SUPPORTING INFORMATION

Table S1. Theoretical and observed *b*- and *y*-ions from MS/MS analysis of native and labeled L32-K42 in apoMb labeled with pLeu in lyophilized solids.

Table S2. Theoretical and observed *b*- and *y*-ions from MS/MS analysis of GCG (1-8)* dimer in formulation containing peptide lyophilized with L-Leu.

Fig S1. FTIR (A) and far UV-CD spectra (B) of labeled and unlabeled apoMb.

Fig S2. Digest map of native apoMb digested with a combination of trypsin and chymotrypsin.

Table S1. Theoretical and observed *b*- and *y*-ions from MS/MS analysis of native and labeled L32-K42 in apoMb labeled with pLeu in lyophilized solids.

I. Product ions with z=+1 produced by fragmenting native L32-K42 (m/z=424.5609; z=+3)

	b-ions	Theoretical	Observed	y-ions	Theoretical	Observed
		m/z ^a	m/z ^b		m/z ^a	$\mathbf{m}/\mathbf{z}^{\mathrm{b}}$
L	b_1	114.0919		y ₁₁	1271.6636	
F	b_2	261.1604	261.1586	<i>y</i> 10	1158.5796	
T	b_3	362.2080	362.2050	<i>y</i> ₉	1011.5111	1011.5070
G	b_4	419.2295	419.2223	<i>y</i> ₈	910.4635	910.4603
Н	b_5	556.2884	556.2834	<i>y</i> ₇	853.442	853.4381
P	b_6	653.3412		<i>y</i> ₆	716.3831	716.3800
E	b_7	782.3838	782.3758	y_5	619.3303	619.3267
T	b_8	883.4314	883.4253	<i>y</i> ₄	490.2877	490.2852
L	b_9	996.5155		<i>у</i> ₃	389.2401	389.2385
Е	b_{10}	1125.5581		<i>y</i> ₂	276.1560	276.1544
K	b_{11}	1253.6531		y_1	147.1134	147.1119

II. Product ions with z=+2 produced by fragmenting native L32-K42 (m/z=424.5609; z=+3)

	y-ions ^c	Theoretical m/z ^a	Observed m/z ^b
L	<i>y</i> ₁₁	636.3357	636.3344
F	y ₁₀	579.7937	579.7910
T	y 9	506.2595	506.2572
G	<i>y</i> ₈	455.7357	455.7332
Н	y ₇	427.2249	427.2230
P	У6	358.6955	358.6935
Е	<i>y</i> ₅	310.1691	
T	<i>y</i> ₄	245.6478	
L	<i>у</i> ₃	195.1240	
Е	y_2	138.5819	
K	y_1	74.0606	

III. Product ions with z=+2 produced by fragmenting labeled L32-K42 (m/z=462.9133; z=+3)

	y-ions	(A)	(B)	(C)	Mass difference (u) ^d
		Theoretical	Observed	Observed	$\mathbf{M} = \mathbf{M}_{\mathrm{labeled}} - \mathbf{M}_{\mathrm{unlabeled}}$
		m/z	m/z,	m/z	
		(labeled)	(labeled)	(unlabeled)	
L	<i>y</i> ₁₁	693.8674	693.8649		
F	<i>y</i> ₁₀	637.3254	637.3184	579.789	115.0588
T	<i>y</i> ₉	563.7912	563.7873	506.2524	115.0698
G	<i>y</i> ₈	513.2673	513.2592	455.7365	115.0454
Н	<i>y</i> ₇	484.7566	484.7525	427.2245	115.0560
P	<i>y</i> ₆	416.2271	416.2189	358.6996	115.0386
Е	y_5	367.7008			
T	<i>y</i> ₄	303.1795			
L	<i>y</i> ₃	252.6556			
Е	<i>y</i> ₂	196.1136			
K	y_1	131.5923			

^a Calculated *m/z* values.

^b m/z values obtained experimentally using mass spectrometry.

^c No *b*-ions were detected by MS for z = +2.

^d Mass difference M was calculated from m/z values in columns (B) and (C), using the formula M = (m/z)*n - nH+, where n is the number of charges on the y-ion and H is the mass of a proton (H=1.01 u).

IV. Product ions with z=+1 produced by fragmenting labeled L32-K42 (m/z=462.9133; z=+3)

	y-ions ^c	(A)	(B)	(C)	Mass difference
		Theoretical	Observed	Observed	$M = M_{labeled} -$
		m/z	m/z,	m/z	$M_{unlabeled}$
		(labeled)	(labeled)	(unlabeled)	
L	<i>y</i> ₁₁	1386.7269			
F	<i>y</i> ₁₀	1273.6429			
T	y 9	1126.5744			
G	<i>y</i> ₈	1025.5268			
Н	<i>y</i> ₇	968.5053			
P	<i>y</i> ₆	831.4464	831.4462	716.3819	115.0643
Е	y_5	734.3936	734.3989	619.3205	115.0784
T	<i>y</i> ₄	605.3510	605.3535	490.289	115.0645
L	<i>y</i> ₃	504.3034		389.2466	
Е	<i>y</i> ₂	391.2193		276.1541	
K	y_1	262.1767		147.1118	

^a Calculated *m/z* values.

^b m/z values obtained experimentally using mass spectrometry.

^c No *b*-ions were detected by MS for z = +2.

^d Mass difference M was calculated from m/z values in columns (B) and (C), using the formula M = (m/z)*n - nH+, where n is the number of charges on the y-ion and H is the mass of a proton (H=1.01 u).

Table S2. Theoretical and observed *b*- and *y*-ions from MS/MS analysis of GCG (1-8)* dimer from formulation containing peptide lyophilized with L-Leu. F* denotes p-benzoyl-L-phenylalanine (pBpA). Calculated m/z values are denoted as 'Theoretical m/z' while m/z values obtained experimentally using mass spectrometry are denoted as 'Observed m/z'.

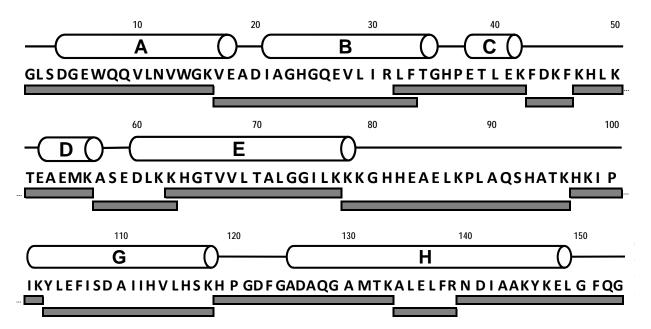
I. Internal fragment (non-cross-linked) product ions with z=+1 produced by fragmenting GCG (1-8)* dimer (m/z = 646.2783; z=+3)

	b- ions	Theoretical m/z ^b	Observed m/z ^c	y-ions	Theoretical m/z ^b	Observed m/z ^c
Н	b_1	138.0668	138.0656	<i>y</i> ₈	968.4110	
S	b_2	225.0988	225.0973	<i>y</i> ₇	831.3521	
Q	b_3	353.1574	353.1502	<i>y</i> ₆	744.3201	
G	b_4	410.1789		y_5	616.2615	
T	b_5	511.2265	511.2234	<i>y</i> ₄	559.2400	559.2367
F*a	b_6	762.3207		<i>у</i> ₃	458.1923	458.1916
T	b_7	863.3684		y_2	207.0981	207.0963
S	b_8	950.4004		y_1	106.0505	106.0497

II. Cross-linked product ions with z=+2 produced by fragmenting GCG (1-8)* dimer (m/z = 646.2783; z=+3)

	<i>b</i> ~α-ions ^d	Theoretical m/z ^b	Observed m/z ^c	α~y- ions	Theoretical m/z ^b	Observed m/z ^c
Н	b_1	553.2400		y_8	968.9173	968.9178
S	b_2	596.7560		y ₇	890.8773	
Q	b_3	660.7853		y_6	847.3613	847.3526
G	b_4	689.2960	689.2939	y ₅	783.3320	783.3290
T	b_5	739.8198	739.8130	y_4	754.8213	
F*	b_6	865.3669	865.3627	y ₃	704.2975	
T	b_7	915.8908	915.8929	y_2	578.7504	
S	b_8	959.4068		y ₁	528.2265	

^a $F^* = p$ -benzoyl-L-phenylalanine (pBpA).


^b Calculated *m/z* values.

^c m/z values obtained experimentally using mass spectrometry.

 $^{^{}d} \alpha = GCG (1-8)^{*}$ monomer.

Fig S1. FTIR (A) and far UV-CD spectra (B) of labeled and unlabeled apoMb in lyophilized solids. ApoMb was co-lyophilized with sucrose and 100x molar excess of pLeu. The lyophilized formulation was irradiated at 365 nm for 40 min (dotted line), while the control was not irradiated (solid line).

Fig S2. Digest map of native apoMb digested with a combination of trypsin and chymotrypsin. A total of 36 peptides were produced, of which the 13 shown by the shaded bars were selected to provide 100% sequence coverage.