Department of Chemistry, Jadavpur University, Kolkata 700032, India.

*e-mail: sbjuchem@yahoo.com, scbhattacharyya@chemistry.jdvu.ac.in Phone No: 033 2414 6223 / Fax: 91(033) 24146584

Supporting Information

Lifetime measurement:

In lifetime measurements, the biexponential photoluminescence decay curves were analyzed by a iterative fitting program provided by IBH such as Eq. S1,⁴⁷

where α_i is a pre-exponential factor representing fractional contribution to the time-resolved decay of the component with a lifetime τ_i . Mean (average) lifetimes $\Box \tau \Box$ for biexponential decays of PL were calculated from the decay times and pre-exponential factors using the following Eq. S2,⁴⁷

$$\langle \tau \rangle = \frac{\alpha_1 \tau_1 + \alpha_2 \tau_2}{\alpha_2 + \alpha_2} \dots S2$$

Figure S1:

Figure S1: XRD pattern of Ce³⁺ activated LaPO₄; $[Ce^{3+}] = 0.5 \text{ mol } dm^{-3}$; $\omega = 25$; $[AOT] = 0.1 \text{ mol } dm^{-3}$; $[La^{3+}] = 0.5 \text{ mol } dm^{-3}$; $[H_2PO_4^{-}] = 0.5 \text{ mol } dm^{-3}$.

Figure S2: XRD pattern of LAP synthesized at different surfactant concentrations (a) 0.50 mol dm⁻³; (b) 0.50 mol dm⁻³; (c) 0.02 mol dm⁻³; at different phosphate sources (d) H₃PO₄; (e) Na₂HPO₄; (f) Na₃PO₄; in all cases, $\omega = 25$, [AOT] = 0.1 mol dm⁻³; [La³⁺] = 0.5 mol dm⁻³; [Ce³⁺] = 0.5 mol dm⁻³; [Tb³⁺] = 0.5 mol dm⁻³; all PO₄ precursors have concentration 0.5 mol dm⁻³.

Figure S3:

Figure S3: Energy dispersive X-Ray spectrum of LaPO₄:Ce³⁺,Tb³⁺ prepared in AOT/n-heptane reverse micelles at $\omega = 25$.

\

Figure S4:

Figure S4: Elemental mapping of the prepared $LaPO_4:Ce^{3+},Tb^{3+}$ nanomaterials confirming elemental composition of the desired material.

Figure S5:

Figure S5: TEM images of LAP: Ce^{3+} , Tb^{3+} particles synthesized in (a) n-hexane (Inset: image of a single particle); (b) n-octane; (c) n-decane; (d) at 0.5 mol dm⁻³ AOT concentration (Inset: illustrate corresponding SAED image); (e) SAED image of the particles synthesized in AOT/n-octane RMs; (f) HRTEM image of the LAP: Ce^{3+} , Tb^{3+} synthesized in AOT/n-decane RMs.

Figure S6:

Figure S6: Photoluminescence spectra of (a) undoped LaPO₄; (b) excitation spectra of LaPO₄:Tb³⁺ ($\lambda_{em} = 544$ nm); (c) LaPO₄:Ce³⁺,Tb³⁺ with increasing La³⁺ concentration; all spectra were taken at $\omega = 25$, AOT/n-heptane RMs, [Ce³⁺] = 0.5 mol dm⁻³; [Tb³⁺] = 0.5 mol dm⁻³.

Figure S7:

Figure S7: Time resolved decay study reveals gradual increase of Tb^{3+} life time with increasing Tb^{3+} concentration, therefore confirm energy transfer between Ce^{3+} and Tb^{3+} .